JPH07257967A - Ni-containing low loss ferrite for power source - Google Patents

Ni-containing low loss ferrite for power source

Info

Publication number
JPH07257967A
JPH07257967A JP6072499A JP7249994A JPH07257967A JP H07257967 A JPH07257967 A JP H07257967A JP 6072499 A JP6072499 A JP 6072499A JP 7249994 A JP7249994 A JP 7249994A JP H07257967 A JPH07257967 A JP H07257967A
Authority
JP
Japan
Prior art keywords
loss
content
core
sintered body
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6072499A
Other languages
Japanese (ja)
Inventor
Emi Nakagawa
恵美 中川
Hitoshi Ueda
等 上田
Teruo Uchikawa
晃夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Ferrite Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ferrite Ltd filed Critical Hitachi Ferrite Ltd
Priority to JP6072499A priority Critical patent/JPH07257967A/en
Publication of JPH07257967A publication Critical patent/JPH07257967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To reduce the core loss and increase the resistivity by specifying the P content of a sintered compact contg. Fe2O3, NiO and ZnO. CONSTITUTION:A mixture of 40-52.5mol% Fe2O3 having <=10ppm P content with 5-47.5mol% NiO, <=35mol% ZnO and CuO is temporarily burnt and crushed to obtain burnt powder. This powder is blended with a binder, granulated, compacted into a ring-shaped core and burnt to obtain the objective Ni-contg. low loss ferrite for a power source having <=66ppm P content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スイッチング電源、液
晶バックライト等のトランスに用いられるフェライト材
料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrite material used for transformers such as switching power supplies and liquid crystal backlights.

【0002】[0002]

【従来の技術】スイッチング電源、液晶バックライト
は、民生機器をはじめOA、産業用機器へと幅広い利用
が進んでおり、現在、小型、薄型、軽量化が図られてい
る。このスイッチング電源や液晶バックライト等に使用
されるトランスには、従来、Mn系のフェライトコアが
使用されていた。
2. Description of the Related Art Switching power supplies and liquid crystal backlights have been widely used in consumer equipment, office automation equipment, and industrial equipment, and are currently being made smaller, thinner, and lighter. Conventionally, a Mn-based ferrite core has been used for the transformer used for the switching power supply, the liquid crystal backlight, and the like.

【0003】[0003]

【発明が解決しようとする課題】Mn系のフェライトコ
アは、飽和磁束密度、透磁率が大きく、また損失(コア
ロス)が10kW/m3程度(50kHz、50mT)
と小さいという特長があり、これまでスイッチング電源
や液晶バックライト等のトランスに用いられてきた。し
かしながら、抵抗率が10Ω・m程度と比較的低く、コ
アに直接巻線をすると漏れ電流が発生する。このため、
スイッチング電源等のトランスとしては、Mn系のフェ
ライトコアを使用する場合、コアにボビンをかぶせた
り、絶縁被膜等の処理を行ってから巻線を行っており、
製造コストが高く、小型化が難しいという問題があっ
た。これに対し、Ni系のフェライトコアは、抵抗率が
106Ω・m程度と非常に高く、コアに直接巻線をする
ことが可能であるが、損失(コアロス)が60kW/m
3(50kHz、50mT)程度と大きため、コアが発
熱し易く、スイッチング電源等のトランスとして適して
いなかった。本発明は、上記のことを鑑みて、抵抗率の
高いNi系フェライトにて、損失(コアロス)が小さ
く、スイッチング電源等のトランスとして使用できるフ
ェライト材料を提供することを目的とする。
The Mn-based ferrite core has a large saturation magnetic flux density and permeability, and a loss (core loss) of about 10 kW / m 3 (50 kHz, 50 mT).
It has been used for transformers such as switching power supplies and liquid crystal backlights. However, the resistivity is relatively low, about 10 Ω · m, and leakage current occurs when the core is directly wound. For this reason,
When a Mn-based ferrite core is used as a transformer for a switching power supply or the like, the core is covered with a bobbin or treated with an insulating film or the like before winding.
There is a problem that the manufacturing cost is high and miniaturization is difficult. On the other hand, the Ni-based ferrite core has a very high resistivity of about 10 6 Ω · m and can be wound directly on the core, but the loss (core loss) is 60 kW / m.
Since it is as large as about 3 (50 kHz, 50 mT), the core easily generates heat and is not suitable for a transformer such as a switching power supply. In view of the above, an object of the present invention is to provide a ferrite material having a high resistivity and a small loss (core loss), which can be used as a transformer for a switching power supply or the like.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題点を
解決するために、Fe23 40〜52.5 mol
%、NiO 5〜47.5 mol%、ZnO 35m
ol%以下から成る組成を主成分とするフェライト材料
において、焼結体中のPの含有量を66ppm未満とす
るものである。本発明において、フェライト材料の組成
範囲を限定した理由は、以下の通りである。主成分の
内、Fe23が52.5mol%を越える時、あるいは
NiOが5mol%未満の時、抵抗率が低く、コアに直
接巻線をすることができない。ZnOが35mol%を
越える時、キュリー温度が100℃以下となり、実用的
でない。また、焼結体中のPの含有量が66ppm以上
になると、損失(コアロス)が大きくなる。よって、請
求範囲に示す主成分組成が限定される。なお、本発明の
フェライト材料は、前記の組成を有するものであれば、
製造方法には、特に制限はない。
According to the present invention, in order to solve the above problems, Fe 2 O 3 40 to 52.5 mol.
%, NiO 5-47.5 mol%, ZnO 35m
In a ferrite material whose main component is a composition of ol% or less, the content of P in the sintered body is less than 66 ppm. In the present invention, the reason why the composition range of the ferrite material is limited is as follows. When Fe 2 O 3 exceeds 52.5 mol% or NiO is less than 5 mol% among the main components, the resistivity is low and the core cannot be directly wound. When ZnO exceeds 35 mol%, the Curie temperature becomes 100 ° C. or lower, which is not practical. Further, when the P content in the sintered body is 66 ppm or more, the loss (core loss) increases. Therefore, the main component composition shown in the claims is limited. If the ferrite material of the present invention has the above composition,
The manufacturing method is not particularly limited.

【0005】[0005]

【作用】従来のNi系フェライト材料では、上述の如
く、損失(コアロス)が60kW/m3(50kHz、
50mT)と大きく、スイッチング電源等のトランスと
して適さなかった。本発明は、Ni系フェライト材料
で、スイッチング電源等のトランスとして使用できる材
料を研究した所、焼結体中に含まれるPの含有量が多い
と、焼結体の結晶組織中にPの偏析を生じ、このPの偏
析を生じると損失(コアロス)が大きくなることを見い
出した。つまり焼結体中のPの含有量が66ppm未満
であると、Pの偏析がなく、損失(コアロス)が30k
W/m3以下(50kHz、50mT)となり、スイッ
チング電源等のトランスとして使用できる。
With the conventional Ni-based ferrite material, as described above, the loss (core loss) is 60 kW / m 3 (50 kHz,
It was as large as 50 mT) and was not suitable for a transformer such as a switching power supply. In the present invention, as a result of researching a Ni-based ferrite material that can be used as a transformer for a switching power source, etc., when the content of P contained in the sintered body is large, P segregates in the crystal structure of the sintered body. It was found that the loss (core loss) increases when the segregation of P occurs. That is, when the content of P in the sintered body is less than 66 ppm, there is no segregation of P and the loss (core loss) is 30 k.
It is less than W / m 3 (50 kHz, 50 mT) and can be used as a transformer for switching power supplies.

【0006】[0006]

【実施例】以下に、本発明に係るフェライト材料の実施
例を詳細に説明する。Pの含有量が10ppm以下のF
23 49.45mol%、ZnO 29.75mo
l%、NiO 14.80mol%およびCuO 6.
00mol%相当量の素原料粉末を秤量し、これに所定
量のイオン交換水を添加したものをボールミルにて、4
時間混合し、電気炉を用いて最高温度850℃で1.5
時間仮焼した後、これを炉冷し、40メッシュのふるい
で解砕する。しかる後、再び所定量のイオン交換水を添
加したものをボールミルにて6時間粉砕し、粉砕された
スラリー状の原料を乾燥および解砕する。これにバイン
ダー(ポリビニルアルコール)を加えて造粒し、40メ
ッシュのふるいにて整粒した顆粒を乾式圧縮成形機と金
型を用いて、外径16.8mm、内径8.5mm、高さ
5.4mmのリング状コアに成形圧1.5ton/cm
2で成形し、これを大気中、1100℃で1.5時間焼
成した。得られた各試料の焼成密度を測定した後、周波
数50kHz、磁束密度50mTの測定条件において2
0〜140℃の温度範囲で損失(コアロス)を測定し
た。結果を図1に示す。また、焼結体の結晶組織(結晶
粒径、組成分布)の観察を行った。この実施例によれ
ば、電源用フェライトとして十分に使用できる程度に、
コアロスの小さいNi系フェライトを得ることができ
た。また、結晶組織中にPの偏析はなかった。さらに主
成分組成およびFe23以外の素原料を同一とし、また
試料の作製方法を同一手順として、Pの含有量が異なる
種々のFe23を使って試料を作製し、上記実施例と同
じ条件で焼成密度、損失(コアロス)を測定し、焼結体
の結晶組織(結晶粒径、組成分布)の観察を行った。結
果を表1に示す。
EXAMPLES Examples of the ferrite material according to the present invention will be described in detail below. F with a P content of 10 ppm or less
e 2 0 3 49.45 mol%, ZnO 29.75mo
1%, NiO 14.80 mol% and CuO 6.
A raw material powder in an amount equivalent to 00 mol% was weighed, and a predetermined amount of ion-exchanged water was added to the raw material powder.
Mix for an hour and use an electric furnace at a maximum temperature of 850 ° C for 1.5
After calcination for a period of time, this is cooled in a furnace and crushed with a 40 mesh sieve. After that, a material to which a predetermined amount of ion-exchanged water has been added is pulverized by a ball mill for 6 hours, and the pulverized slurry raw material is dried and pulverized. A binder (polyvinyl alcohol) was added to this and granulated, and the granules sized with a 40-mesh sieve were used with a dry compression molding machine and a mold to have an outer diameter of 16.8 mm, an inner diameter of 8.5 mm, and a height of 5 Molding pressure of 1.5 ton / cm on a 4 mm ring-shaped core
Molded in 2 and fired in air at 1100 ° C. for 1.5 hours. After measuring the firing density of each of the obtained samples, 2 under the conditions of a frequency of 50 kHz and a magnetic flux density of 50 mT.
The loss (core loss) was measured in the temperature range of 0 to 140 ° C. The results are shown in Fig. 1. Further, the crystal structure (crystal grain size, composition distribution) of the sintered body was observed. According to this example, to the extent that it can be sufficiently used as a power ferrite,
A Ni-based ferrite with a small core loss could be obtained. Further, there was no segregation of P in the crystal structure. Further, using the same raw materials other than the main component composition and Fe 2 O 3 and the same sample preparation method, samples were prepared using various Fe 2 O 3 having different P contents, The firing density and the loss (core loss) were measured under the same conditions as above, and the crystal structure (crystal grain size, composition distribution) of the sintered body was observed. The results are shown in Table 1.

【0007】[0007]

【表1】 [Table 1]

【0008】この表1からわかるとおり、焼結体中のP
の含有量が66ppm未満の場合、結晶組織中にPの偏
析がなく、低損失(コアロスが30kW/m3以下)な
フェライトが得られた。また、焼成密度が5.1×10
3kg/m3未満の場合、あるいは結晶粒径が10μm以
上の場合、損失(コアロス)が大きくなった。また、焼
結体中のPの含有量が66ppmを越えると、焼結体の
結晶組織にP等の偏析が見られ、組成分布が不均一とな
り、損失(コアロス)が大きくなった。なお、焼結体中
に含まれるPの含有量は、原料中のFe23量とFe2
3素原料中のPの含有量から計算した。表1の実施例
3について、ICP(誘電結合プラズマ発光分光分析
法)により、焼結体中のPの含有量を分析した所、測定
値は45ppmとなり、前記、計算方法により求めた値
とほぼ一致した。次に、Pの含有量が10ppm以下の
Fe23 49.60mol%、ZnO32.80mo
l%およびNiO 17.60mol%相当量の素原料
粉末を秤量し、上記実施例と同一手順でリング状コアを
成形し、これを大気中、1200℃で1.5時間焼成し
た。得られた各試料の焼成密度、損失(コアロス)の測
定を、上記実施例と同じ条件で行った。また、焼結体の
結晶組織(結晶粒径、組成分布)の観察を行った。さら
に主成分組成およびFe23以外の素原料を同一とし、
また試料の作製方法を同一手順として、Pの含有量が異
なる種々のFe23を使って試料を作製し、上記実施例
と同じ条件で焼成密度、損失(コアロス)を測定し、焼
結体の結晶組織(結晶粒径、組成分布)の観察を行っ
た。結果を表2に示す。
As can be seen from Table 1, P in the sintered body
When the content of P was less than 66 ppm, there was no segregation of P in the crystal structure, and a low-loss (core loss of 30 kW / m 3 or less) ferrite was obtained. Moreover, the firing density is 5.1 × 10.
When it was less than 3 kg / m 3 or when the crystal grain size was 10 μm or more, the loss (core loss) was large. Moreover, when the content of P in the sintered body exceeded 66 ppm, segregation of P or the like was observed in the crystal structure of the sintered body, the composition distribution became non-uniform, and the loss (core loss) increased. The content of P contained in the sintered body, Fe 2 0 3 content in the raw material and the Fe 2
It was calculated from the content of P in the 0 3 raw material. For Example 3 in Table 1, when the content of P in the sintered body was analyzed by ICP (Dielectric Coupling Plasma Atomic Emission Spectroscopy), the measured value was 45 ppm, which was almost the same as the value obtained by the above calculation method. Matched Next, Fe 2 O 3 49.60 mol% with a P content of 10 ppm or less, ZnO 32.80mo
1% and NiO 17.60 mol% equivalent raw material powders were weighed, a ring-shaped core was formed by the same procedure as in the above-mentioned example, and this was fired at 1200 ° C. for 1.5 hours in the atmosphere. The firing density and the loss (core loss) of each of the obtained samples were measured under the same conditions as in the above-mentioned examples. Further, the crystal structure (crystal grain size, composition distribution) of the sintered body was observed. Furthermore, the raw materials other than the main component composition and Fe 2 O 3 are the same,
Also, using the same procedure as the sample preparation method, samples were prepared using various Fe 2 O 3 having different P contents, and the firing density and loss (core loss) were measured under the same conditions as in the above-mentioned examples, and sintering was performed. The crystal structure of the body (crystal grain size, composition distribution) was observed. The results are shown in Table 2.

【0009】[0009]

【表2】 [Table 2]

【0010】この表2からわかるとおり、焼結体中のP
の含有量が66ppm未満の場合、損失(コアロス)が
30kW/m3以下となり、大幅に改善された。焼成密
度が5.1×103kg/m3未満の場合、あるいは結晶
粒径が10μm以上の場合、実施例1と同様に損失(コ
アロス)がやや大きくなった。また、焼結体中のPの含
有量が66ppmを越えると、焼結体の結晶組織にPの
偏析が見られ、損失(コアロス)が大きくなった。以上
の結果から、焼結体中のPの含有量を66ppm未満に
抑えることにより、損失(コアロス)が大幅に改善さ
れ、低損失フェライト材料が得られることが明かであ
る。また、焼成密度が5.1×103kg/m3以上、あ
るいは結晶粒径が10μm未満であることが望ましい。
なお、他のNi系フェライト(Ni―Mg―Cu―Zn
フェライト、Ni―Mg―Znフェライト)について
も、上記と同様の検討を行った所、焼結体中のPの含有
量を66ppm未満に抑えることにより、損失(コアロ
ス)が大幅に改善された。
As can be seen from Table 2, P in the sintered body
When the content of is less than 66 ppm, the loss (core loss) is 30 kW / m 3 or less, which is a significant improvement. When the firing density was less than 5.1 × 10 3 kg / m 3 or when the crystal grain size was 10 μm or more, the loss (core loss) was slightly increased as in Example 1. Further, when the content of P in the sintered body exceeded 66 ppm, segregation of P was observed in the crystal structure of the sintered body, and the loss (core loss) increased. From the above results, it is clear that by suppressing the P content in the sintered body to less than 66 ppm, the loss (core loss) is significantly improved and a low loss ferrite material can be obtained. Further, it is desirable that the firing density is 5.1 × 10 3 kg / m 3 or more, or the crystal grain size is less than 10 μm.
Other Ni-based ferrites (Ni-Mg-Cu-Zn
With respect to ferrite and Ni—Mg—Zn ferrite), the same examination as above was performed, and by suppressing the P content in the sintered body to less than 66 ppm, the loss (core loss) was significantly improved.

【0011】[0011]

【発明の効果】Niフェライト材料において、焼結体中
のPの含有量を66ppm未満に抑えることにより、損
失(コアロス)が小さく、抵抗率の高いフェライト材料
が得られ、スイッチング電源等のトランス用として有用
であり、トランスの製造コストの低減、小型化が可能に
なる。
INDUSTRIAL APPLICABILITY In the Ni ferrite material, by suppressing the content of P in the sintered body to less than 66 ppm, a ferrite material with a small loss (core loss) and a high resistivity can be obtained, which is used for transformers such as switching power supplies It is possible to reduce the manufacturing cost and size of the transformer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるNi系低損失磁性材料の損失
(コアロス)の温度特性を表す図である。
FIG. 1 is a diagram showing temperature characteristics of loss (core loss) of a Ni-based low loss magnetic material according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Fe23 40〜52.5mol%、N
iO 5〜47.5mol%、ZnO 35mol%以
下から成る組成を主成分とし、焼結体中のPの含有量が
66ppm未満であることを特徴とするNi系電源用低
損失フェライト。
1. Fe 2 O 3 40-52.5 mol%, N
A low-loss ferrite for a Ni-based power source, characterized in that the main component is a composition of 5 to 47.5 mol% of iO and 35 mol% or less of ZnO, and the content of P in the sintered body is less than 66 ppm.
JP6072499A 1994-03-16 1994-03-16 Ni-containing low loss ferrite for power source Pending JPH07257967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6072499A JPH07257967A (en) 1994-03-16 1994-03-16 Ni-containing low loss ferrite for power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6072499A JPH07257967A (en) 1994-03-16 1994-03-16 Ni-containing low loss ferrite for power source

Publications (1)

Publication Number Publication Date
JPH07257967A true JPH07257967A (en) 1995-10-09

Family

ID=13491093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6072499A Pending JPH07257967A (en) 1994-03-16 1994-03-16 Ni-containing low loss ferrite for power source

Country Status (1)

Country Link
JP (1) JPH07257967A (en)

Similar Documents

Publication Publication Date Title
US7892446B2 (en) Ferrite material
JP2917706B2 (en) Oxide magnetic material
JPH05335132A (en) Oxide magnetic body material
JPH06310320A (en) Oxide magnetic substance material
JPH06290926A (en) Mn-zn ferrite magnetic material
JP2855990B2 (en) Oxide magnetic material
JP3259942B2 (en) Low loss Ni-based ferrite sintered body and magnetic core
JP2001015321A (en) MANUFACTURE OF Ni-BASED FERRITE SINTERED BODY
JP2000299215A (en) Low loss oxide magnetic material
JP4303443B2 (en) Ferrite material manufacturing method
JP3410293B2 (en) High magnetic flux density low loss Ni-Cu-Zn ferrite sintered body and transformer for DC-DC converter
JPH08310856A (en) Nickel-copper-zinc ferrite sintered compact
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP2004247371A (en) MnZn FERRITE
JP2022059859A (en) MnZn BASED FERRITE AND MANUFACTURING METHOD OF SAME
JPH07257967A (en) Ni-containing low loss ferrite for power source
JPH07130527A (en) Oxide magnetic material
JPH07257966A (en) Ni-containing low loss ferrite for power source
KR20020077798A (en) Oxide magnetic material and coil part using the same
JP2726388B2 (en) High magnetic permeability high saturation magnetic flux density Ni-based ferrite core and method of manufacturing the same
JP3363017B2 (en) Ni-based ferrite sintered body
JPH10270229A (en) Mn-ni ferrite material
JPH07257969A (en) Ni-containing low loss ferrite for power source
JPH10270231A (en) Mn-ni ferrite material
JPH0661033A (en) Low-loss oxide magnetic material