JPH06290926A - Mn-zn ferrite magnetic material - Google Patents

Mn-zn ferrite magnetic material

Info

Publication number
JPH06290926A
JPH06290926A JP5074302A JP7430293A JPH06290926A JP H06290926 A JPH06290926 A JP H06290926A JP 5074302 A JP5074302 A JP 5074302A JP 7430293 A JP7430293 A JP 7430293A JP H06290926 A JPH06290926 A JP H06290926A
Authority
JP
Japan
Prior art keywords
density
magnetic material
loss
ferrite
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5074302A
Other languages
Japanese (ja)
Other versions
JP3288113B2 (en
Inventor
Norimasa Sasaki
教真 佐々木
Kaoru Ito
薫 伊藤
Wataru Ohashi
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07430293A priority Critical patent/JP3288113B2/en
Publication of JPH06290926A publication Critical patent/JPH06290926A/en
Application granted granted Critical
Publication of JP3288113B2 publication Critical patent/JP3288113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide Mn-Zn ferrite magnetic material which is burned at a low temperature, high in density, small in evaporation of Zn, and low in power loss, wherein the magnetic material is used for a transformer or an inductor of a switching power supply. CONSTITUTION:Mn-Zn ferrite magnetic material powder is mainly composed of 10 to 87wt.% of Fe2O3, 10 to 50wt.% of MnO, and 3 to 40wt.% of ZnO, and 0.005 to 0.100wt.% of SiO2, 0.010 to 0.500wt.% of CaO, 0.010 to 0.500wt.% of TiO, 0.005 to 0.100wt.% of V2O5, and 0.005 to 0.100wt.% of Nb2O5 are added to Mn-Zn ferrite magnetic material powder at the same time, and the mixture of powders is burned at a temperature range of 800 to 1200 deg.C into a burned body 4. 8g/cm<3> or above in burning density, whereby a low-loss Mn-Zn ferrite remarkably lessened in burning cost can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランスやインダクタ
などの磁心材料として使用される低損失Mn−Znフェ
ライト磁性材料およびその製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low loss Mn-Zn ferrite magnetic material used as a magnetic core material for transformers and inductors, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴いスイッチ
ング電源の小型軽量化が進んでいる。その背景にはトラ
ンスやインダクタなどの磁心材料として使われている低
損失Mn−Znフェライト磁性材料の開発がある。低損
失Mn−Znフェライト磁性材料としては、特開平3−
163803、特開平3−141621、特開平3−248403、特開平
4−69905 、特開平3−223119、特開平3−254103、特
開平2−30660 、特開平2−54901 、特開平2−54902
、特開平2−122603、特開平2−124724、特開平2−1
83501、特開平2−153501、特開平1−143307、特開平
1−259509、特開昭64−79016 、特開昭63−62206 、特
開昭63−255903、特開昭63−260883、特開昭63−14406
号公報など多くの公報において開示されている。
2. Description of the Related Art In recent years, switching power supplies have become smaller and lighter as electronic devices have become smaller. Behind this is the development of low-loss Mn-Zn ferrite magnetic materials used as magnetic core materials for transformers and inductors. As a low-loss Mn-Zn ferrite magnetic material, JP-A-3-
163803, JP 3-141621, JP 3-248403, JP 4-69905, JP 3-223119, JP 3-254103, JP 2-30660, JP 2-54901, JP 2-54902.
, JP-A-2-122603, JP-A-2-124724, JP-A2-1
83501, JP 2-153501, JP 1-143307, JP 1-259509, JP 64-79016, JP 63-62206, JP 63-255903, JP 63-260883, JP Sho 63-14406
It is disclosed in many publications such as the Japanese publication.

【0003】特に特開平3−141612号公報では、B−H
ループの飽和磁束密度Bs/残留磁束密度Brが3.0
以上、周波数100kHz 、磁束密度200mT、温度10
0℃での損失が450kW/m3 以下の高周波電源用トラ
ンス材料が酸化ニオブの単独添加によって得られてい
る。一方、最近のスイッチング電源の傾向として、その
スイッチング周波数が100kHz から500kHz という
高周波へ移行している事実を鑑み、従来の100kHz の
損失のみならず500kHz での損失も低減する必要があ
ることは明らかである。すなわち、このような広い周波
数範囲における低損失Mn−Znフェライト磁性材料の
開発が必要である。
Particularly, in JP-A-3-141612, B-H
Loop saturation magnetic flux density Bs / residual magnetic flux density Br is 3.0
Above, frequency 100kHz, magnetic flux density 200mT, temperature 10
A transformer material for a high frequency power source with a loss at 0 ° C. of 450 kW / m 3 or less has been obtained by adding niobium oxide alone. On the other hand, in view of the fact that the switching frequency has shifted from 100kHz to a high frequency of 500kHz as a trend of recent switching power supplies, it is clear that it is necessary to reduce not only the conventional loss of 100kHz but also the loss at 500kHz. is there. That is, it is necessary to develop a low-loss Mn-Zn ferrite magnetic material in such a wide frequency range.

【0004】ところで、現行の代表的なMn−Znフェ
ライトの製法では、まず原料である酸化鉄Fe2 3
酸化マンガンMn3 4 、酸化亜鉛ZnOを目的にあっ
た磁気特性が得られるような組成比に秤量し、ボールミ
ルにて湿式混合する。次に、得られたスラリーを乾燥
し、800℃〜1100℃にて仮焼する。再びボールミ
ルにて湿式粉砕した後、ポリビニールアルコールなどの
バインダーを加え造粒し、金型に充填、プレスして必要
な形状の成形体を得る。
By the way, in the current typical manufacturing method of Mn-Zn ferrite, first, iron oxide Fe 2 O 3 as a raw material,
Manganese oxide Mn 3 O 4 and zinc oxide ZnO are weighed in a composition ratio so that the desired magnetic characteristics can be obtained, and wet mixed in a ball mill. Next, the obtained slurry is dried and calcined at 800 ° C to 1100 ° C. After wet pulverization with a ball mill again, a binder such as polyvinyl alcohol is added to granulate, and the mixture is filled in a mold and pressed to obtain a molded product having a required shape.

【0005】さて、従来の技術ではこの成形体は、雰囲
気の酸素濃度をコントロールしながら1250℃〜13
50℃の高い温度範囲にて焼成されてきた。ところが、
このような高い焼成温度のために耐熱炉材の消耗が激し
く、また、炉の温度を高温に保つためのエネルギー量も
膨大なため、必然的にコストが高くなっているのが現状
である。また、焼成温度が高温であると焼成中にフェラ
イト磁心の表面よりZnが蒸発し表面層の組成が変わ
り、高透磁率が得られないなどの磁気特性の劣化を招
く。
In the prior art, this molded product has a temperature of 1250 ° C. to 13 ° C. while controlling the oxygen concentration in the atmosphere.
It has been fired in the high temperature range of 50 ° C. However,
Due to such a high firing temperature, the heat-resistant furnace material is heavily consumed, and the amount of energy for keeping the furnace temperature at a high level is enormous, so that the cost is inevitably high. Further, if the firing temperature is high, Zn evaporates from the surface of the ferrite core during firing, and the composition of the surface layer changes, resulting in deterioration of magnetic properties such as high permeability not being obtained.

【0006】このような高い焼成コストを下げるため
に、特開昭63−222018号公報などではCaO,Si
2 ,V2 5 ,Ta2 5 ,SnO2 ,CuO,Na
2 O,Ag 2 Oの添加物により焼成温度を1150℃ま
で下げる試みがなされている。また、特開平3−268404
号公報では1100℃以上1250℃未満の温度での焼
成について述べられている。
To reduce such high firing costs
In Japanese Patent Laid-Open No. 63-222018, CaO, Si
O2, V2OFive, Ta2OFive, SnO2, CuO, Na
2O, Ag 2Depending on the O additive, the firing temperature may be increased to 1150 ° C.
Attempts have been made to lower it. In addition, JP-A-3-268404
In the publication, firing at a temperature of 1100 ° C or higher and lower than 1250 ° C
It is mentioned about the success.

【0007】また、Znの蒸発による磁気特性の劣化を
防ぐために、焼成体と同一組成のケースを用いたり、酸
化亜鉛の成形体を同時に焼成する方法が特開平3−4170
8 号公報に述べられている。
Further, in order to prevent deterioration of magnetic properties due to evaporation of Zn, a method of using a case having the same composition as that of the fired body or firing a molded body of zinc oxide at the same time is disclosed in JP-A-3-4170.
No. 8 publication.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、周波
数領域100kHz 〜500kHz において損失の小さい、
飽和磁束密度の大きい、残留磁束密度の小さい低損失M
n−Znフェライト磁性材料を提供することにある。ま
た同時に、1200℃以下の焼成に於いても高い焼結密
度が得られる事を可能にし、低温焼成によりZnの蒸発
の少ない、磁気特性に優れた低損失Mn−Znフェライ
ト磁性材料を得る方法を提供する事にある。
An object of the present invention is to reduce loss in the frequency range of 100 kHz to 500 kHz.
Low loss M with high saturation magnetic flux density and low residual magnetic flux density
An object is to provide an n-Zn ferrite magnetic material. At the same time, a method for obtaining a low-loss Mn-Zn ferrite magnetic material that enables a high sintered density to be obtained even at a firing temperature of 1200 ° C. or less, has a small amount of Zn evaporated by low-temperature firing, and has excellent magnetic characteristics is provided. To provide.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するもので、その要旨は、 (1)主成分として、重量%で、MnO:10〜50
%、ZnO:3〜40%、Fe2 3 :10〜87%、
の組成を持ち、微量元素として、SiO2 :0.005
〜0.100%、CaO:0.010〜0.500%、
TiO2 :0.010〜0.500%、V2 5 :0.
005〜0.100%、Nb2 5 :0.005〜0.
100%、を同時に含んだ、密度4.8g/cm3 以上、
表面と内部でのZnOの組成差が0.5重量%以下であ
ることを特徴とするMn−Znフェライト磁性材料。 (2)主成分として、重量%で、Fe2 3 :71.5
±2%、MnO:22.5±2%、ZnO:6.0±2
%、の組成を持ち、微量元素として、SiO2 :0.0
05〜0.100%、CaO:0.010〜0.500
%、TiO2 :0.010〜0.500%、V2 5
0.005〜0.100%、Nb2 5 :0.005〜
0.100%、を同時に含んだ、密度4.8g/cm3
上、飽和磁束密度520mT以上、残留磁束密度170mT
以下、磁束密度200mT、周波数100kHz での損失値
が300kW/m3 以下、磁束密度50mT、周波数500
kHz での損失値が70kW/m3 以下、ZnOの表面と内
部での組成差が0.5重量%以下の低損失Mn−Znフ
ェライト磁性材料。 (3)また、主成分として、重量%でFe2 3 :7
1.5±2%、MnO:22.5±2%、ZnO:6.
0±2%、の組成を持ち、微量元素として、SiO2
0.005〜0.100%、CaO:0.010〜0.
500%、TiO2 :0.010〜0.500%、V2
5 :0.005〜0.100%、Nb2 5 :0.0
05〜0.100%、を同時に含んだMn−Znフェラ
イト原料粉を使用することにより、密度4.8g/cm3
以上、飽和磁束密度520mT以上、残留磁束密度170
mT以下、磁束密度200mTで周波数100kHz での損失
値が300kW/m3 以下、磁束密度50mTで周波数50
0kHz での損失値が70kW/m3 以下、ZnOの表面と
内部での組成差が0.5重量%以下の低損失Mn−Zn
フェライト磁性材料が、焼成温度800〜1200℃の
焼成で得られ、1100℃以下の焼成を可能とした。
Means for Solving the Problems The present invention is intended to solve the above problems, and the gist thereof is as follows: (1) MnO: 10 to 50% by weight as a main component.
%, ZnO: 3-40%, Fe 2 O 3 : 10-87%,
SiO 2 : 0.005 as a trace element
~ 0.100%, CaO: 0.010 ~ 0.500%,
TiO 2: 0.010~0.500%, V 2 O 5: 0.
005~0.100%, Nb 2 O 5: 0.005~0.
100% at the same time, density of 4.8g / cm 3 or more,
A Mn-Zn ferrite magnetic material, characterized in that the compositional difference between ZnO on the surface and inside is 0.5% by weight or less. (2) Fe 2 O 3 : 71.5% by weight as the main component
± 2%, MnO: 22.5 ± 2%, ZnO: 6.0 ± 2
%, And as a trace element, SiO 2 : 0.0
05-0.100%, CaO: 0.010-0.500
%, TiO 2 : 0.010 to 0.500%, V 2 O 5 :
0.005~0.100%, Nb 2 O 5: 0.005~
0.100% at the same time, density 4.8 g / cm 3 or more, saturation magnetic flux density 520 mT or more, residual magnetic flux density 170 mT
Below, the magnetic flux density is 200 mT, the loss value at a frequency of 100 kHz is 300 kW / m 3 or less, the magnetic flux density is 50 mT, and the frequency is 500.
A low-loss Mn-Zn ferrite magnetic material having a loss value of 70 kW / m 3 or less at kHz and a composition difference between the surface and the interior of ZnO of 0.5 wt% or less. (3) Also, as a main component, Fe 2 O 3 : 7 by weight%
1.5 ± 2%, MnO: 22.5 ± 2%, ZnO: 6.
It has a composition of 0 ± 2%, and as a trace element, SiO 2 :
0.005-0.100%, CaO: 0.010-0.
500%, TiO 2: 0.010~0.500% , V 2
O 5: 0.005~0.100%, Nb 2 O 5: 0.0
Density of 4.8 g / cm 3 is obtained by using Mn—Zn ferrite raw material powder that also contains 0.05 to 0.100%.
Above, saturation magnetic flux density 520mT or more, residual magnetic flux density 170
Loss of 300 kW / m 3 or less at a magnetic flux density of 200 mT and a frequency of 100 kHz at a frequency of 100 kHz, and a magnetic flux density of 50 mT at a frequency of 50
Low loss Mn-Zn with a loss value at 0 kHz of 70 kW / m 3 or less and a composition difference between the surface and the interior of ZnO of 0.5 wt% or less
The ferrite magnetic material was obtained by firing at a firing temperature of 800 to 1200 ° C., and firing at 1100 ° C. or less was possible.

【0010】上記成分の範囲は次の理由により決定され
た。即ち、主成分組成の範囲は、これを外れるとMn−
Znフェライト本来の低損失な磁気特性が失われるため
に限定した。従って、本発明の効果を、密度が4.8g
/cm3 以上と高いこと、ZnOの表面と内部での組成差
が0.5重量%以下であること、800〜1200℃で
焼成可能なことだけに限れば、主成分組成の範囲は、重
量%で、MnO:10〜50%、ZnO:3〜40%、
Fe2 3 :10〜87%、となる。
The ranges of the above components were determined for the following reasons. That is, the range of the main component composition is Mn-
It was limited because the original low-loss magnetic characteristics of Zn ferrite are lost. Therefore, the effect of the present invention is that the density is 4.8 g.
/ Cm 3 or more, the difference in composition between the surface and the interior of ZnO is 0.5 wt% or less, and the fact that the composition can be fired at 800 to 1200 ° C. %, MnO: 10-50%, ZnO: 3-40%,
Fe 2 O 3: 10~87%, and made.

【0011】SiO2 ,CaOの範囲は、上記下限値以
下では500kHz での損失が悪化し、300kW/m3
上となり、上記上限値以上では異常粒成長の発生により
同じく損失値が高くなるために限定した。また、TiO
2 が上記範囲を外れると、下限値以下では500kHz で
の損失が悪化、300kW/m3 以上となり、上記上限値
以上では異常粒成長が生じ、同じく損失値が悪化し、ま
れには内部応力のため亀裂が入る。
In the range of SiO 2 and CaO, the loss at 500 kHz is deteriorated below the lower limit value above 300 kW / m 3 , and above the upper limit value, the loss value is also high due to occurrence of abnormal grain growth. Limited Also, TiO
When 2 is out of the above range, the loss at 500 kHz becomes worse below the lower limit and becomes 300 kW / m 3 or above, and the abnormal grain growth occurs above the upper limit and the loss also deteriorates. Therefore, cracks will occur.

【0012】V2 5 ,Nb2 5 の範囲は、上記下限
値以下の組成において、800〜1200℃の焼成を行
うと、いずれも焼結密度4.8g/cm3 以下となり、飽
和磁束密度も520mT以上が得られず、上記上限値以上
では結晶粒内に空孔が残り、100kHz 、500kHz ど
ちらの損失も高くなるためこのように定めた。これらS
iO2 ,CaO,TiO2 ,V2 5 ,Nb2 5 の添
加物が一種類でも上記範囲から外れたり、欠けたりする
と焼結密度を4.8g/cm3 以上とするためには120
0℃以上での焼成が必要となり、必然的にZnの蒸発が
多くなるためZnOの表面と内部での組成差が0.5重
量%以上となってしまう。
With respect to the ranges of V 2 O 5 and Nb 2 O 5 , when the composition is below the above lower limit value and the firing is carried out at 800 to 1200 ° C., the sintering density becomes 4.8 g / cm 3 or less, and the saturation magnetic flux becomes saturated. A density of 520 mT or more cannot be obtained, and above the upper limit value, vacancies remain in the crystal grains, resulting in high loss at both 100 kHz and 500 kHz. These S
If even one additive of iO 2 , CaO, TiO 2 , V 2 O 5 , and Nb 2 O 5 is out of the above range or lacks, it is necessary to set the sintering density to 4.8 g / cm 3 or more.
Since firing at 0 ° C. or higher is required, and Zn inevitably evaporates, the difference in composition between the surface and the interior of ZnO becomes 0.5% by weight or more.

【0013】また、本発明の低損失Mn−Znフェライ
ト磁性材料は、800〜1200℃で5時間から15時
間焼成することによって得られ、焼成の際には焼成温度
に合わせて雰囲気の酸素濃度を変えるものである。
Further, the low-loss Mn-Zn ferrite magnetic material of the present invention is obtained by firing at 800 to 1200 ° C. for 5 to 15 hours. At the time of firing, the oxygen concentration of the atmosphere is adjusted according to the firing temperature. It changes.

【0014】[0014]

【作用】本発明により、100kHz 、200mTでの損失
値が300kW/m3 以下、また同時に500kHz 、50
mTでの損失値も70kW/m3 以下が得られた。ちなみ
に、現在市販されている最高レベルの低損失材の100
kHz 、200mTの公表値は410kW/m3 (100℃)
で、高周波低損失材として最高レベルの材料の500kH
z 、50mTの公表値は80kW/m3 (100℃)であ
る。
According to the present invention, the loss value at 100 kHz and 200 mT is 300 kW / m 3 or less, and at the same time 500 kHz and 50
The loss value at mT was 70 kW / m 3 or less. By the way, 100 of the highest level low loss materials currently on the market
The published value for kHz and 200 mT is 410 kW / m 3 (100 ° C)
The highest level of high frequency and low loss material, 500kH
The published value of z and 50 mT is 80 kW / m 3 (100 ° C).

【0015】また、本発明により、従来材では4.8g
/cm3 以下である焼結密度が、4.8g/cm3 以上とな
り、そのため通常510mT以下である飽和磁束密度が5
20mT以上となった。さらに、残留磁束密度も170mT
以下となり、実際に電源に搭載されてトランスとして使
用される際、その動作範囲となる飽和磁束密度と残留磁
束密度との差を大きくすることができる。
Further, according to the present invention, the conventional material is 4.8 g.
/ Cm 3 or less, the sintered density is 4.8 g / cm 3 or more, and therefore the saturation magnetic flux density, which is usually 510 mT or less, is 5 or less.
It was over 20mT. Furthermore, the residual magnetic flux density is 170 mT
In the following, when actually mounted on a power supply and used as a transformer, the difference between the saturation magnetic flux density and the residual magnetic flux density, which is the operating range, can be increased.

【0016】本発明のMn−Znフェライト磁性材料
は、従来材Mn−Znフェライト磁性材料が1250〜
1350℃の温度範囲で焼結されているところ、800
〜1200℃の温度範囲での焼成が可能であり、耐熱炉
材の消耗を削減でき、炉の温度を維持するために必要な
エネルギー量を大幅に削減できる。また、本発明は低温
焼成であるため、通常焼成法ではMn−Znフェライト
磁性材料の表面と内部のZnOの組成差が0.5重量%
以上あるところ、0.5重量%以下に抑えられ、磁気特
性の劣化の原因となるZnの蒸発が少なく、高透磁率材
料などにも応用できる。
The Mn-Zn ferrite magnetic material of the present invention is the conventional material Mn-Zn ferrite magnetic material 1250-150.
800 when sintered in the temperature range of 1350 ° C
Firing in a temperature range of up to 1200 ° C. is possible, consumption of heat-resistant furnace material can be reduced, and the amount of energy required to maintain the temperature of the furnace can be significantly reduced. Further, since the present invention is low-temperature firing, the composition difference between ZnO on the surface and inside of the Mn-Zn ferrite magnetic material is 0.5% by weight in the normal firing method.
As described above, the content is suppressed to 0.5% by weight or less, the evaporation of Zn which causes deterioration of magnetic characteristics is small, and the invention can be applied to a high magnetic permeability material and the like.

【0017】[0017]

【実施例】以下、本発明による低損失Mn−Znフェラ
イト磁性材料の特性および製法の詳細について説明す
る。 実施例1:Fe2 3 が71.0重量%、MnOが2
3.0重量%、ZnOが6.0重量%の組成となるよう
に、Fe2 3 ,Mn3 4 ,ZnOを合計500g秤
量し、純水500gと同時にボールミルにて混合した。
この粉を乾燥し、800℃、2時間で仮焼し、SiO2
を0.050重量%、CaCO3 をCaO換算で0.2
00重量%、TiO2 を0.400重量%、V2 5
0.040重量%、Nb2 5 を0.050重量%を加
え、再びボールミルにて混合粉砕した。
EXAMPLES The characteristics and manufacturing method of the low-loss Mn-Zn ferrite magnetic material according to the present invention will be described below in detail. Example 1: 71.0% by weight of Fe 2 O 3 and 2 of MnO
A total of 500 g of Fe 2 O 3 , Mn 3 O 4 , and ZnO was weighed so that the composition was 3.0% by weight and ZnO was 6.0% by weight, and 500 g of pure water was simultaneously mixed with a ball mill.
This powder is dried, calcined at 800 ° C for 2 hours, and SiO 2
0.050 wt% and CaCO 3 0.2 in CaO conversion
00 wt%, the TiO 2 0.400 wt%, V 2 O 5 0.040 wt%, Nb 2 O 5 and was added 0.050% by weight, were mixed and ground again by a ball mill.

【0018】得られた粉にPVA(ポリビニールアルコ
ール)を1重量%加え、水分が3.0±0.5%になる
ように調製した造粒粉を作り、外径25mm、内径16m
m、高さ6mmのリング状に圧力2.5 ton/cm3 でプレ
ス成形した。この成形体を500℃まで5℃/hrで昇温
し、1100℃まで100℃/hrで昇温した。途中80
0℃で空気に窒素ガスを混入し、酸素濃度0.74%の
雰囲気に切り換えた。1100℃に達した後5時間保持
し、酸素濃度を制御しながら500℃まで150℃/hr
で降温し、それ以後は炉冷した。
PVA (polyvinyl alcohol) was added to the obtained powder in an amount of 1% by weight to prepare granulated powder having a water content of 3.0 ± 0.5%. The outer diameter was 25 mm and the inner diameter was 16 m.
It was press-molded into a ring having a height of 6 mm and a pressure of 2.5 ton / cm 3 . This molded body was heated to 500 ° C. at 5 ° C./hr, and heated to 1100 ° C. at 100 ° C./hr. 80 on the way
Nitrogen gas was mixed into the air at 0 ° C., and the atmosphere was switched to an oxygen concentration of 0.74%. After reaching 1100 ° C, hold for 5 hours, control oxygen concentration up to 500 ° C, 150 ° C / hr
After that, the temperature was lowered and the furnace was cooled thereafter.

【0019】このようにして得たリング状コアに導線2
本を4ターンずつ巻き、B−Hアナライザー(岩崎通信
株式会社製)により損失値を測定したところ、100kH
z 、200mTで280kW/m3 (80℃)、500kHz
、50mTで50kW/m3 (80℃)であった。また、
室温25℃で印加磁界800A/mにおける飽和磁束密
度、残留磁束密度を測定したところ、それぞれ529m
T、149mTであった。100℃では、それぞれ410m
T、60mTであった。アルキメデス法による密度測定の
結果は4.93g/cm3 であった。 実施例2:実施例1と同様にして作製した成形体を50
0℃まで5℃/hrで昇温し、800℃まで100℃/hr
で昇温した。800℃で雰囲気を切り換え、15時間保
持し、酸素濃度を制御しながら500℃まで150℃/
hrで降温し、それ以後は炉冷した。
The conductor 2 is attached to the ring-shaped core thus obtained.
The book was wound 4 turns each, and the loss value was measured by a BH analyzer (manufactured by Iwasaki Tsushin Co., Ltd.).
z, 280kW / m 3 at 200mT (80 ° C), 500kHz
, 50 kW / m 3 (80 ° C.) at 50 mT. Also,
The saturation magnetic flux density and residual magnetic flux density at an applied magnetic field of 800 A / m were measured at room temperature of 25 ° C.
T was 149 mT. 410m at 100 ℃
It was T, 60 mT. The result of the density measurement by the Archimedes method was 4.93 g / cm 3 . Example 2: 50 molded articles produced in the same manner as in Example 1
Temperature rises up to 0 ℃ at 5 ℃ / hr, up to 800 ℃ 100 ℃ / hr
The temperature was raised. The atmosphere is switched at 800 ° C, the temperature is maintained for 15 hours, and the oxygen concentration is controlled up to 500 ° C at 150 ° C /
The temperature was lowered at hr and the furnace was cooled thereafter.

【0020】このようにして得たリング状コアの損失値
を測定したところ、100kHz 、200mTで295kW/
3 (80℃)、500kHz 、50mTで39kW/m
3 (80℃)であった。また、室温25℃で印加磁界8
00A/mにおける飽和磁束密度、残留磁束密度を測定
したところ、それぞれ522mT、168mTであった。1
00℃では、それぞれ400mT、65mTであった。さら
に、アルキメデス法による密度測定の結果は4.87g
/cm3 であった。 実施例3:焼成したMn−Znフェライト磁性材料の表
面と内部でのZnの組成差を調べるため、実施例1、実
施例2のリング状コアの断面を研磨し、XPSにより表
面付近と中心部の組成を調べたところ、表1の結果を得
た。
The loss value of the ring-shaped core thus obtained was measured and found to be 295 kW / at 100 kHz and 200 mT.
m 3 (80 ℃), 39kW / m 500kHz, with 50mT
It was 3 (80 ° C). In addition, the applied magnetic field 8 at room temperature 25 ° C
The saturation magnetic flux density and residual magnetic flux density at 00 A / m were measured and found to be 522 mT and 168 mT, respectively. 1
At 00 ° C., they were 400 mT and 65 mT, respectively. Furthermore, the result of the density measurement by Archimedes method is 4.87 g.
It was / cm 3 . Example 3: In order to examine the difference in the composition of Zn between the surface and the inside of the burned Mn-Zn ferrite magnetic material, the cross sections of the ring-shaped cores of Examples 1 and 2 were polished, and the vicinity of the surface and the central portion were measured by XPS. When the composition was examined, the results shown in Table 1 were obtained.

【0021】[0021]

【表1】 [Table 1]

【0022】比較例1は、Fe2 3 が、71.0重量
%、MnOが23.0重量%、ZnOが6.0重量%を
主成分として持ち、微量添加物としてSiO2 を0.0
15重量%、CaOを0.065重量%を含む実施例1
と同様にして得た成形体を1300℃で焼成した従来の
方法によるMn−Znフェライト磁性材料である。ま
た、実施例3は、主成分組成が実施例1とは異なり、微
量元素が実施例1と同じ場合である。
In Comparative Example 1, Fe 2 O 3 was 71.0% by weight, MnO was 23.0% by weight, ZnO was 6.0% by weight, and SiO 2 was 0.1% by weight as a minor additive. 0
Example 1 containing 15% by weight and 0.065% by weight of CaO
A Mn-Zn ferrite magnetic material produced by the conventional method, in which a molded body obtained in the same manner as in 1. was fired at 1300 ° C. In addition, Example 3 is different from Example 1 in the main component composition, but in the case where the trace elements are the same as in Example 1.

【0023】本発明による実施例1、実施例2では、Z
nOの表面付近と中心部の組成差は0.5重量%以下で
あるのに対し、比較例1では0.8重量%以上の差があ
る。また、磁気特性については比較例15で述べるが、
実施例1とは異なる主成分組成の実施例3でも本発明の
微量元素を添加し、低温で焼成すれば、Znの蒸発が少
ないことがわかる。 実施例4〜実施例8:焼成温度を変えたときの実施例4
〜実施例8について表2に示した。
In Examples 1 and 2 according to the present invention, Z
The difference in composition between the surface and the central portion of nO is 0.5% by weight or less, whereas in Comparative Example 1, there is a difference of 0.8% by weight or more. The magnetic characteristics will be described in Comparative Example 15,
Also in Example 3 having a main component composition different from that of Example 1, it can be seen that evaporation of Zn is small when the trace element of the present invention is added and firing is performed at a low temperature. Example 4 to Example 8: Example 4 when the firing temperature was changed
-Example 2 is shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】焼成した成形体は実施例1と同様のものを
用いた。本発明による実施例では焼成温度が低くても充
分な磁気特性と密度が得られている。また、比較例1の
成形体について、焼成温度を変えた場合の比較例2〜比
較例6を同じく表2に示したが、1200℃以下では充
分な密度と必要な磁気特性が得られなかった。 実施例9〜実施例20:微量元素の量を変えた場合の実
施例9〜実施例20の結果を表3に示す。
As the fired compact, the same one as in Example 1 was used. In the examples according to the present invention, sufficient magnetic properties and densities were obtained even at low firing temperatures. Further, with respect to the molded body of Comparative Example 1, Comparative Examples 2 to 6 when the firing temperature was changed are also shown in Table 2. However, at 1200 ° C. or lower, sufficient density and necessary magnetic characteristics were not obtained. . Example 9 to Example 20: Table 3 shows the results of Example 9 to Example 20 when the amounts of the trace elements were changed.

【0026】[0026]

【表3】 [Table 3]

【0027】主成分組成は実施例1と同様である。ま
た、表3中の磁気特性の欄と密度の欄に2つ数値がある
のは、下段が実施例1と同じように1100℃で焼成し
た場合であり、上段が実施例2と同様に800℃で焼成
した場合である。実施例10〜実施例20のいずれも本
発明の磁気特性と密度を有している。これに対して、表
4に示す微量元素が欠けた比較例7〜比較例13の場合
には、本発明の磁気特性と密度が得られていない。
The main component composition is the same as in Example 1. Further, in Table 3, there are two numerical values in the magnetic property column and the density column when the lower stage is the case of firing at 1100 ° C. as in Example 1, and the upper stage is 800 as in Example 2. This is the case when firing at ℃. All of Examples 10 to 20 have the magnetic characteristics and density of the present invention. On the other hand, in Comparative Examples 7 to 13 in which the trace elements shown in Table 4 were lacking, the magnetic characteristics and the density of the present invention were not obtained.

【0028】[0028]

【表4】 [Table 4]

【0029】実施例21〜実施例32:実施例1と同量
の微量元素を添加し、主成分組成を変えた場合の実施例
21〜実施例32についての結果を表5に示す。
Examples 21 to 32: Table 5 shows the results of Examples 21 to 32 when the same amount of the trace element as in Example 1 was added and the main component composition was changed.

【0030】[0030]

【表5】 [Table 5]

【0031】主成分組成が本発明の範囲内に有る場合に
は、磁束密度が高く、残留磁束密度の小さい、損失の小
さい、密度の高いMn−Znフェライト磁性材料が得ら
れている。これに対して主成分組成が本発明の範囲から
外れた比較例14では、焼結密度は得られているが、磁
気特性が悪化している。 実施例33〜実施例37:主成分組成を第3の発明の範
囲で変えた実施例33〜実施例37を行った。微量元素
はすべて実施例1と同じ量だけ添加した。得られた焼成
体の密度ならびにZnの表面と内部での組成差を調べた
結果を表6に示す。
When the main component composition is within the range of the present invention, a Mn-Zn ferrite magnetic material having a high magnetic flux density, a small residual magnetic flux density, a small loss, and a high density is obtained. On the other hand, in Comparative Example 14 in which the main component composition was out of the range of the present invention, the sintered density was obtained, but the magnetic characteristics were deteriorated. Examples 33 to 37: Examples 33 to 37 in which the main component composition was changed within the scope of the third invention were carried out. All trace elements were added in the same amounts as in Example 1. Table 6 shows the results of examining the density of the obtained fired body and the composition difference between the surface and the interior of Zn.

【0032】[0032]

【表6】 [Table 6]

【0033】この表6に2つ数値があるのは、下段が実
施例1と同じように1100℃で焼成した場合であり、
上段が実施例2と同様に800℃で焼成した場合であ
る。この結果から第3の発明の主成分組成の範囲内で、
密度4.8g/cm3 以上、ZnOの表面と内部での組成
差が0.5重量%以下のMn−Znフェライト磁性材料
が得られることがわかる。
In Table 6, there are two numerical values when the lower stage is fired at 1100 ° C. as in Example 1.
The upper part shows the case where firing was performed at 800 ° C. as in Example 2. From this result, within the range of the main component composition of the third invention,
It can be seen that a Mn-Zn ferrite magnetic material having a density of 4.8 g / cm 3 or more and a composition difference between the surface and the interior of ZnO of 0.5% by weight or less can be obtained.

【0034】[0034]

【発明の効果】本発明により、周波数領域100kHz 〜
500kHz においての損失を従来より低減することがで
き、飽和磁束密度の大きい、残留磁束密度の小さい低損
失Mn−Znフェライト磁性材料を提供することが出来
た。また、1200℃以下の焼成に於いても高い焼結密
度が得られる事を可能にし、低温焼成によりZnの蒸発
の少ない、磁気特性に優れたMn−Znフェライト磁性
材料を提供する事が可能となった。
According to the present invention, the frequency range from 100 kHz to
The loss at 500 kHz can be reduced as compared with the conventional one, and a low loss Mn-Zn ferrite magnetic material having a large saturation magnetic flux density and a small residual magnetic flux density can be provided. Further, it is possible to obtain a high sintered density even at a firing temperature of 1200 ° C. or lower, and to provide an Mn—Zn ferrite magnetic material excellent in magnetic characteristics, which causes little Zn evaporation by low temperature firing. became.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主成分として、重量%で、MnO:10
〜50%、ZnO:3〜40%、Fe2 3 :10〜8
7%、の組成を持ち、微量元素として、SiO2 :0.
005〜0.100%、CaO:0.010〜0.50
0%、TiO2 :0.010〜0.500%、V
2 5 :0.005〜0.100%、Nb2 5 :0.
005〜0.100%、を同時に含んだ、密度4.8g
/cm3 以上、表面と内部でのZnOの組成差が0.5重
量%以下であることを特徴とするMn−Znフェライト
磁性材料。
1. MnO: 10 as a main component in% by weight.
˜50%, ZnO: 3-40%, Fe 2 O 3 : 10-8
It has a composition of 7%, and as a trace element, SiO 2 : 0.
005 to 0.100%, CaO: 0.010 to 0.50
0%, TiO 2: 0.010~0.500% , V
2 O 5 : 0.005 to 0.100%, Nb 2 O 5 : 0.
Density 4.8g, including 005 to 0.100% at the same time
/ Cm 3 or more, the composition difference of ZnO between the surface and the inside is 0.5 wt% or less, Mn-Zn ferrite magnetic material characterized by the above-mentioned.
【請求項2】 前記主成分組成を、重量%で、Fe2
3 :71.5±2% MnO:22.5±2% ZnO:6.0±2% とした、密度4.8g/cm3 以上、飽和磁束密度520
mT以上、残留磁束密度170mT以下、磁束密度200m
T、周波数100kHz での損失値が300kW/m3以下、
磁束密度50mT、周波数500kHz での損失値が70kW
/m3 以下である請求項1記載の低損失Mn−Znフェ
ライト磁性材料。
2. The main component composition, in% by weight, is Fe 2 O.
3 : 71.5 ± 2% MnO: 22.5 ± 2% ZnO: 6.0 ± 2%, density 4.8 g / cm 3 or more, saturation magnetic flux density 520
mT or more, residual magnetic flux density 170 mT or less, magnetic flux density 200 m
T, loss value at frequency 100kHz is 300kW / m 3 or less,
Magnetic flux density 50mT, loss value at frequency 500kHz is 70kW
/ M 3 or less, the low-loss Mn-Zn ferrite magnetic material according to claim 1.
【請求項3】 重量%で、MnO:10〜50%、Zn
O:3〜40%、Fe2 3 :10〜87%、からなる
Mn−Znフェライト原料粉に、SiO2 :0.005
〜0.100%、CaO:0.010〜0.500%、
TiO2 :0.010〜0.500%、V2 5 :0.
005〜0.100%、Nb2 5 :0.005〜0.
100%、を添加物として同時に加えることにより、焼
成温度800〜1200℃で、密度4.8g/cm3
上、表面と内部でのZnOの組成差が0.5重量%以下
のMn−Znフェライト磁性材料の製造方法。
3. MnO: 10-50% by weight, Zn
O: 3~40%, Fe 2 O 3: 10~87%, the Mn-Zn ferrite material powder consisting of, SiO 2: 0.005
~ 0.100%, CaO: 0.010 ~ 0.500%,
TiO 2: 0.010~0.500%, V 2 O 5: 0.
005~0.100%, Nb 2 O 5: 0.005~0.
Mn-Zn ferrite having a sintering temperature of 800 to 1200 ° C., a density of 4.8 g / cm 3 or more, and a composition difference of ZnO between the surface and the interior of 0.5% by weight or less by simultaneously adding 100% as an additive. Manufacturing method of magnetic material.
JP07430293A 1993-03-31 1993-03-31 Mn-Zn ferrite magnetic material Expired - Fee Related JP3288113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07430293A JP3288113B2 (en) 1993-03-31 1993-03-31 Mn-Zn ferrite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07430293A JP3288113B2 (en) 1993-03-31 1993-03-31 Mn-Zn ferrite magnetic material

Publications (2)

Publication Number Publication Date
JPH06290926A true JPH06290926A (en) 1994-10-18
JP3288113B2 JP3288113B2 (en) 2002-06-04

Family

ID=13543204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07430293A Expired - Fee Related JP3288113B2 (en) 1993-03-31 1993-03-31 Mn-Zn ferrite magnetic material

Country Status (1)

Country Link
JP (1) JP3288113B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279651A2 (en) * 2001-07-17 2003-01-29 TDK Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
JP2005255489A (en) * 2004-03-12 2005-09-22 Kyocera Corp Ferrite sintered compact, method for manufacturing the same, and ferrite core and ferrite coil using the same
JP2006044971A (en) * 2004-08-03 2006-02-16 Jfe Ferrite Corp Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
US7754094B2 (en) * 2003-12-24 2010-07-13 Hitachi Metals Ltd. Sintered ferrite and its production method and electronic part using same
JP2012140307A (en) * 2011-01-04 2012-07-26 Tdk Corp Ferrite composition and electronic component
CN115894006A (en) * 2022-12-30 2023-04-04 北京七星飞行电子有限公司 Preparation method of ferrite material with high frequency, high Bs and low loss power

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545819B1 (en) 1999-08-31 2003-04-08 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6498687B1 (en) 1999-10-06 2002-12-24 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6813091B2 (en) 2002-05-21 2004-11-02 Canon Kabushiki Kaisha Zoom lens system and photographing apparatus having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279651A2 (en) * 2001-07-17 2003-01-29 TDK Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
EP1279651A3 (en) * 2001-07-17 2004-05-26 TDK Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
US6773619B2 (en) 2001-07-17 2004-08-10 Tdk Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
US7754094B2 (en) * 2003-12-24 2010-07-13 Hitachi Metals Ltd. Sintered ferrite and its production method and electronic part using same
JP2005255489A (en) * 2004-03-12 2005-09-22 Kyocera Corp Ferrite sintered compact, method for manufacturing the same, and ferrite core and ferrite coil using the same
JP2006044971A (en) * 2004-08-03 2006-02-16 Jfe Ferrite Corp Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
JP2012140307A (en) * 2011-01-04 2012-07-26 Tdk Corp Ferrite composition and electronic component
CN115894006A (en) * 2022-12-30 2023-04-04 北京七星飞行电子有限公司 Preparation method of ferrite material with high frequency, high Bs and low loss power

Also Published As

Publication number Publication date
JP3288113B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US6495059B1 (en) Magnetic ferrite composition and process of production thereof
US7294284B2 (en) Method for producing Mn-Zn ferrite
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
US20060118756A1 (en) Ferrite material
JP2004217452A (en) Ferrite material and method of manufacturing the same
JP2008247675A (en) METHOD OF MANUFACTURING MnZn-BASED FERRITE
JP2006202796A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni BASED FERRITE
JP2004323283A (en) Ferrite sintered compact and manufacturing method for ferrite sintered compact
JP3288113B2 (en) Mn-Zn ferrite magnetic material
JPH1064715A (en) Low loss ferrite magnetic core material
KR20050087781A (en) Method for producing ferrite material and ferrite material
JP3597673B2 (en) Ferrite material
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP2007297232A (en) Method for producing oxide magnetic material
JP3597665B2 (en) Mn-Ni ferrite material
JP3790606B2 (en) Mn-Co ferrite material
JP3597666B2 (en) Mn-Ni ferrite material
JP2008169072A (en) Mn-Zn FERRITE
JP2022059859A (en) MnZn BASED FERRITE AND MANUFACTURING METHOD OF SAME
US20010036895A1 (en) Mn-Zn ferrite and production process thereof
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JP2005179098A (en) Mn-Ni-Zn BASED FERRITE
JPH10326706A (en) Manganese-nickel-based ferrite material
JP2005067950A (en) Method for manufacturing ferrite material
JP2001233667A (en) Manganese-zinc-based ferrite for power supply

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020205

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees