JP3410293B2 - High magnetic flux density low loss Ni-Cu-Zn ferrite sintered body and transformer for DC-DC converter - Google Patents

High magnetic flux density low loss Ni-Cu-Zn ferrite sintered body and transformer for DC-DC converter

Info

Publication number
JP3410293B2
JP3410293B2 JP15865496A JP15865496A JP3410293B2 JP 3410293 B2 JP3410293 B2 JP 3410293B2 JP 15865496 A JP15865496 A JP 15865496A JP 15865496 A JP15865496 A JP 15865496A JP 3410293 B2 JP3410293 B2 JP 3410293B2
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
mol
loss
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15865496A
Other languages
Japanese (ja)
Other versions
JPH107454A (en
Inventor
等 上田
徳和 小湯原
晃夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15676440&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3410293(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP15865496A priority Critical patent/JP3410293B2/en
Publication of JPH107454A publication Critical patent/JPH107454A/en
Application granted granted Critical
Publication of JP3410293B2 publication Critical patent/JP3410293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、DC/DCコンバ
ータのトランス用等に用いられるフェライト焼結体及び
トランス用コアに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferrite sintered body used for a transformer of a DC / DC converter and a transformer core.

【0002】[0002]

【従来の技術】スイッチング電源は、民生機器をはじめ
OA、産業用機器へと幅広い利用が進んでおり、現在、
小型、薄型、軽量化が図られている。このスイッチング
電源、DC/DCコンバータに使用されるトランスに
は、従来、Mn−Zn系のフェライトコアが使用されて
いた。
2. Description of the Related Art Switching power supplies have been widely used in consumer equipment, office automation equipment, and industrial equipment.
It is being made smaller, thinner, and lighter. Conventionally, a Mn-Zn based ferrite core has been used for the transformer used in the switching power supply and the DC / DC converter.

【0003】[0003]

【発明が解決しようとする課題】Mn−Zn系のフェラ
イトコアは、飽和磁束密度、透磁率が大きく、また損失
(コアロス)が10kW/m3程度(周波数50kH
z、動作磁束密度50mT)と小さいという特長があ
り、これまでスイッチング電源やDC/DCコンバータ
等のトランスに用いられてきた。しかしながら、比抵抗
が10Ω・m程度と比較的低く、コアに直接巻線をする
と漏れ電流が発生する。このため、DC/DCコンバー
タ等のトランス用としては、Mn−Zn系のフェライト
コアを使用する場合、コアにボビンをかぶせたり、絶縁
被膜等の処理を行ってから巻線を行っていた。それによ
り、製造コストが高く、小型化が難しいという問題があ
った。
The Mn-Zn ferrite core has a large saturation magnetic flux density and magnetic permeability, and has a loss (core loss) of about 10 kW / m 3 (frequency of 50 kHz).
z and operating magnetic flux density of 50 mT) are small, and have been used for transformers such as switching power supplies and DC / DC converters. However, the specific resistance is relatively low, about 10 Ω · m, and leakage current occurs when the coil is wound directly on the core. For this reason, when a Mn-Zn ferrite core is used for a transformer such as a DC / DC converter, the core is covered with a bobbin or treated with an insulating coating or the like before winding. Therefore, there is a problem that the manufacturing cost is high and it is difficult to reduce the size.

【0004】これに対し、Ni系のフェライトコアは、
一般に比抵抗が106Ω・m程度と非常に高く、コアに
直接巻線をすることが可能であるが、損失(コアロス)
が大きいためコアが発熱し易く、また飽和磁束密度が小
さいためコア形状が大きくなり、DC/DCコンバータ
等のトランス用として適していなかった。本発明は、上
記のことを鑑みて、比抵抗の高いNi系フェライトに
て、飽和磁束密度が大きく損失(コアロス)が小さい、
DC/DCコンバータ等のトランス用等として使用でき
るフェライト材料を提供することを目的とする。
On the other hand, the Ni-based ferrite core is
Generally, the resistivity is very high, about 10 6 Ω · m, and it is possible to directly wind the wire on the core, but the loss (core loss)
Is large, the core easily generates heat, and since the saturation magnetic flux density is small, the core shape is large, which is not suitable for a transformer such as a DC / DC converter. In view of the above, the present invention has a large saturation magnetic flux density and a small loss (core loss) in a Ni-based ferrite having a high specific resistance,
An object of the present invention is to provide a ferrite material that can be used for transformers such as DC / DC converters.

【0005】[0005]

【課題を解決するための手段】本発明は、Fe23
9.0〜49.8mol%、ZnO 18.0〜28.
mol%、CuO 0〜12.0mol%(但し、0
mol%を含まない)、残部がNiOから成る主成分
成を有し、平均結晶粒径が3〜30μmであり、20〜
140℃における損失(コアロス)の最小値が150k
W/m3以下(周波数50kHz、動作磁束密度50m
T)で、飽和磁束密度が430mT(印加磁界4000
A/m)以上であるNi−Cu−Zn系フェライト焼結
体である。また本発明は、コアロス(Pcv[kW/
3]、周波数50kHz、動作磁束密度50mT)と
飽和磁束密度(Bm[mT]、印加磁界4000A/
m)の関係が、下記式1のとおりであるNi−Cu−Z
n系フェライト焼結体である。また本発明は、上記した
Ni−Cu−Zn系フェライト焼結体からなるコアを用
いたDC−DCコンバータ用トランスである。
The present invention is based on Fe 2 O 3 4
9.0 to 49.8 mol%, ZnO 18.0 to 28.
0 mol% , CuO 0 to 12.0 mol% (however, 0
(not including mol%), the balance being a main component composition consisting of NiO, the average crystal grain size is 3 to 30 μm, and 20 to 20 μm.
Minimum loss (core loss) at 140 ° C is 150k
W / m 3 or less (frequency 50 kHz, operating magnetic flux density 50 m
T), the saturation magnetic flux density is 430 mT (applied magnetic field 4000
A / m) or more and a Ni-Cu-Zn-based ferrite sintered body. In addition, the present invention provides a core loss (Pcv [kW /
m 3 ], frequency 50 kHz, operating magnetic flux density 50 mT) and saturation magnetic flux density (Bm [mT], applied magnetic field 4000 A /
The relationship of m) is as shown in the following formula 1, Ni-Cu-Z
It is an n-type ferrite sintered body. The present invention is also a transformer for a DC-DC converter using a core made of the above Ni-Cu-Zn ferrite sintered body.

【0006】[0006]

【式1】Bm≧323×Pcv[Formula 1] Bm ≧ 323 × Pcv 0.07210.0721

【0007】本発明では、主成分組成範囲が重要な要件
である。即ち、Fe23が49.0mol%未満である
と、コアロスが大きくなり、飽和磁束密度も低くなる。
また、Fe23が49.8mol%を超えると、比抵抗
が低くなり、Ni系の特徴である絶縁性が低くなり、不
適当である。よって、Fe23は49.0〜49.8m
ol%の範囲であり、より好ましくは、49.3〜4
9.8mol%である。ZnOは18.0mol%未満
であると、コアロスが大きくなり、また28.0mol
%を超えると、飽和磁束密度が低くなる。よって、1
8.0〜28.0mol%の範囲であり、より好ましく
は、20.0〜24.0mol%である。また、このZ
nOの含有量が18.0〜28.0mol%のとき、コ
アロスの最小値を得る温度を20〜140℃の範囲に制
御できる。CuOは12mol%を超えると、コアロス
が大きくなる。よって、12mol%以下の範囲であ
り、より好ましくは、3.0〜9.0mol%である。
また本発明では、結晶粒径も重要な要件である。この結
晶粒径が3μm未満であると、コアロスが大きくなり、
また30μmを超えると、結晶が異常成長し、コアロス
が大となる。このため、平均結晶粒径は3〜30μmの
範囲であることが好ましい。更に好ましくは、4〜20
μmである。
In the present invention, the main component composition range is an important requirement. That is, when Fe 2 O 3 is less than 49.0 mol%, the core loss increases and the saturation magnetic flux density also decreases.
On the other hand, if Fe 2 O 3 exceeds 49.8 mol%, the specific resistance becomes low and the insulating property, which is a characteristic of Ni, becomes low, which is not suitable. Therefore, Fe 2 O 3 is 49.0 to 49.8 m
It is the range of ol%, More preferably, it is 49.3-4.
It is 9.8 mol%. If the ZnO content is less than 18.0 mol%, the core loss becomes large, and 28.0 mol
When it exceeds%, the saturation magnetic flux density becomes low. Therefore, 1
It is in the range of 8.0 to 28.0 mol%, more preferably 20.0 to 24.0 mol%. Also, this Z
When the content of nO is 18.0 to 28.0 mol%, the temperature at which the minimum value of core loss is obtained can be controlled within the range of 20 to 140 ° C. When CuO exceeds 12 mol%, core loss increases. Therefore, the range is 12 mol% or less, and more preferably 3.0 to 9.0 mol%.
In the present invention, the crystal grain size is also an important requirement. When the crystal grain size is less than 3 μm, core loss increases,
On the other hand, if it exceeds 30 μm, crystals grow abnormally and core loss becomes large. Therefore, the average crystal grain size is preferably in the range of 3 to 30 μm. More preferably 4 to 20
μm.

【0008】この結晶粒径は、焼結体の断面を鏡面研磨
後、酸エッチングあるいは熱処理を施し、SEMにより
所定の倍率で観察する。そして、結晶粒子の数が50個
以上入る正方形の領域規定し、その領域内の各結晶の面
積を測定し、その面積から円換算で直径を求め、これを
各結晶の結晶粒径とする。その領域内の平均を平均結晶
粒径とする。尚、前記領域の領域線上に結晶が重なるも
のは含めないものとする。
This crystal grain size is observed at a predetermined magnification by SEM after mirror-polishing the cross section of the sintered body, acid etching or heat treatment. Then, a square region in which the number of crystal grains is 50 or more is defined, the area of each crystal in the region is measured, the diameter is calculated in circle from the area, and this is taken as the crystal grain size of each crystal. The average in that region is defined as the average crystal grain size. It should be noted that those in which crystals overlap the area line of the above area are not included.

【0009】また、本発明によるNi−Cu−Zn系フ
ェライトは、高磁束密度で、低損失な特性を特徴として
おり、損失(コアロス)は150kW/m3(周波数5
0kHz、動作磁束密度50mT)以下であることを特
徴とし、飽和磁束密度が430mT(印加磁界4000
A/m)以上であることを特徴としている。これらの特
性を満足しないと、スイッチング電源、DC−DCコン
バータ用トランスとして実用性が低くなる。
The Ni-Cu-Zn ferrite according to the present invention is characterized by high magnetic flux density and low loss, and the loss (core loss) is 150 kW / m 3 (frequency 5).
0 kHz, operating magnetic flux density 50 mT or less, and saturation magnetic flux density 430 mT (applied magnetic field 4000
A / m) or more. If these characteristics are not satisfied, the practicability of the switching power supply and the DC-DC converter transformer becomes low.

【0010】[0010]

【発明の実施の形態】以下に、本発明に係るフェライト
材料の実施例を詳細に説明する。 実施例1 Fe23、NiO、ZnO、CuOの原料粉末を所定量
秤量し、これに所定量のイオン交換水を添加したものを
ボールミルにて4時間混合し、電気炉を用いて最高温度
850℃で1.5時間仮焼した後、これを炉冷し、40
メッシュのふるいで解砕する。しかる後、再び所定量の
イオン交換水を添加したものをボールミルにて6時間粉
砕し、粉砕されたスラリー状の原料を乾燥および解砕す
る。これにバインダー(ポリビニルアルコール)を加え
て造粒し、40メッシュのふるいにて整粒した顆粒を乾
式圧縮成形機と金型を用いて、外径16.8mm、内径
8.5mm、高さ5.4mmのリング状コアに成形圧147
MPaで成形し、これを大気中、1100℃で1.0時
間焼成した。得られた各試料の成分組成及び焼成密度を
測定した後、周波数50kHz、磁束密度50mTの測
定条件において20〜140℃の温度範囲で損失(コア
ロス)と印加磁界4000A/mの測定条件において2
0℃の飽和磁束密度を測定した。また、成分組成は、工
程中で変化し、秤量組成と若干異なるので、最終組成と
して表1に載せる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the ferrite material according to the present invention will be described in detail below. Example 1 A predetermined amount of raw material powders of Fe 2 O 3 , NiO, ZnO, and CuO were weighed, and a predetermined amount of ion-exchanged water was added, and the mixture was mixed for 4 hours in a ball mill, and the maximum temperature was obtained using an electric furnace. After calcination at 850 ° C for 1.5 hours, this is furnace-cooled to 40
Crush with a sieve of mesh. After that, a material to which a predetermined amount of ion-exchanged water has been added is pulverized by a ball mill for 6 hours, and the pulverized slurry raw material is dried and pulverized. Binder (polyvinyl alcohol) was added to this and granulated, and the granules sized with a 40-mesh sieve were used with a dry compression molding machine and a mold to have an outer diameter of 16.8 mm, an inner diameter of 8.5 mm, and a height of 5 Molding pressure 147 on a 4 mm ring-shaped core
It was molded at MPa, and was fired at 1100 ° C. for 1.0 hour in the air. After measuring the component composition and firing density of each of the obtained samples, loss (core loss) in the temperature range of 20 to 140 ° C. under the measurement conditions of frequency 50 kHz and magnetic flux density 50 mT and 2 under the measurement conditions of applied magnetic field 4000 A / m were measured.
The saturation magnetic flux density at 0 ° C. was measured. In addition, since the component composition changes during the process and is slightly different from the weighed composition, it is listed in Table 1 as the final composition.

【0011】[0011]

【表1】 [Table 1]

【0012】表1及び図1に示すように、本発明の実施
例は、20〜140℃におけるコアロスの最小値が15
0kW/m3(周波数50kHz、動作磁束密度50m
T)以下を満足し、全て100kW/m3以下を達成し
ている。また飽和磁束密度は430mT(印加磁界40
00A/m)以上を満足し、450mT以上を達成して
いるものもある。この実施例のコアロス(Pcv[kW/
3]、周波数50kHz、動作磁束密度50mT)と
飽和磁束密度(Bm[mT]、印加磁界4000A/
m)の関係は、前記式1を満足している。またこの実施
例の初透磁率は、320以上を示し、比抵抗は1×10
7以上を有している。また、焼成密度は5.21以上の
値を示している。
As shown in Table 1 and FIG. 1, in the examples of the present invention, the minimum value of core loss at 20 to 140 ° C. is 15
0kW / m 3 (frequency 50kHz, operating magnetic flux density 50m
T) or less is satisfied, and all have achieved 100 kW / m 3 or less. The saturation magnetic flux density is 430 mT (applied magnetic field 40
00A / m) or higher, 450mT or higher
Some are. The core loss (Pcv [kW /
m 3 ], frequency 50 kHz, operating magnetic flux density 50 mT) and saturation magnetic flux density (Bm [mT], applied magnetic field 4000 A /
The relationship of m) satisfies the above expression 1. The initial permeability of this example is 320 or more, and the specific resistance is 1 × 10.
Have 7 or more. The firing density shows a value of 5.21 or more.

【0013】実施例2 表1の試料No.10のNi−Cu−Zn系フェライト
からなるドラム型コアを作製した。このドラム型コアの
寸法は、巻心径が2mm、鍔径が4.2mm、巻幅が
2.0mmで全長が3.2mmである。このコアに、U
EW0.2φの被覆導線を用いて、35ターン巻線し
た。この試料を用いて、直流重畳特性の評価を行った。
測定条件は、周波数100kHz、電流1mAである。
この重畳特性は、20℃、60℃、100℃で評価し
た。その結果を表2に示す。この表2のインダクタンス
Lは初期のインダクタンス値であり、L−20%時の電
流値は、電流値を上げ、インダクタンスが低下し、初期
の値から20%インダクタンス値が下がった時の電流値
である。また、20℃のときのL−Idc特性のデータ
を図2示す。このように、本発明の実施例は、測定温度
20℃、60℃、100℃の各温度で、比較例に比べて
3〜5%のインダクタンス値の向上と15%程度の電流
値の延びが確認された。この電流値の延びは、インダク
タンス値が同じ場合で比較すると、更に大きな違いとな
る。つまり、本発明の実施例は、スイッチング電源、D
C−DCコンバータ用トランスとして、実用的であり、
使用可能であることがわかる。
Example 2 Sample No. 1 in Table 1 A drum-shaped core made of No. 10 Ni-Cu-Zn ferrite was produced. The drum core has a winding core diameter of 2 mm, a flange diameter of 4.2 mm, a winding width of 2.0 mm, and an overall length of 3.2 mm. U to this core
A 35-turn winding was performed using a coated conductor wire having an EW of 0.2φ. Using this sample, the direct current superposition characteristics were evaluated.
The measurement conditions are a frequency of 100 kHz and a current of 1 mA.
This superposition characteristic was evaluated at 20 ° C, 60 ° C and 100 ° C. The results are shown in Table 2. The inductance L in Table 2 is the initial inductance value, and the current value at L-20% is the current value when the current value increases, the inductance decreases, and the inductance value decreases by 20% from the initial value. is there. In addition, data of L-Idc characteristics at 20 ° C. are shown in FIG. As described above, in the example of the present invention, at each of the measurement temperatures of 20 ° C., 60 ° C., and 100 ° C., the inductance value is improved by 3 to 5% and the current value is extended by about 15% as compared with the comparative example. confirmed. This extension of the current value is an even larger difference when compared when the inductance values are the same. That is, the embodiment of the present invention includes a switching power supply, D
Practical as a transformer for C-DC converter,
It turns out that it can be used.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】本発明によれば、Ni−Cu−Znフェ
ライトにおいて、コアロスが150kW/m3以下(周
波数50kHz、動作磁束密度50mT)で、飽和磁束
密度が430mT以上(印加磁界4000A/m)とい
う非常に低損失で飽和磁束密度の高いフェライト焼結体
を得る事が出来、しかもNi系フェライトの特有の比抵
抗の高いフェライト焼結体が得られ、DC/DCコンバ
ータ等のトランス用として有用であり、トランスの小型
化及び製造コストの低減に大いに役立つものである。
According to the present invention, in Ni-Cu-Zn ferrite, the core loss is 150 kW / m 3 or less (frequency 50 kHz, operating magnetic flux density 50 mT) and the saturation magnetic flux density is 430 mT or more (applied magnetic field 4000 A / m). It is possible to obtain a ferrite sintered body having a very low loss and a high saturation magnetic flux density, and a ferrite sintered body having a high specific resistance of Ni-based ferrite is obtained, which is useful for a transformer such as a DC / DC converter. Therefore, it is very useful for downsizing the transformer and reducing the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例と従来例のPcvとBmの関
係を示した図である。
FIG. 1 is a diagram showing a relationship between Pcv and Bm in an example according to the present invention and a conventional example.

【図2】本発明に係る実施例と従来例のL−Idcの関
係を示した図である。
FIG. 2 is a diagram showing a relationship between an example according to the present invention and a conventional example L-Idc.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/20 - 35/40 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C04B 35/20-35/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe23 49.0〜49.8mol
%、ZnO 18.0〜28.0mol%、CuO 0〜
12.0mol%(但し、0mol%を含まない)、残
部がNiOから成る主成分組成を有し、平均結晶粒径が
3〜30μmであり、20〜140℃における損失(コ
アロス)の最小値が150kW/m3以下(周波数50
kHz、動作磁束密度50mT)で、飽和磁束密度が
30mT(印加磁界4000A/m)以上であることを
特徴とする高磁束密度低損失Ni−Cu−Zn系フェラ
イト焼結体。
1. Fe 2 O 3 49.0 to 49.8 mol
%, ZnO 18.0 to 28.0 mol% , CuO 0
It has a main component composition of 12.0 mol% (excluding 0 mol%) and the balance of NiO, the average crystal grain size is 3 to 30 μm, and the minimum value of loss (core loss) at 20 to 140 ° C. is 150 kW / m 3 or less (frequency 50
Saturation magnetic flux density of 4 at kHz and operating magnetic flux density of 50 mT)
30 mT (applied magnetic field 4000 A / m) or more, high magnetic flux density low loss Ni-Cu-Zn based ferrite sintered body.
【請求項2】 Fe23 49.0〜49.8mol
%、ZnO 18.0〜28.0mol%、CuO 0〜
12.0mol%(但し、0mol%を含まない)、残
部がNiOから成る主成分組成を有し、平均結晶粒径が
3〜30μmであり、コアロス(Pcv[kW/m3]、
周波数50kHz、動作磁束密度50mT)と飽和磁束
密度(Bm[mT]、印加磁界4000A/m)の関係
が、式1のとおりであることを特徴とする高磁束密度低
損失Ni−Cu−Zn系フェライト焼結体。 【式1】Bm≧323×Pcv0.0721
2. Fe 2 O 3 49.0 to 49.8 mol
%, ZnO 18.0 to 28.0 mol% , CuO 0
It has a main component composition of 12.0 mol% (excluding 0 mol%) and the balance of NiO, the average crystal grain size is 3 to 30 μm, and the core loss (Pcv [kW / m 3 ],
High magnetic flux density low loss Ni-Cu-Zn system characterized in that the relationship between frequency 50 kHz, operating magnetic flux density 50 mT) and saturation magnetic flux density (Bm [mT], applied magnetic field 4000 A / m) is as shown in Formula 1. Ferrite sintered body. [Formula 1] Bm ≧ 323 × Pcv 0.0721
【請求項3】 請求項2において、20〜140℃にお
ける損失(コアロス)の最小値が150kW/m3以下
(周波数50kHz、動作磁束密度50mT)で、かつ
飽和磁束密度が430mT(印加磁界4000A/m)
以上であることを特徴とする高磁束密度低損失Ni−C
u−Zn系フェライト焼結体。
3. The minimum value of loss (core loss) at 20 to 140 ° C. is 150 kW / m 3 or less (frequency 50 kHz, operating magnetic flux density 50 mT) and the saturation magnetic flux density is 430 mT (applied magnetic field 4000 A / m)
High magnetic flux density and low loss Ni-C characterized by the above
u-Zn ferrite sintered body.
【請求項4】 Fe23 49.0〜49.8mol
%、ZnO 18.0〜28.0mol%、CuO 0〜
12.0mol%(但し、0mol%を含まない)、残
部がNiOから成る主成分組成を有し、20〜140℃
における損失(コアロス)の最小値が150kW/m3
以下(周波数50kHz、動作磁束密度50mT)で、
飽和磁束密度が430mT(印加磁界4000A/m)
以上の磁気特性を有するコアを用いることを特徴とする
DC/DCコンバータ用トランス。
4. Fe 2 O 3 49.0 to 49.8 mol
%, ZnO 18.0 to 28.0 mol% , CuO 0
12.0 mol% (however, 0 mol% is not included) with the balance being NiO and the main component composition being 20 to 140 ° C.
Minimum loss (core loss) is 150 kW / m 3
Below (frequency 50 kHz, operating magnetic flux density 50 mT),
Saturation magnetic flux density is 430mT (applied magnetic field 4000A / m)
A transformer for a DC / DC converter, which uses a core having the above magnetic characteristics.
【請求項5】 請求項2又は3に記載の高磁束密度低損
失Ni−Cu−Zn 系フェライト焼結体からなるコアを
用いて構成したことを特徴とするDC/DCコンバータ
用トランス。
5. The high magnetic flux density low loss according to claim 2 or 3.
A core made of Ni-Cu-Zn ferrite sintered body
A transformer for a DC / DC converter, which is configured by using .
JP15865496A 1996-06-19 1996-06-19 High magnetic flux density low loss Ni-Cu-Zn ferrite sintered body and transformer for DC-DC converter Expired - Lifetime JP3410293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15865496A JP3410293B2 (en) 1996-06-19 1996-06-19 High magnetic flux density low loss Ni-Cu-Zn ferrite sintered body and transformer for DC-DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15865496A JP3410293B2 (en) 1996-06-19 1996-06-19 High magnetic flux density low loss Ni-Cu-Zn ferrite sintered body and transformer for DC-DC converter

Publications (2)

Publication Number Publication Date
JPH107454A JPH107454A (en) 1998-01-13
JP3410293B2 true JP3410293B2 (en) 2003-05-26

Family

ID=15676440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15865496A Expired - Lifetime JP3410293B2 (en) 1996-06-19 1996-06-19 High magnetic flux density low loss Ni-Cu-Zn ferrite sintered body and transformer for DC-DC converter

Country Status (1)

Country Link
JP (1) JP3410293B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243024A (en) * 1998-02-25 1999-09-07 Kyocera Corp Electrical equipment applicable to non-contact charger
JP5137275B2 (en) * 1999-11-26 2013-02-06 京セラ株式会社 High saturation magnetic flux density ferrite material and ferrite core using the same
JP4915889B2 (en) * 2002-04-04 2012-04-11 日立金属株式会社 Low loss Ni-Zn ferrite
US8237529B2 (en) 2007-02-07 2012-08-07 Hitachi Metals, Ltd. Low-loss ferrite and electronic device formed by such ferrite
CN108530048B (en) * 2018-05-15 2020-06-19 深圳顺络电子股份有限公司 High Bs ferrite material and preparation method thereof

Also Published As

Publication number Publication date
JPH107454A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP2010083692A (en) NiMnZn-BASED FERRITE
JP4523430B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2917706B2 (en) Oxide magnetic material
JP2008127230A (en) MnZnNi FERRITE
JPH05335132A (en) Oxide magnetic body material
JP3410293B2 (en) High magnetic flux density low loss Ni-Cu-Zn ferrite sintered body and transformer for DC-DC converter
JPH06310320A (en) Oxide magnetic substance material
JPH08191011A (en) Mn-zn-co based ferrite magnetic core material
JP3247930B2 (en) Mn-Zn soft ferrite
JPH113813A (en) Ferrite material
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP3259942B2 (en) Low loss Ni-based ferrite sintered body and magnetic core
JP2855990B2 (en) Oxide magnetic material
JP2001015321A (en) MANUFACTURE OF Ni-BASED FERRITE SINTERED BODY
US6800215B2 (en) Low-loss magnetic oxide material and method for making
JP3597665B2 (en) Mn-Ni ferrite material
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP3790606B2 (en) Mn-Co ferrite material
JPH06120021A (en) High-frequency power source ferrite core and manufacture thereof
JP3363017B2 (en) Ni-based ferrite sintered body
JP3300522B2 (en) Low loss oxide soft magnetic material
JP3039784B2 (en) High frequency low loss ferrite for power supply
JP2726388B2 (en) High magnetic permeability high saturation magnetic flux density Ni-based ferrite core and method of manufacturing the same
JP2004262710A (en) Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
JPH10270231A (en) Mn-ni ferrite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

EXPY Cancellation because of completion of term