JPH07249820A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPH07249820A
JPH07249820A JP3815994A JP3815994A JPH07249820A JP H07249820 A JPH07249820 A JP H07249820A JP 3815994 A JP3815994 A JP 3815994A JP 3815994 A JP3815994 A JP 3815994A JP H07249820 A JPH07249820 A JP H07249820A
Authority
JP
Japan
Prior art keywords
light
layer
emitting
gan
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3815994A
Other languages
Japanese (ja)
Inventor
Yasuo Oba
康夫 大場
Gokou Hatano
吾紅 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3815994A priority Critical patent/JPH07249820A/en
Publication of JPH07249820A publication Critical patent/JPH07249820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a high-efficiency light-emitting center inside a light-emitting layer at high density and to realize a high-brightness and short-wavelength light-emitting operation by a method wherein the light-emitting layer which uses a GaN-based mate rial and whose composition is specific is doped with a specific element. CONSTITUTION:In a semiconductor light-emitting element, a double heterojunction structure in which a light-emitting layer 14 composed of GaxAlyIn1-x-yN (where 0<=x<=1 and 0<=y<1) is sandwiched between, and held by, a first-conductivity-type clad layer 13 and a second-conductivity-type clad layer 15 is formed on a substrate 11. In the semiconductor light-emitting element, the light-emitting layer 14 is doped with at least one kind of element selected from a group composed of P, As, Sb and B, and an isoelectronic trap which is formed of the doped element is used as the light-emitting center. Thereby, when N atoms in GaN are replaced by As atoms, holes are restrained in a narrow range at about an atomic distance due to the large difference in an electron affinity between the N atoms and the As atoms, the overlap of the wave function of electrons and the holes is small even at a high concentration, and a drop in light- emitting efficiency is suppressed. As a result, the high brightness of the semiconductor light-emitting element can be achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体材料を用
いた半導体発光素子に係わり、特にGaN系材料を用い
た半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device using a compound semiconductor material, and more particularly to a semiconductor light emitting device using a GaN material.

【0002】[0002]

【従来の技術】窒素を含むIII-V族化合物半導体の一つ
であるGaNは、バンドギャップが3.4eVと大き
く、また直接遷移型であり、短波長青色発光素子用材料
として期待されている。GaN系材料を用いた半導体発
光素子では通常、発光層はZn,Mg等のII族のアクセ
プタ不純物が添加されたp型層であり、不純物が作る深
い準位(発光センター)からの発光を利用している。
2. Description of the Related Art GaN, which is one of III-V group compound semiconductors containing nitrogen, has a large band gap of 3.4 eV and is a direct transition type, and is expected as a material for a short wavelength blue light emitting device. . In a semiconductor light emitting device using a GaN-based material, the light emitting layer is usually a p-type layer to which a group II acceptor impurity such as Zn or Mg is added, and light emission from a deep level (light emission center) created by the impurity is used. is doing.

【0003】この種の半導体発光素子において、輝度飽
和を抑制して高輝度化をはかるには発光層の発光センタ
ーの数を増加させることが必要であるが、発光センター
を増加させるために発光層に高濃度に不純物を添加する
と、アクセプタに束縛された電子の波動関数同士が重な
り合い発光効率が急激に低下する。さらに、ドナー不純
物との間の遷移による発光を利用する場合には比較的高
濃度ドープが可能であるが、これは発光に電子の空間的
移動を伴うため低効率である。
In this type of semiconductor light emitting device, it is necessary to increase the number of light emitting centers in the light emitting layer in order to suppress the brightness saturation and achieve high brightness. To increase the light emitting centers, however, the light emitting layer is required. When impurities are added at a high concentration, the wavefunctions of the electrons bound to the acceptors overlap with each other and the luminous efficiency sharply decreases. Furthermore, when light emission due to a transition with a donor impurity is used, relatively high concentration doping is possible, but this is low in efficiency because the light emission involves spatial movement of electrons.

【0004】これらの問題は、緑青色の半導体レーザを
実現しようとする場合に特に大きな問題となり、これま
でGaN系材料を用いた半導体レーザの動作例は報告さ
れていなかった。
These problems become particularly serious when trying to realize a green-blue semiconductor laser, and an operation example of a semiconductor laser using a GaN-based material has not been reported so far.

【0005】[0005]

【発明が解決しようとする課題】このように従来、Ga
N系材料を用いた半導体発光素子においては、発光セン
ターを増加させるために発光層に高濃度に不純物を添加
すると、アクセプタに束縛された電子の波動関数同士が
重なり合い発光効率が急激に低下し、またドナー不純物
との間の遷移による発光を利用しても発光に電子の空間
的移動を伴うため低発光効率である、という問題があっ
た。
As described above, the conventional Ga
In a semiconductor light emitting device using an N-based material, when impurities are added to the light emitting layer at a high concentration in order to increase the light emitting center, the wave functions of electrons bound to the acceptors are overlapped with each other, resulting in a sharp decrease in light emitting efficiency. Further, even if the light emission due to the transition with the donor impurity is used, there is a problem that the light emission is accompanied by the spatial movement of electrons and thus the light emission efficiency is low.

【0006】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、GaN系材料を用いた
発光層に高効率の発光センターを高密度に形成すること
ができ、高輝度短波長発光を実現し得る半導体発光素子
を提供することにある。
The present invention has been made in consideration of the above circumstances, and it is an object of the present invention to form a highly efficient light emitting center in a light emitting layer using a GaN-based material at a high density. An object of the present invention is to provide a semiconductor light emitting device that can realize luminance short wavelength light emission.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち本発
明は、基板上に、Gax Aly In1-x-y N(0<x≦
1,0≦y<1)からる発光層が第1導電型及び第2導
電型のクラッド層で挟持されてなるダブルヘテロ接合構
造を形成した半導体発光素子において、発光層中にP,
As,Sb,Bi及びBからなる群より選ばれた少なく
とも1種が添加され、該添加された元素が形成する等電
子トラップを発光中心としたことを特徴とする。
In order to solve the above problems, the present invention employs the following configurations. That is, the present invention has, on a substrate, Ga x Al y In 1- xy N (0 <x ≦
In a semiconductor light emitting device having a double heterojunction structure in which a light emitting layer of 1,0 ≦ y <1) is sandwiched between first-conductivity-type and second-conductivity-type cladding layers, P,
At least one selected from the group consisting of As, Sb, Bi, and B is added, and an electron trap formed by the added element is used as an emission center.

【0008】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 基板上に、Gas Alt In1-s-t N層(0<s≦
1,0<t≦1)からなる第1導電型のクラッド層、G
x Aly In1-x-y N層(0<x≦1,0≦y<1,
y<t)からなる発光層及びGas Alt In1-s-t
からなる第2導電型のクラッド層で構成されるダブルヘ
テロ接合構造を形成した半導体発光素子において、発光
層中にP,As,Sb,Bi又はBが添加され、該添加
された元素が形成する等電子トラップを発光中心とした
こと。 (2) 基板として、サファイア基板又はSiC基板を用い
ること。 (3) n型クラッド層はSiドープのGaN、p型クラッ
ド層はMgドープのGaN、発光層はAsドープのGa
Nであること。 (4) p型及びn型のクラッド層はGaAlN、発光層は
GaNであること。 (5) p型及びn型のクラッド層はInGaAlN、発光
層はInGaNであること。 (6) 発光層中に添加されたP,As,Sb,Bi又はB
の濃度を、1×1018〜5×1019cm-3の範囲に設定
すること。
Here, the following are preferred embodiments of the present invention. (1) on a substrate, Ga s Al t In 1- st N layer (0 <s ≦
1, 0 <t ≦ 1) first conductivity type clad layer, G
a x Al y In 1-xy N layer (0 <x ≦ 1,0 ≦ y <1,
y <t) light emitting layer and Ga s Al t In 1-st N
In a semiconductor light emitting device having a double heterojunction structure composed of a second conductivity type cladding layer made of, P, As, Sb, Bi or B is added to the light emitting layer, and the added element is formed. The luminescence center is the isoelectronic trap. (2) Use a sapphire substrate or a SiC substrate as the substrate. (3) The n-type cladding layer is Si-doped GaN, the p-type cladding layer is Mg-doped GaN, and the light-emitting layer is As-doped Ga.
Be N. (4) The p-type and n-type cladding layers are GaAlN, and the light emitting layer is GaN. (5) The p-type and n-type clad layers are InGaAlN, and the light emitting layer is InGaN. (6) P, As, Sb, Bi or B added to the light emitting layer
The concentration of 1 × 10 18 to 5 × 10 19 cm −3 .

【0009】[0009]

【作用】発光層(活性層)中に1×1018cm-3以上高
濃度のアクセプタやドナーを添加した時の発光効率低下
の最大の理由は、束縛された電子・正孔の波動関数同士
の重なり合いによりエネルギーが散逸することが原因で
あり、これを防ぐためには束縛状態の波動関数の広がり
が小さい方が都合が良い。
The effect of decreasing the luminous efficiency when adding a high concentration of 1 × 10 18 cm −3 or more to the light emitting layer (active layer) is the greatest reason for the decrease in the light emitting efficiency. This is because the energy is dissipated due to the overlapping of two, and in order to prevent this, it is convenient that the spread of the wave function in the bound state is small.

【0010】本発明者らの研究によれば、GaN中のN
原子をこれと同じ価数を持つP,As,Sb,Biで置
き換えることにより、N原子とこれらの原子との電子親
和力の大きな差により正孔が原子間距離程度の極めて狭
い範囲に束縛されるので、高濃度においても電子,正孔
の波動関数の重なりが少なく発光効率の低下が飛躍的に
抑えられることが判明した。このような現象は、GaN
に限らずGaInN,GaAlN,AlGaInNに関
しても同様に期待できる。
According to the research conducted by the present inventors, N in GaN is
By replacing the atoms with P, As, Sb, and Bi having the same valence, holes are bound to an extremely narrow range of the interatomic distance due to the large difference in electron affinity between the N atom and these atoms. Therefore, it was found that even at a high concentration, the wavefunctions of electrons and holes do not overlap each other, and the decrease in light emission efficiency is dramatically suppressed. Such a phenomenon is caused by GaN
The same can be expected for not only GaInN, GaAlN, and AlGaInN.

【0011】従って本発明のように、発光層にP,A
s,Sb,Biを添加し、これらの原子が形成する等電
子トラップを発光センターとすれば、高効率の発光セン
ターを高密度に形成でき、ダブルヘテロ接合を形成した
場合に特に有効である。何となれば、ダブルヘテロ接合
ではホモ接合に比して高い濃度で正孔や電子が注入され
るため、より高濃度の発光センターを形成する必要があ
るからである。
Therefore, as in the present invention, P, A is formed in the light emitting layer.
If s, Sb and Bi are added and an electron trap formed by these atoms is used as a light emission center, a highly efficient light emission center can be formed at a high density, which is particularly effective when a double heterojunction is formed. This is because, in the double heterojunction, holes and electrons are injected at a higher concentration than in the homojunction, so that it is necessary to form a light emitting center with a higher concentration.

【0012】また、この方法によれば、輝度飽和が抑止
できるだけでなく、クーロン力で相互作用する第3の粒
子が存在しないので、発光効率も大幅に向上する。発光
波長はN原子を置換する不純物原子の原子番号と濃度の
増加と共に長波長化する。さらに、GaInN,GaA
lN,AlGaInN等の混晶に添加することにより、
発光波長をさらに変化させることができる。
Further, according to this method, not only the brightness saturation can be suppressed but also the luminous efficiency is greatly improved because the third particles which interact with each other by the Coulomb force do not exist. The emission wavelength becomes longer as the atomic number and concentration of the impurity atom substituting the N atom increase. Furthermore, GaInN, GaA
By adding it to a mixed crystal of 1N, AlGaInN, etc.,
The emission wavelength can be further changed.

【0013】但しこの方法においても、不純物の添加量
が1×1020cm-3を越える高濃度では発光効率が低下
するので、この手法をより有効にするには発光層中の発
光中心の濃度が1×1018cm-3以上5×1019cm-3
以下であることが望ましい。このような働きをする原子
としては他にBがあり、この場合にはGa原子と置換さ
れたBが電子を束縛し発光中心として働く。このように
して本発明によれば、GaN等の窒素を含むIII-V族化
合物半導体を用いた半導体発光素子の大幅な高輝度化が
可能となる。
However, even in this method, the luminous efficiency decreases at a high concentration where the amount of impurities added exceeds 1 × 10 20 cm -3. Therefore, in order to make this method more effective, the concentration of the luminescent centers in the luminescent layer should be improved. Is 1 × 10 18 cm -3 or more 5 × 10 19 cm -3
The following is desirable. Another atom that acts in this way is B. In this case, the B atom substituted with the Ga atom binds the electron and acts as an emission center. As described above, according to the present invention, it is possible to significantly increase the brightness of a semiconductor light emitting device using a III-V group compound semiconductor containing nitrogen such as GaN.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1は、本発明の第1の実施例に係わる青
色LEDの素子構造を示す断面図である。ここでは、サ
ファイア基板11上に厚さ50nmのGaNバッファ層
12を介して、n型のGaNクラッド層13(Siドー
プ:5×1017cm-3,厚さ1μm)、Asをドープし
た厚さ0.5μmのGaN発光層14、p型のGaNク
ラッド層15(Mgドープ:1×1018cm-3,厚さ1
μm)が順次積層されてダブルヘテロ接合構造を形成し
ている。そして、クラッド層15上の一部にはp側電極
16が形成され、バッファ層12の側面にはn側電極1
7が形成されている。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a sectional view showing an element structure of a blue LED according to a first embodiment of the present invention. Here, an n-type GaN cladding layer 13 (Si-doped: 5 × 10 17 cm −3 , thickness 1 μm), a thickness of As doped, on a sapphire substrate 11 with a GaN buffer layer 12 having a thickness of 50 nm interposed therebetween. 0.5 μm GaN light-emitting layer 14, p-type GaN cladding layer 15 (Mg-doped: 1 × 10 18 cm −3 , thickness 1)
μm) are sequentially stacked to form a double heterojunction structure. Then, the p-side electrode 16 is formed on a part of the clad layer 15, and the n-side electrode 1 is formed on the side surface of the buffer layer 12.
7 are formed.

【0015】発光層14中のAsの濃度は5×1019
-3である。発光中心としてはAsの他に、P,Sb,
Bi,B等が使用できるが、結晶成長の容易さと溶解度
の点から、青色用としてはP又はAsが優れている。B
はさらに高濃度添加が可能である。
The concentration of As in the light emitting layer 14 is 5 × 10 19 c
m -3 . As the emission center, in addition to As, P, Sb,
Bi, B and the like can be used, but P or As is superior for blue because of the ease of crystal growth and the solubility. B
Can be added at a higher concentration.

【0016】このような構成であれば、発光層14であ
るGaNにAsを添加することにより、GaN中のN原
子をこれと同じ価数を持つAsで置き換えることにな
り、N原子とAs原子との電子親和力の大きな差により
正孔が原子間距離程度の極めて狭い範囲に束縛され、高
濃度においても電子,正孔の波動関数の重なりが少な
く、発光効率の低下が飛躍的に抑えられる。このため、
従来にない高輝度化が達成できる。
With such a structure, by adding As to GaN which is the light emitting layer 14, the N atom in GaN is replaced with As having the same valence as the N atom and the As atom. Due to the large difference in the electron affinity between and, the holes are bound in an extremely narrow range of the interatomic distance, and even when the concentration is high, the overlapping of the wave functions of the electrons and holes is small, and the decrease in the luminous efficiency is dramatically suppressed. For this reason,
Higher brightness than ever before can be achieved.

【0017】図2は、本実施例素子の製造に使用した成
長装置を示す概略構成図である。図中21は石英製の反
応管であり、この反応管21内にはガス導入口22から
原料混合ガスが導入される。そして、反応管21内のガ
スはガス排気口23から排気されるものとなっている。
FIG. 2 is a schematic configuration diagram showing a growth apparatus used for manufacturing the device of this embodiment. In the figure, 21 is a reaction tube made of quartz, and a raw material mixed gas is introduced into the reaction tube 21 from a gas introduction port 22. The gas in the reaction tube 21 is exhausted from the gas exhaust port 23.

【0018】反応管21内には、カーボン製のサセプタ
24が配置されており、試料基板27はこのサセプタ2
4上に載置される。また、サセプタ24は高周波コイル
25により誘導加熱されるものとなっている。なお、基
板27の温度は図示の熱電対26によって測定され、別
の装置により制御される。
A susceptor 24 made of carbon is arranged in the reaction tube 21, and the sample substrate 27 is used as the susceptor 2.
4. The susceptor 24 is induction heated by the high frequency coil 25. The temperature of the substrate 27 is measured by the illustrated thermocouple 26 and controlled by another device.

【0019】次に、図2の装置を用いたLEDの製造方
法について説明する。まず、試料基板27(サファイア
基板11)をサセプタ24上に載置する。ガス導入口2
2から高純度水素を毎分1l導入し、反応管21内の大
気を置換する。次いで、ガス排気口23をロータリーポ
ンプに接続し、反応管21内を減圧し、内部の圧力を2
0〜300Torrの範囲に設定する。
Next, a method of manufacturing an LED using the apparatus shown in FIG. 2 will be described. First, the sample substrate 27 (sapphire substrate 11) is placed on the susceptor 24. Gas inlet 2
High-purity hydrogen from 2 is introduced at a rate of 1 l / min to replace the atmosphere in the reaction tube 21. Next, the gas exhaust port 23 is connected to a rotary pump to reduce the pressure in the reaction tube 21 and reduce the internal pressure to 2
Set in the range of 0 to 300 Torr.

【0020】次いで、基板温度を450〜900℃に低
下させた後、H2 ガスをNH3 ガス、N24 ガス或い
はNを含む有機化合物、例えば(CH3222
切り替えると共に、有機金属Ga化合物、例えばGa
(CH33 或いはGa(C2H53 を導入して成長を
行う。同時に必要に応じ有機金属Al化合物、例えばA
l(CH33 或いはAl(C253 、有機金属I
n化合物、例えばIn(CH33 或いはIn(C2
53 を導入してAl,Inの添加を行う。
Next, after lowering the substrate temperature to 450 to 900 ° C., the H 2 gas is switched to NH 3 gas, N 2 H 4 gas or an organic compound containing N, for example (CH 3 ) 2 N 2 H 2 . Together with an organometallic Ga compound, for example Ga
(CH 3 ) 3 or Ga (C 2 H 5 ) 3 is introduced to grow. At the same time, if necessary, an organometallic Al compound such as A
l (CH 3 ) 3 or Al (C 2 H 5 ) 3 , organometallic I
n compound, such as In (CH 3 ) 3 or In (C 2 H
5 ) 3 is introduced and Al and In are added.

【0021】ドーピングを行う場合にはドーピング用原
料も同時に導入する。ドーピング用原料としてはSi用
としてSi水素化物、例えばSiH4 或いは有機金属S
i化合物、例えばSi(CH34 、Mg用として有機
金属Mg化合物、例えば(C252 Mg,(C6
72 Mg,Zn用として有機金属Zn化合物、例えば
Zn(CH32 ,Zn(C252 、Cd用として
有機金属Cd化合物、例えばCd(CH32 ,Cd
(C252 、等を使用する。 (実施例2)図3は、本発明の第2の実施例に係わる半
導体レーザの素子構造を示す断面図である。ここでは、
3C(立方晶)−SiC基板31上にn−GaNバッフ
ァ層32が形成され、その上にn−AlGaNクラッド
層33,Asを添加したGaN発光層34,及びp−A
lGaNクラッド層35からなるダブルヘテロ接合構造
が形成されている。ダブルヘテロ接合構造のクラッド層
35上にはストライプ状開口を有するn−GaN電流阻
止層36が形成され、その上にp−GaNコンタクト層
37が形成されている。そして、コンタクト層37上に
はp側電極38が形成され、基板31の下面にはn側電
極39が形成されている。
When doping is performed, a doping raw material is also introduced at the same time. As a doping raw material, Si hydride for Si, such as SiH 4 or organometallic S
i compounds such as Si (CH 3 ) 4 and organometallic Mg compounds for Mg, such as (C 2 H 5 ) 2 Mg and (C 6 H
7 ) 2 Mg, an organometallic Zn compound for Zn, for example Zn (CH 3 ) 2 , Zn (C 2 H 5 ) 2 , an organometallic Cd compound for Cd, for example Cd (CH 3 ) 2 , Cd
(C 2 H 5 ) 2 , etc. are used. (Embodiment 2) FIG. 3 is a sectional view showing an element structure of a semiconductor laser according to a second embodiment of the present invention. here,
An n-GaN buffer layer 32 is formed on a 3C (cubic crystal) -SiC substrate 31, and an n-AlGaN cladding layer 33, an As-added GaN light emitting layer 34, and p-A are formed on the n-GaN buffer layer 32.
A double heterojunction structure composed of the lGaN cladding layer 35 is formed. An n-GaN current blocking layer 36 having a stripe-shaped opening is formed on the cladding layer 35 having a double heterojunction structure, and a p-GaN contact layer 37 is formed on the n-GaN current blocking layer 36. A p-side electrode 38 is formed on the contact layer 37, and an n-side electrode 39 is formed on the lower surface of the substrate 31.

【0022】このような構成であれば、発光層34であ
るGaNにAsを添加することにより、GaN中のN原
子をこれと同じ価数を持つAsで置き換えることにな
り、N原子とAs原子との電子親和力の大きな差により
正孔が原子間距離程度の極めて狭い範囲に束縛され、高
濃度においても電子,正孔の波動関数の重なりが少な
く、発光効率の低下が飛躍的に抑えられる。このため、
従来にない高輝度化が達成できる。 (実施例3)図4は、本発明の第3の実施例に係わる半
導体レーザの素子構造を示す断面図である。この実施例
は、発光層として混晶を使用したものであり、基本的な
構成は第2の実施例と同様である。
With such a structure, by adding As to GaN which is the light emitting layer 34, N atoms in GaN are replaced with As having the same valence, and N atoms and As atoms are replaced. Due to the large difference in the electron affinity between and, the holes are bound in an extremely narrow range of the interatomic distance, and even when the concentration is high, the overlapping of the wave functions of the electrons and holes is small, and the decrease in the luminous efficiency is dramatically suppressed. For this reason,
Higher brightness than ever before can be achieved. (Embodiment 3) FIG. 4 is a sectional view showing an element structure of a semiconductor laser according to a third embodiment of the present invention. This example uses a mixed crystal as a light emitting layer, and the basic configuration is the same as that of the second example.

【0023】即ち、3C−SiC基板41上にn−Ga
Nバッファ層42、n−InGaAlNクラッド層4
3、Asを添加したInGaN発光層44、p−InG
aAlNクラッド層45が形成され、その上にn−In
GaAlN電流阻止層46、p−InGaAlNコンタ
クト層47が形成されている。図中の48,49はいず
れも電極である。
That is, n-Ga is formed on the 3C-SiC substrate 41.
N buffer layer 42, n-InGaAlN cladding layer 4
3, As-doped InGaN light-emitting layer 44, p-InG
An aAlN clad layer 45 is formed, and n-In is formed thereon.
A GaAlN current blocking layer 46 and a p-InGaAlN contact layer 47 are formed. Both 48 and 49 in the figure are electrodes.

【0024】このような構成であっても、第2の実施例
と同様の効果が得られるのは勿論である。 (実施例4)図5は、本発明の第4の実施例に係わる半
導体レーザの素子構造を示す断面図である。この実施例
も、発光層として混晶を使用したものであり、基本的な
構成は第2の実施例と同様である。
Even with such a structure, the same effects as those of the second embodiment can be obtained. (Embodiment 4) FIG. 5 is a sectional view showing an element structure of a semiconductor laser according to a fourth embodiment of the present invention. This embodiment also uses a mixed crystal as the light emitting layer, and the basic structure is the same as that of the second embodiment.

【0025】即ち、3C−SiC基板51上にn−In
GaAlNバッファ層52、n−InGaAlNクラッ
ド層53、Asを添加したInGaAlN発光層54、
p−InGaAlNクラッド層55が形成され、その上
にn−InGaAlN電流阻止層56、p−InGaA
lNコンタクト層57が形成されている。図中の58,
59はいずれも電極である。
That is, n-In is formed on the 3C-SiC substrate 51.
A GaAlN buffer layer 52, an n-InGaAlN cladding layer 53, an As-doped InGaAlN light emitting layer 54,
A p-InGaAlN clad layer 55 is formed, and an n-InGaAlN current blocking layer 56 and p-InGaA are formed thereon.
The 1N contact layer 57 is formed. 58 in the figure
59 are all electrodes.

【0026】このような構成であっても、第2の実施例
と同様の効果が得られるのは勿論である。なお、本発明
は上述した各実施例に限定されるものではない。例えば
実施例では、発光層に添加する元素としてAsを用いた
が、原理的にはN原子と同じ価数を持つ原子であればよ
く、V族元素としてのP,Sb,Biを用いることもで
きる。また、GaNのNではなくGaと置換する元素と
して、Gaと同じ価数を持つIII 族元素のBを用いるこ
ともできる。
Of course, even with such a structure, the same effects as those of the second embodiment can be obtained. The present invention is not limited to the above-mentioned embodiments. For example, in the examples, As was used as the element to be added to the light emitting layer, but in principle, any atom having the same valence as the N atom may be used, and P, Sb, or Bi as the V group element may be used. it can. Further, B, which is a group III element having the same valence as Ga, can be used as an element substituting Ga instead of N in GaN.

【0027】また、素子構造は実施例で説明したものに
限るものではなく、GaN系材料を用いたダブルヘテロ
接合構造を有するものに適用可能である。その他、本発
明の要旨を逸脱しない範囲で、種々変形して実施するこ
とができる。
Further, the device structure is not limited to that described in the embodiments, but can be applied to one having a double heterojunction structure using a GaN-based material. In addition, various modifications can be made without departing from the scope of the present invention.

【0028】[0028]

【発明の効果】以上詳述したように本発明によれば、発
光層であるGaInAlN層中に高発光効率の発光中心
を高密度で形成することができ、高輝度短波長発光素子
及び緑青色半導体レーザの実現が可能となる。
As described above in detail, according to the present invention, it is possible to form light emitting centers having high light emitting efficiency at a high density in a GaInAlN layer which is a light emitting layer, and to provide a high brightness short wavelength light emitting element and a green-blue light emitting element. A semiconductor laser can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例に係わるLEDの素子構造を示す
断面図。
FIG. 1 is a sectional view showing an element structure of an LED according to a first embodiment.

【図2】第1の実施例素子の製造に使用した成長装置を
示す概略構成図。
FIG. 2 is a schematic configuration diagram showing a growth apparatus used for manufacturing the device of the first embodiment.

【図3】第2の実施例に係わる半導体レーザの素子構造
を示す断面図。
FIG. 3 is a sectional view showing an element structure of a semiconductor laser according to a second embodiment.

【図4】第3の実施例に係わる半導体レーザの素子構造
を示す断面図。
FIG. 4 is a sectional view showing a device structure of a semiconductor laser according to a third embodiment.

【図5】第4の実施例に係わる半導体レーザの素子構造
を示す断面図。
FIG. 5 is a sectional view showing an element structure of a semiconductor laser according to a fourth embodiment.

【符号の説明】[Explanation of symbols]

11…サファイア基板 12,32,42…n−GaNバッファ層 13…n−GaNクラッド層 14,34…GaN発光層(活性層) 15…p−GaNクラッド層 16,17,38,39,48,49,58,59…電
極 21…反応管 22…ガス導入口 23…ガス排気口 24…サセプタ 25…高周波コイル 26…熱電対 27…試料基板 31,41,51…3C−SiC基板 33…n−GaAlNクラッド層 35…p−GaAlNクラッド層 36…n−GaN電流阻止層 37…p−GaNコンタクト層 43,53…n−InGaAlNクラッド層 44…InGaN発光層 45,55…p−InGaAlNクラッド層 46,56…n−InGaAlN電流阻止層 47,57…p−InGaAlNコンタクト層 52…n−InGaAlNバッファ層 45…InGaAlN発光層
11 ... Sapphire substrate 12, 32, 42 ... n-GaN buffer layer 13 ... n-GaN cladding layer 14, 34 ... GaN light emitting layer (active layer) 15 ... p-GaN cladding layer 16, 17, 38, 39, 48, 49, 58, 59 ... Electrode 21 ... Reaction tube 22 ... Gas inlet 23 ... Gas outlet 24 ... Susceptor 25 ... High frequency coil 26 ... Thermocouple 27 ... Sample substrate 31, 41, 51 ... 3C-SiC substrate 33 ... n- GaAlN cladding layer 35 ... p-GaAlN cladding layer 36 ... n-GaN current blocking layer 37 ... p-GaN contact layer 43, 53 ... n-InGaAlN cladding layer 44 ... InGaN light emitting layer 45, 55 ... p-InGaAlN cladding layer 46, 56 ... n-InGaAlN current blocking layer 47, 57 ... p-InGaAlN contact layer 52 ... n-InGaA N buffer layer 45 ... InGaAlN light-emitting layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に、Gax Aly In1-x-y N(0
<x≦1,0≦y<1)からなる発光層が第1導電型及
び第2導電型のクラッド層で挟持されてなるダブルヘテ
ロ接合構造を形成した半導体発光素子において、 前記発光層中にP,As,Sb,Bi及びBからなる群
より選ばれた少なくとも1種が添加され、該添加された
元素が形成する等電子トラップを発光中心としたことを
特徴とする半導体発光素子。
1. A Ga x Al y In 1-xy N (0
A semiconductor light-emitting device having a double heterojunction structure in which a light-emitting layer of <x ≦ 1,0 ≦ y <1) is sandwiched between first-conductivity-type cladding layers and second-conductivity-type cladding layers. At least one selected from the group consisting of P, As, Sb, Bi and B is added, and a semiconductor light emitting device is characterized in that an electron trap formed by the added element serves as an emission center.
JP3815994A 1994-03-09 1994-03-09 Semiconductor light-emitting element Pending JPH07249820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3815994A JPH07249820A (en) 1994-03-09 1994-03-09 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3815994A JPH07249820A (en) 1994-03-09 1994-03-09 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPH07249820A true JPH07249820A (en) 1995-09-26

Family

ID=12517633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3815994A Pending JPH07249820A (en) 1994-03-09 1994-03-09 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPH07249820A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246670A (en) * 1996-03-04 1997-09-19 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light emitting element
US6111275A (en) * 1996-09-06 2000-08-29 Sharp Kabushiki Kaisha Gallium nitride group compound semiconductor light-emitting device and method for fabricating the same
US6462354B1 (en) 1999-05-24 2002-10-08 Sony Corporation Semiconductor device and semiconductor light emitting device
US6549552B1 (en) 1997-09-03 2003-04-15 Sharp Kabushiki Kaisha Nitride-type compound semiconductor laser device and laser apparatus incorporating the same
US7786550B2 (en) 2003-03-06 2010-08-31 Panasonic Corporation P-type semiconductor and semiconductor hetero material and manufacturing methods thereof
JPWO2018003335A1 (en) * 2016-06-30 2019-04-25 パナソニックIpマネジメント株式会社 Semiconductor laser device, semiconductor laser module and laser light source system for welding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246670A (en) * 1996-03-04 1997-09-19 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light emitting element
US6111275A (en) * 1996-09-06 2000-08-29 Sharp Kabushiki Kaisha Gallium nitride group compound semiconductor light-emitting device and method for fabricating the same
US6284559B1 (en) 1996-09-06 2001-09-04 Sharp Kabushiki Kaisha Gallium nitride group compound semiconductor light-emitting device and method for fabricating the same
US6549552B1 (en) 1997-09-03 2003-04-15 Sharp Kabushiki Kaisha Nitride-type compound semiconductor laser device and laser apparatus incorporating the same
US6842470B2 (en) 1997-09-03 2005-01-11 Sharp Kabushiki Kaisha Nitride-type compound semiconductor laser device and laser apparatus incorporating the same
US6462354B1 (en) 1999-05-24 2002-10-08 Sony Corporation Semiconductor device and semiconductor light emitting device
US7786550B2 (en) 2003-03-06 2010-08-31 Panasonic Corporation P-type semiconductor and semiconductor hetero material and manufacturing methods thereof
JPWO2018003335A1 (en) * 2016-06-30 2019-04-25 パナソニックIpマネジメント株式会社 Semiconductor laser device, semiconductor laser module and laser light source system for welding

Similar Documents

Publication Publication Date Title
US8420426B2 (en) Method of manufacturing a light-emitting device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
US6881602B2 (en) Gallium nitride-based semiconductor light emitting device and method
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
US6617061B2 (en) Group III nitride compound semiconductor device and group III nitride compound semiconductor light-emitting device
JP3509260B2 (en) Group 3-5 compound semiconductor and light emitting device
JP2000031533A (en) Semiconductor light emitting element
JPH07249820A (en) Semiconductor light-emitting element
JP3335974B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
JPH10270756A (en) Gallium nitride compound semiconductor device
WO2011101929A1 (en) Semiconductor light-emitting device and method for manufacturing the same
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP2004006957A (en) Optical semiconductor equipment
JP3274271B2 (en) Semiconductor light emitting device
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3605907B2 (en) Semiconductor device having contact resistance reduction layer
JPH11220172A (en) Gallium nitride compound semiconductor light-emitting element
JP3302162B2 (en) Semiconductor light emitting device
JP2000058916A (en) Gallium nitride-based compound semiconductor light emitting element
JPH08213653A (en) Semiconductor device having contact resistance reducing layer
JPH0883956A (en) Semiconductor light-emitting device
JP2000294884A (en) Optical semiconductor device
JPH11307812A (en) Nitride semiconductor light emitting element
JP4104686B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20040824

Free format text: JAPANESE INTERMEDIATE CODE: A02