JP2004006957A - Optical semiconductor equipment - Google Patents

Optical semiconductor equipment Download PDF

Info

Publication number
JP2004006957A
JP2004006957A JP2003276040A JP2003276040A JP2004006957A JP 2004006957 A JP2004006957 A JP 2004006957A JP 2003276040 A JP2003276040 A JP 2003276040A JP 2003276040 A JP2003276040 A JP 2003276040A JP 2004006957 A JP2004006957 A JP 2004006957A
Authority
JP
Japan
Prior art keywords
layer
quantum well
composition
led
algan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003276040A
Other languages
Japanese (ja)
Inventor
Toshio Nishida
西田 敏夫
Hisao Saito
斎藤 久夫
Naoki Kobayashi
小林 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003276040A priority Critical patent/JP2004006957A/en
Publication of JP2004006957A publication Critical patent/JP2004006957A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize short wavelength configuration with optical properties of high emission efficiency and an optical absorption factor maintained in optical semiconductor equipment with quantum well texture using a nitride III-V group compound semiconductor. <P>SOLUTION: In an LED with a light emitting layer of quantum well texture consisting of AlGaN, a difference in an AL composition between a barrier layer forming the quantum well texture and the quantum well texture layer is within 15%, and the AL composition of the quantum well texture layer is 2% or more, and the thickness of the quantum well texture layer is 4 nm or less. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、窒化物半導体、例えば、窒化物III−V族化合物半導体を用いた量子井戸構造を有する光半導体装置に関する。 << The present invention relates to an optical semiconductor device having a quantum well structure using a nitride semiconductor, for example, a nitride III-V compound semiconductor.

 例えば、窒化物III−V族化合物半導体を用いた量子井戸構造を有する従来の光半導体装置では、発光層を形成するために、InGaN混晶薄膜を量子井戸層とし、InGaNもしくはGaNを主たる障壁層とする量子井戸構造を使用してきた。 
 このような構造により、約400nmと比較的発光波長の短い発光ダイオード(LED)、レーザーダイオード(LD)が実現されてきた。 
 前記LEDやLDにおいて、光学的分解能や化学的な活性度の高い光源を得ることを目的として、さらに短い波長域を実現しようとする場合、(1)量子井戸層を1〜2分子層程度と極端に薄くしたり、(2)障壁層としてAl組成の高い材料を利用することが検討されてきた。 
 また、前記LEDやLDにおいて、発光層を挟むn型並びにp型のキャリアを供給するキャリア供給層には、発光波長に比較してバンドギャップエネルギーの大きいAlGaN混晶(下記非特許文献1)やGaN/AlGaN超格子構造(下記非特許文献2)が使用されてきた。さらに、出願人は、Alを含む発光層(光学的活性層)を有するLEDによって、従来のGaN/AlGaN量子井戸構造を発光層とするLEDよりも短波長化が可能であることを示した(下記非特許文献3)。
For example, in a conventional optical semiconductor device having a quantum well structure using a nitride III-V compound semiconductor, in order to form a light emitting layer, an InGaN mixed crystal thin film is used as a quantum well layer, and InGaN or GaN is mainly used as a barrier layer. Has been used.
With such a structure, a light emitting diode (LED) and a laser diode (LD) having a relatively short emission wavelength of about 400 nm have been realized.
In order to obtain a light source with high optical resolution and high chemical activity in the LED and LD, when a shorter wavelength range is to be realized, (1) the quantum well layer should be about 1 to 2 molecular layers. It has been studied to make the thickness extremely thin and (2) to use a material having a high Al composition as the barrier layer.
In the LED or LD, a carrier supply layer that supplies n-type and p-type carriers sandwiching a light-emitting layer includes an AlGaN mixed crystal having a larger band gap energy than the emission wavelength (Non-Patent Document 1 below), A GaN / AlGaN superlattice structure (Non-Patent Document 2 below) has been used. In addition, the applicant has shown that an LED having a light-emitting layer (optically active layer) containing Al can achieve a shorter wavelength than an LED having a conventional GaN / AlGaN quantum well structure as a light-emitting layer ( The following non-patent document 3).

Jpn. J. Appl. Phys., 35 (1996) L74Jpn. J. Appl. Phys., 35 (1996) L74 Appl. Phys. Lett., 72 (1998) 211Appl. Phys. Lett., 72 (1998) 211 Phys. stat. Sol. (a) 176, 45 (1999)Phys. Stat. Sol. (A) 176, 45 (1999)

 前記(1)の場合、量子井戸層の膜厚の制御が困難であるという問題があった。 
 前記(2)の場合、窒化物量子井戸構造においてはピエゾ電界効果が顕著なため、発光効率や光吸収の光学特性が貧弱で、有効な光半導体装置を実現することが不可能であった。 
 図6は、本発明および従来の原理を説明する概念図で、ピエゾ効果による発光強度変化を説明する図である。(a)は本発明におけるピエゾ効果が小さい場合、(b)は従来におけるピエゾ効果が大きい場合を示す。 
 光学的分解能や化学的な活性度の高い光源を目的として、さらにより短い波長域を実現しようとする場合、Alを含む光学的に活性な発光層が必要となるが、このような発光層を挟むn型並びにp型のキャリア供給層には、発光波長に比較してバンドギャップエネルギーがより大きく、電気抵抗の小さい層が必要となる。しかしながら、Al組成を増加させてバンドギャップエネルギーを大きくすると、前記AlGaN混晶においては、キャリア濃度と移動度が低下し、電気抵抗が高くなる課題があった。また、前記GaN/AlGaN超格子構造を用いると、膜厚方向の通電に対して電気的な障壁が形成され、抵抗となること、および、キャリアの有効質量が大きく、量子効果によって実効的なバンドギャップエネルギーを大きくすることが困難であることなどの課題があった。 
 また、これまで窒化物半導体の研究は、発光効率が比較的高いとされるInGaN発光層の発光波長である長い波長領域で検討が進められており、GaNのバンド端発光波長である360nmよりも短い波長の発光素子のキャリア供給層に関しては、Al組成増大による結晶品質の劣化が過大に評価され、系統的な検討は行われていない。しかしながら、我々は成長技術を向上することにより、GaNを含まない超格子構造でも、例えばp型導電層を実現できる程度に良好に作製することを可能としたことから、このような先入観を排除しうるものと結論した。 
 従来行われてきたような量子井戸構造では、量子井戸層がGaNやInGaNにより構成されるため、障壁層と量子井戸層の格子定数の差に起因して両層の歪みが大きく、図6(b)に示すように、ピエゾ効果が大きく、ピエゾ電界が増大する。 
 このため、電子と正孔の存在位置の上下方向への分離が増大し、その結果、光学的遷移確率が減少し、発光効率や光吸収係数の低下が生じ、良好な光半導体装置を実現することが困難となる。 
 本発明は、前述の課題を解決するためになされたもので、その目的は、窒化物III−V族化合物半導体を用いた量子井戸構造を有する光半導体装置において、高い発光効率や光吸収係数の光学的特性を維持したまま、短波長化を実現することにある。 
 また、本発明の別の目的は、窒化物III-V族化合物半導体を用いた半導体装置において、光透過効率の光学的特性を維持したまま、低抵抗化を実現することにある。
In the case (1), there is a problem that it is difficult to control the thickness of the quantum well layer.
In the case of the above (2), the piezoelectric field effect is remarkable in the nitride quantum well structure, so that the luminous efficiency and the optical characteristics of light absorption are poor, and it has been impossible to realize an effective optical semiconductor device.
FIG. 6 is a conceptual diagram illustrating the principle of the present invention and the related art, and is a diagram illustrating a change in light emission intensity due to a piezo effect. (A) shows the case where the piezo effect in the present invention is small, and (b) shows the case where the piezo effect in the conventional art is large.
In order to achieve a shorter wavelength range for the purpose of a light source having high optical resolution and high chemical activity, an optically active light-emitting layer containing Al is required. The n-type and p-type carrier supply layers sandwiched between them require a layer having a larger band gap energy and a smaller electric resistance than the emission wavelength. However, when the band gap energy is increased by increasing the Al composition, the AlGaN mixed crystal has a problem that the carrier concentration and the mobility are reduced and the electric resistance is increased. Further, when the GaN / AlGaN superlattice structure is used, an electric barrier is formed for the current flow in the film thickness direction, and the barrier becomes effective. There were problems such as difficulty in increasing the gap energy.
In addition, studies on nitride semiconductors have been conducted in the long wavelength region, which is the emission wavelength of the InGaN emission layer, which is considered to have relatively high luminous efficiency. Regarding the carrier supply layer of a light emitting element having a short wavelength, deterioration of crystal quality due to an increase in the Al composition is overestimated, and no systematic study has been performed. However, we have eliminated such prejudices by improving the growth technology to enable a superlattice structure that does not contain GaN to be manufactured satisfactorily enough to realize, for example, a p-type conductive layer. Concluded
In a conventional quantum well structure, since the quantum well layer is made of GaN or InGaN, the distortion of both layers is large due to the difference in lattice constant between the barrier layer and the quantum well layer. As shown in b), the piezo effect is large and the piezo electric field increases.
For this reason, the separation of the existing positions of electrons and holes in the vertical direction increases, and as a result, the optical transition probability decreases, the luminous efficiency and the light absorption coefficient decrease, and a good optical semiconductor device is realized. It becomes difficult.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical semiconductor device having a quantum well structure using a nitride III-V compound semiconductor, having a high luminous efficiency and a high light absorption coefficient. An object of the present invention is to realize a shorter wavelength while maintaining optical characteristics.
Another object of the present invention is to realize a semiconductor device using a nitride III-V compound semiconductor, which has a low resistance while maintaining optical characteristics of light transmission efficiency.

 上記課題を達成するために、本発明は、窒化物III−V族化合物半導体を用いた量子井戸構造を有する光半導体装置において、量子井戸構造として、量子井戸層の構成要素にAlを使用し、つまり、障壁層と量子井戸層が共にAlを含み、前記障壁層のAl組成が前記量子井戸層のAl組成よりも大きいことを特徴とするもので、これにより、短波長化を実現するため、障壁層のAl組成を高くしても、量子井戸層にもAlを合ませることにより、格子定数の差を低滅し、ピエゾ電界を抑制することが可能となる。 
 特に、障壁層と量子井戸層のAl組成の差を15%以下、かつ、量子井戸層のAl組成を2%以上とする(量子井戸層が2%以上のAlを含む)量子井戸構造をもって光半導体装置を構成するのが好ましい。これにより、短波長化は効果的で、かつ、量子井戸層と障壁層の格子定数の違いが0.5%以下となり、量子井戸層中に誘起され、形成されるピエゾ電界をlMV/cm以下程度に抑制することが可能となる。 
 このため、例えば2nm程度の量子井戸層を形成した場合、図6(a)に示すように、ビエゾ電界を小さく保ち、電子と正孔の存在位置の上下方向への分離を減少させることにより、光学的遷移確率が増加し、高い発光効率や光吸収係数を有する光半導体装置を実現することが可能となる。 
 さらに、本発明は、Alを含む窒化物半導体からなる発光層を有する光半導体装置において、障壁層と井戸層のAl組成の差が2%以上15%以内、前記障壁層と前記井戸層の平均Al組成が7%以上、前記井戸層の厚さが4nm以下のAlGaN超格子構造をキャリア供給層とするのが望ましい。 
 この構造により、窒化物III-V族化合物半導体を用いた半導体装置において、光透過効率の光学的特性を維持したまま、低抵抗化を実現できる。 
 すなわち、本発明は、AlGaNからなる量子井戸構造の発光層を有する光半導体装置において、前記量子井戸構造を構成する障壁層と量子井戸層のAl組成の差が15%以内であり、かつ前記量子井戸層のAl組成が2%以上であり、かつ前記量子井戸層の厚さが4nm以下であることを特徴とする。 
 また、前記量子井戸層が1%未満のInを含むことを特徴とする。 
 なお、ここに示した、本発明のピエゾ電界抑制の効果は、LEDやLD等の発光器だけでなく、フォトダイオード(PD)等の受光器や光変調器に適用できることは言うまでもない。
In order to achieve the above object, the present invention provides an optical semiconductor device having a quantum well structure using a nitride III-V compound semiconductor, wherein Al is used as a quantum well layer as a quantum well layer as a quantum well structure, That is, the barrier layer and the quantum well layer both contain Al, and the Al composition of the barrier layer is larger than the Al composition of the quantum well layer, thereby realizing a shorter wavelength. Even if the Al composition of the barrier layer is increased, by incorporating Al into the quantum well layer, the difference in lattice constant can be reduced and the piezoelectric field can be suppressed.
In particular, light having a quantum well structure in which the difference between the Al composition of the barrier layer and the quantum well layer is 15% or less and the Al composition of the quantum well layer is 2% or more (the quantum well layer contains 2% or more of Al). It is preferable to configure a semiconductor device. Accordingly, the wavelength can be effectively shortened, and the difference in lattice constant between the quantum well layer and the barrier layer becomes 0.5% or less, and the piezoelectric field induced and formed in the quantum well layer is reduced to 1MV / cm or less. It can be suppressed to a degree.
For this reason, for example, when a quantum well layer of about 2 nm is formed, as shown in FIG. 6A, the piezo electric field is kept small, and the separation of the existing positions of electrons and holes in the vertical direction is reduced. The optical transition probability increases, and an optical semiconductor device having high luminous efficiency and high light absorption coefficient can be realized.
Furthermore, the present invention provides an optical semiconductor device having a light emitting layer made of a nitride semiconductor containing Al, wherein the difference in Al composition between the barrier layer and the well layer is 2% or more and 15% or less, and the average of the barrier layer and the well layer is It is desirable that the AlGaN superlattice structure having an Al composition of 7% or more and the well layer having a thickness of 4 nm or less be used as the carrier supply layer.
With this structure, in a semiconductor device using a nitride III-V compound semiconductor, a reduction in resistance can be realized while maintaining optical characteristics of light transmission efficiency.
That is, the present invention relates to an optical semiconductor device having a light emitting layer having a quantum well structure made of AlGaN, wherein the difference between the Al composition of the barrier layer and the quantum well layer constituting the quantum well structure is within 15%, and The well layer has an Al composition of 2% or more, and the quantum well layer has a thickness of 4 nm or less.
Further, the quantum well layer contains less than 1% of In.
It is needless to say that the effect of suppressing the piezo electric field of the present invention shown here can be applied not only to a light emitting device such as an LED or an LD, but also to a light receiving device such as a photodiode (PD) or an optical modulator.

 本発明によれば、量子井戸構造として、量子井戸層の構成要素にAlを使用し、障壁層のAl組成を量子井戸層のAl組成よりも大きくすることにより、短波長における窒化物III−V族化合物を用いた光半導体素子の動作効率、例えばLEDの場合の発光効率を向上することを可能とした。この構造を利用することにより、窒化物光半導体素子の動作波長を従来の370nm程度から大きく短波長化することが可能となった。また、障壁層と井戸層のAl組成の差が2%以上15%以内、前記障壁層と前記井戸層の平均Al組成が7%以上、前記井戸層の厚さが4nm以下のAlGaN超格子構造をキャリア供給層とすることにより、窒化物III-V族化合物半導体を用いた半導体装置において、光透過効率の光学的特性を維持したまま、低抵抗化を実現することができた。 
 このような効果は、LEDやLD等の発光器に留まらず、PD等の受光器や光変調器など、広く窒化物光半導体装置における光学的空間分解能等の特性を向上でき、さらに、これらの素子を利用して化学物質を光励起する場合や検出する場合の感度向上にも極めて有効である。
According to the present invention, as the quantum well structure, Al is used as a component of the quantum well layer, and the Al composition of the barrier layer is made larger than the Al composition of the quantum well layer. It has become possible to improve the operation efficiency of an optical semiconductor element using a group III compound, for example, the luminous efficiency in the case of an LED. By using this structure, the operating wavelength of the nitride optical semiconductor device can be greatly shortened from about 370 nm in the related art. An AlGaN superlattice structure in which the difference between the Al composition of the barrier layer and the well layer is 2% or more and 15% or less, the average Al composition of the barrier layer and the well layer is 7% or more, and the thickness of the well layer is 4 nm or less. By using as a carrier supply layer, in a semiconductor device using a nitride III-V compound semiconductor, a reduction in resistance can be realized while maintaining optical characteristics of light transmission efficiency.
Such effects are not limited to light-emitting devices such as LEDs and LDs, but can be widely used to improve characteristics such as optical spatial resolution in nitride optical semiconductor devices such as light-receiving devices such as PDs and optical modulators. It is also very effective in improving the sensitivity in the case where a chemical substance is photoexcited or detected using an element.

 実施の形態1
 図1は本発明の一実施の形態のLED素子の構造を示す概略断面図である。 
 図1において、1は負電極(Au)、2は負電極(Ti)、3はn型SiC基板、4はn型AlGaN層、5はAlGaN多重量子井戸発光層(MQW(Multi Quantum Well)層)、6はp型AlGaN層、7はp型GaNコンタクト層、8は正電極(Ni)、9は正電極(Au)である。 
 すなわち、本実施の形態のLEDを形成する基板としては、面方位精度±0.2°以内で(0001)Si面正方位に配向したキャリア濃度1018cm−3でn型の6H−SiC基板3を用いた。 
 結晶成長には縦型のMOVPE(Metal Organic Vapor Phase Epitaxy)炉を用い、成長圧力39997Pa(300Torr)、結晶成長の原料としてはトリメチルガリウム(TMG)、トリエチルガリウム(TEG)、トリメチルアルミニウム(TMA)、アンモニア(NH)、シラン(SiH)、シクロペンタジエニルマグネシウム(CpMg)を使用し、V族/III族比は約10000で成長を行った。 
 図1に示すLEDにおいて、n型SiC基板3上への厚さ400nmのn型Al0.15Ga0.85N層4の成長にはTMG、TMA、NH、SiHを用い、AlGaN多重量子井戸発光層5の成長にはTMG、TMA、TEG、NHを用い、厚さ400nmのp型Al0.15Ga0.85N層6の成長にはTMG、TMA、NH、CpMgを用い、厚さ15nmのp型GaNコンタクト層7のGaN成長にはTMG、NH、CpMgを用いている。量子井戸部分であるAlGaN多重量子井戸発光層5は、5組の厚さ2nmでAl組成5%(0.05)の量子井戸層と、厚さ5nmでAl組成15%(0.15)の障壁層から成っている。すなわち、本実施の形態では、障壁層と量子井戸層のAl組成の差は10%以内であり、量子井戸層は5%のAlを含む。成長温度は1030℃である。正電極(陽極)8、9としてNi層とAu層を積層し、負電極(陰極)2、1として基板3の裏面にTi層とAu層を蒸着してLED素子を形成した。
Embodiment 1
FIG. 1 is a schematic sectional view showing the structure of an LED element according to one embodiment of the present invention.
In FIG. 1, 1 is a negative electrode (Au), 2 is a negative electrode (Ti), 3 is an n-type SiC substrate, 4 is an n-type AlGaN layer, 5 is an AlGaN multiple quantum well light emitting layer (MQW (Multi Quantum Well) layer). ) And 6 are p-type AlGaN layers, 7 is a p-type GaN contact layer, 8 is a positive electrode (Ni), and 9 is a positive electrode (Au).
That is, as the substrate on which the LED of the present embodiment is formed, an n-type 6H-SiC substrate with a carrier concentration of 10 18 cm −3 and a carrier concentration of 10 18 cm −3 oriented in a (0001) Si plane with a plane orientation accuracy of ± 0.2 °. 3 was used.
A vertical MOVPE (Metal Organic Vapor Phase Epitaxy) furnace was used for crystal growth, and the growth pressure was 39997 Pa (300 Torr). Growth was performed using ammonia (NH 3 ), silane (SiH 4 ), and cyclopentadienyl magnesium (Cp 2 Mg) with a group V / III ratio of about 10,000.
In the LED shown in FIG. 1, an n-type Al 0.15 Ga 0.85 N layer 4 having a thickness of 400 nm is grown on the n-type SiC substrate 3 by using TMG, TMA, NH 3 , and SiH 4, and using an AlGaN multiplex. TMG, TMA, TEG, and NH 3 are used for growing the quantum well light emitting layer 5, and TMG, TMA, NH 3 , and Cp 2 are used for growing the p-type Al 0.15 Ga 0.85 N layer 6 having a thickness of 400 nm. Mg is used, and TMG, NH 3 , and Cp 2 Mg are used for GaN growth of the p-type GaN contact layer 7 having a thickness of 15 nm. The AlGaN multiple quantum well light emitting layer 5 which is a quantum well portion has five sets of quantum well layers having a thickness of 2 nm and an Al composition of 5% (0.05), and a set of 5 nm and an aluminum composition of 15% (0.15). Consists of a barrier layer. That is, in the present embodiment, the difference in Al composition between the barrier layer and the quantum well layer is within 10%, and the quantum well layer contains 5% Al. The growth temperature is 1030 ° C. An Ni layer and an Au layer were laminated as the positive electrodes (anodes) 8 and 9, and a Ti layer and an Au layer were deposited on the back surface of the substrate 3 as the negative electrodes (cathodes) 2 and 1 to form an LED element.

 図2は、上記のように作製したLEDの室温における発光スペクトルを示す図である。横軸に波長λ(nm)、縦軸に発光強度が取ってある。 
 図2から明らかなように、本実施の形態のLEDでは、発光ピーク波長約345nmが得られた。これはこれまで通常報告されているLDやLEDの発光波長(360nm以上)や、最近報告されたGaN/AlGaN系で量子井戸層を薄くしたLED(例えば、Appl.Phys.Lett.,vol.73,p.1668,1998)の発光波長に比較しても最も発光波長が短く、本発明の効果は明らかである。すなわち、窒化物III−V族化合物半導体を用いた量子井戸構造を有するLEDにおいて、高い発光効率や光吸収係数の光学的特性を維持しながら、短波長化を実現することができた。
FIG. 2 is a diagram showing an emission spectrum at room temperature of the LED manufactured as described above. The horizontal axis represents the wavelength λ (nm), and the vertical axis represents the emission intensity.
As is clear from FIG. 2, in the LED of the present embodiment, an emission peak wavelength of about 345 nm was obtained. This is because the emission wavelength of an LD or LED (360 nm or more) which has been generally reported up to now, or a recently reported GaN / AlGaN-based LED having a thin quantum well layer (for example, Appl. Phys. Lett., Vol. 73) , P. 1668, 1998), the emission wavelength is the shortest, and the effect of the present invention is clear. That is, in an LED having a quantum well structure using a nitride III-V compound semiconductor, it was possible to shorten the wavelength while maintaining high luminous efficiency and optical characteristics of a light absorption coefficient.

 実施の形態2
 図1に示した実施の形態1とほぼ同様な素子構造で、量子井戸層5に1%未満のInを添加したところ、ピーク発光波長が350nmと、実施の形態1の場合の345nmに比較してやや長波長化したものの、実施の形態1の場合に比較して約10倍の発光強度を得た。
Embodiment 2
With an element structure substantially similar to that of the first embodiment shown in FIG. 1, when less than 1% of In is added to the quantum well layer 5, the peak emission wavelength is 350 nm, which is slightly smaller than that of 345 nm in the first embodiment. Although the wavelength was increased, the emission intensity was about 10 times higher than that of the first embodiment.

 実施の形態3
 図3(a)は本発明の別の実施の形態の半導体ヘテロ構造を有する窒化物半導体発光ダイオード(LED)の断面図、図3(b)は図3(a)に示す窒化物半導体発光ダイオードの各層のGaとAlの合計量に対するAl組成を示すグラフである。 
 図に示すように、6H−SiCからなり(0001)Si面に配向したキャリア濃度1018cm−3であるn型SiC基板11上に、厚さが300nmで、Al組成が15%の組成一定領域からなるn型AlGaN層12が形成されている。 
 また、n型AlGaN層12上に、2種類のAl組成のAlGaNからなる75周期のn型超格子構造(キャリア供給層)13が形成されている。n型超格子構造13を構成する井戸層のAl組成は14%(バルクのバンドギャップ波長は340nm以下)、障壁層のAl組成は18%である。各井戸層、および各障壁層の厚さは、ともに2nmであり、障壁層と前記井戸層の平均Al組成は16%である。 
 また、n型超格子構造13上に、AlGaNからなる多重量子井戸発光層14が形成されている。多重量子井戸発光層14は5組の、厚さが2nmでAl組成が10%の量子井戸層、および厚さが2nmでAl組成が14%の障壁層からなる。 
 また、多重量子井戸発光層14上に、2種類のAl組成のAlGaNからなる75周期のp型超格子構造(キャリア供給層)15が形成されている。p型超格子構造15を構成する井戸層のAl組成は14%、障壁層のAl組成は18%である。各井戸層、および各障壁層の厚さは、ともに2nmであり、障壁層と前記井戸層の平均Al組成は16%である。 
 また、p型超格子構造15上には、GaNからなるp型のコンタクト層16が形成され、コンタクト層16上にNiからなる正電極17、Auからなる正電極18が積層されている。 
 また、n型SiC基板11の裏面には、Tiからなる負電極19、Auからなる負電極20が積層されている。 
 ここで、n型SiC基板11に負電極19、20を作製する前に、発光層のフォトルミネッセンススペクトルを測定したところ、電導性p型窒化物に特有な青色発光を示した。
Embodiment 3
FIG. 3A is a cross-sectional view of a nitride semiconductor light emitting diode (LED) having a semiconductor heterostructure according to another embodiment of the present invention, and FIG. 3B is a nitride semiconductor light emitting diode shown in FIG. 3 is a graph showing the Al composition with respect to the total amount of Ga and Al in each layer.
As shown in the figure, on an n-type SiC substrate 11 made of 6H—SiC and oriented on the (0001) Si plane and having a carrier concentration of 10 18 cm −3 , the composition is constant at a thickness of 300 nm and an Al composition of 15%. An n-type AlGaN layer 12 composed of a region is formed.
On the n-type AlGaN layer 12, a 75-period n-type superlattice structure (carrier supply layer) 13 made of AlGaN having two kinds of Al compositions is formed. The Al composition of the well layer constituting the n-type superlattice structure 13 is 14% (the band gap wavelength of the bulk is 340 nm or less), and the Al composition of the barrier layer is 18%. The thickness of each well layer and each barrier layer is 2 nm, and the average Al composition of the barrier layer and the well layer is 16%.
On the n-type superlattice structure 13, a multiple quantum well light emitting layer 14 made of AlGaN is formed. The multiple quantum well light emitting layer 14 includes five pairs of a quantum well layer having a thickness of 2 nm and an Al composition of 10%, and a barrier layer having a thickness of 2 nm and an Al composition of 14%.
On the multiple quantum well light emitting layer 14, a 75-period p-type superlattice structure (carrier supply layer) 15 made of AlGaN having two kinds of Al compositions is formed. The Al composition of the well layer constituting the p-type superlattice structure 15 is 14%, and the Al composition of the barrier layer is 18%. The thickness of each well layer and each barrier layer is 2 nm, and the average Al composition of the barrier layer and the well layer is 16%.
A p-type contact layer 16 made of GaN is formed on the p-type superlattice structure 15, and a positive electrode 17 made of Ni and a positive electrode 18 made of Au are laminated on the contact layer 16.
On the back surface of the n-type SiC substrate 11, a negative electrode 19 made of Ti and a negative electrode 20 made of Au are stacked.
Here, before the negative electrodes 19 and 20 were formed on the n-type SiC substrate 11, the photoluminescence spectrum of the light-emitting layer was measured. As a result, blue light emission specific to the conductive p-type nitride was shown.

 図4は、前記のように作製したAlGaN多重量子井戸LEDの電流密度−電圧(J−V)曲線を示す図である。 
 バイアス電圧4Vにおいて、電流密度21A/cm、電極単位面積あたりの微分抵抗22mΩ/cmが得られた。 
 この結果を、同じ装置で作製したLED素子で、キャリア供給層のAl組成の平均値が7%と低く、発光波長が400nmと長い波長のInGaN系LEDと比較したところ、本実施の形態のAlGaN多重量子井戸LEDの通電特性はInGaN系LEDと比較して遜色無いものであった。
FIG. 4 is a diagram showing a current density-voltage (JV) curve of the AlGaN multiple quantum well LED manufactured as described above.
At a bias voltage of 4 V, a current density of 21 A / cm 2 and a differential resistance per electrode unit area of 22 mΩ / cm 2 were obtained.
This result was compared with an InGaN-based LED having an average Al composition of the carrier supply layer as low as 7% and an emission wavelength as long as 400 nm of an LED element manufactured using the same apparatus. The current-carrying characteristics of the multiple quantum well LED were comparable to those of the InGaN-based LED.

 また、図5は上記のLEDの発光スペクトルを示す図である。 
 発光主ピークが343nmであり、これまでの窒化物LEDの中で最短波長が可能であった。 
 発光層のエネルギーバンド端が発光スペクトルの主ピークとなって、窒化物LEDでは最短波長でありながら、InGaN系のLEDと遜色無い低抵抗性を示したことから本実施の形態の効果は明らかである。また、このような効果を得るには、以下の(1)〜(3)の条件を満たすことが望ましい。(1)分極による内部電界の影響が少ない4nm以下の井戸層を用いる。(2)分極の生じにくい15%以下の小さい組成差にする。(3)不純物の活性化が効果的となる2%以上の組成差にする。(4)障壁層と井戸層の平均Al組成が7%以上とする。 
 すなわち、本実施の形態では、キャリア供給層の構造として、障壁層と井戸層のAl組成の差を2%以上15%以内、平均Al組成を7%以上、井戸層の厚さを4nm以下とすることにより、発光層にAlを含む短波長窒化物光半導体素子の動作効率の向上、ここではLEDの場合の素子抵抗の低減を可能とした。このような構造を利用することにより、窒化物III−V族半導体の動作波長を従来の360nm程度から大きく短波長化することが可能となる。 
 なお、本発明は、特許請求の範囲に記載した要旨を逸脱しない範囲において種々変更可能であることは勿論である。すなわち、図1に示した上記実施の形態の構成はあくまで1つの例示であり、細かな構成は種々の態様を取り得ることはいうまでもない。さらに、図1に示したLED素子では、障壁層と量子井戸層のAl組成の差が15%以内であり、量子井戸層が2%以上のAlを含むのが好ましいのであり、本発明はこれに限定されないことはいうまでもない。また、図3に示したLED素子では、キャリア供給層であるAlGaN超格子構造を構成する障壁層と井戸層のAl組成の差が2%以上15%以内、障壁層と井戸層の平均Al組成が7%以上、前記井戸層の厚さが4nm以下であればよい。
FIG. 5 is a diagram showing an emission spectrum of the LED.
The light emission main peak was 343 nm, and the shortest wavelength was possible among the conventional nitride LEDs.
The energy band edge of the light emitting layer becomes the main peak of the emission spectrum, and the nitride LED has the shortest wavelength, but shows low resistance comparable to that of the InGaN-based LED. is there. To obtain such an effect, it is desirable to satisfy the following conditions (1) to (3). (1) Use a well layer of 4 nm or less which is less affected by an internal electric field due to polarization. (2) A small composition difference of 15% or less in which polarization is hardly generated. (3) A composition difference of 2% or more at which activation of impurities is effective. (4) The average Al composition of the barrier layer and the well layer is 7% or more.
That is, in the present embodiment, the structure of the carrier supply layer is such that the difference in Al composition between the barrier layer and the well layer is 2% or more and 15% or less, the average Al composition is 7% or more, and the thickness of the well layer is 4 nm or less. By doing so, it has become possible to improve the operation efficiency of the short-wavelength nitride optical semiconductor device containing Al in the light-emitting layer, and in this case, to reduce the device resistance in the case of an LED. By using such a structure, the operating wavelength of the nitride III-V semiconductor can be greatly shortened from about 360 nm in the related art.
It is needless to say that the present invention can be variously modified without departing from the gist described in the claims. That is, the configuration of the above-described embodiment shown in FIG. 1 is merely an example, and it goes without saying that the detailed configuration can take various forms. Further, in the LED element shown in FIG. 1, the difference in Al composition between the barrier layer and the quantum well layer is within 15%, and the quantum well layer preferably contains 2% or more of Al. It is needless to say that the present invention is not limited to this. Further, in the LED element shown in FIG. 3, the difference between the Al composition of the barrier layer and the well layer constituting the AlGaN superlattice structure as the carrier supply layer is 2% or more and 15% or less, and the average Al composition of the barrier layer and the well layer. Is 7% or more and the thickness of the well layer is 4 nm or less.

本発明の一実施の形態のLED素子の構造を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating a structure of an LED element according to an embodiment of the present invention. 図1に示したLED素子の発光スペクトルを示す図である。FIG. 2 is a diagram showing an emission spectrum of the LED element shown in FIG. 1. (a)は本発明の別の実施の形態の半導体ヘテロ構造を有する窒化物半導体発光ダイオード(LED)を示す断面図、(b)は(a)に示す窒化物半導体発光ダイオードの各層のGaとAlの合計量に対するAl組成を示すグラフである。(A) is a cross-sectional view showing a nitride semiconductor light emitting diode (LED) having a semiconductor heterostructure according to another embodiment of the present invention. It is a graph which shows Al composition with respect to the total amount of Al. 図3のAlGaN多重量子井戸LEDの電流密度−電圧(J−V)曲線を示す図である。FIG. 5 is a diagram illustrating a current density-voltage (JV) curve of the AlGaN multiple quantum well LED of FIG. 3. 図3のLEDの発光スペクトルを示す図である。FIG. 4 is a diagram showing an emission spectrum of the LED of FIG. 3. (a)は本発明、(b)は従来の原理を説明する概念図で、ピエゾ効果による発光強度変化を説明する図である。(A) is a conceptual diagram for explaining the principle of the present invention, and (b) is a conceptual diagram for explaining a change in emission intensity due to a piezo effect.

符号の説明Explanation of reference numerals

 1…負電極(Au)、2…負電極(Ti)、3…n型SiC基板、4…n型AlGaN層、5…AlGaN多重量子井戸発光層、6…p型AlGaN層、7…p型GaNコンタクト層、8…正電極(Ni)、9…正電極(Au)。 DESCRIPTION OF SYMBOLS 1 ... Negative electrode (Au), 2 ... Negative electrode (Ti), 3 ... n-type SiC substrate, 4 ... n-type AlGaN layer, 5 ... AlGaN multiple quantum well light emitting layer, 6 ... p-type AlGaN layer, 7 ... p-type GaN contact layer, 8: positive electrode (Ni), 9: positive electrode (Au).

Claims (2)

 AlGaNからなる量子井戸構造の発光層を有する光半導体装置において、前記量子井戸構造を構成する障壁層と量子井戸層のAl組成の差が15%以内であり、かつ前記量子井戸層のAl組成が2%以上であり、かつ前記量子井戸層の厚さが4nm以下であることを特徴とする光半導体装置。 In an optical semiconductor device having a light emitting layer having a quantum well structure made of AlGaN, a difference between an Al composition of a barrier layer and a quantum well layer constituting the quantum well structure is within 15%, and an Al composition of the quantum well layer is less than 15%. An optical semiconductor device, wherein the thickness is 2% or more and the thickness of the quantum well layer is 4 nm or less.  前記量子井戸層が1%未満のInを含むことを特徴とする請求項1記載の光半導体装置。 2. The optical semiconductor device according to claim 1, wherein the quantum well layer contains less than 1% of In.
JP2003276040A 1999-02-05 2003-07-17 Optical semiconductor equipment Pending JP2004006957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276040A JP2004006957A (en) 1999-02-05 2003-07-17 Optical semiconductor equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2853499 1999-02-05
JP2003276040A JP2004006957A (en) 1999-02-05 2003-07-17 Optical semiconductor equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000024660A Division JP3470074B2 (en) 1999-02-05 2000-02-02 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2004006957A true JP2004006957A (en) 2004-01-08

Family

ID=30445319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276040A Pending JP2004006957A (en) 1999-02-05 2003-07-17 Optical semiconductor equipment

Country Status (1)

Country Link
JP (1) JP2004006957A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336235C (en) * 2004-09-06 2007-09-05 璨圆光电股份有限公司 LED structure with gallium nitride system
CN100336236C (en) * 2004-09-06 2007-09-05 璨圆光电股份有限公司 LED structure
CN100342559C (en) * 2004-09-06 2007-10-10 璨圆光电股份有限公司 Production of LED with gallium nitride system
CN100358166C (en) * 2004-09-16 2007-12-26 璨圆光电股份有限公司 Nitride stacked crystal layer structure and its producing method
CN100369276C (en) * 2004-09-06 2008-02-13 璨圆光电股份有限公司 LED structure
CN100442547C (en) * 2004-09-06 2008-12-10 璨圆光电股份有限公司 Gallium nitride system LED with growth under low-temperature and low-resistance P-shaped contact layer
US8071986B2 (en) 2005-05-26 2011-12-06 Sumitomo Electric Industries, Ltd. Nitride semiconductor light-emitting element
WO2016165558A1 (en) * 2015-04-15 2016-10-20 厦门市三安光电科技有限公司 Nitride light emitting diode structure and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336235C (en) * 2004-09-06 2007-09-05 璨圆光电股份有限公司 LED structure with gallium nitride system
CN100336236C (en) * 2004-09-06 2007-09-05 璨圆光电股份有限公司 LED structure
CN100342559C (en) * 2004-09-06 2007-10-10 璨圆光电股份有限公司 Production of LED with gallium nitride system
CN100369276C (en) * 2004-09-06 2008-02-13 璨圆光电股份有限公司 LED structure
CN100442547C (en) * 2004-09-06 2008-12-10 璨圆光电股份有限公司 Gallium nitride system LED with growth under low-temperature and low-resistance P-shaped contact layer
CN100358166C (en) * 2004-09-16 2007-12-26 璨圆光电股份有限公司 Nitride stacked crystal layer structure and its producing method
US8071986B2 (en) 2005-05-26 2011-12-06 Sumitomo Electric Industries, Ltd. Nitride semiconductor light-emitting element
WO2016165558A1 (en) * 2015-04-15 2016-10-20 厦门市三安光电科技有限公司 Nitride light emitting diode structure and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4924185B2 (en) Nitride semiconductor light emitting device
JP4405085B2 (en) Vertical Indium Gallium Nitride LED
JP3304787B2 (en) Semiconductor light emitting device and method of manufacturing the same
US6881602B2 (en) Gallium nitride-based semiconductor light emitting device and method
US7554122B2 (en) Nitride semiconductor light emitting device, and method of fabricating nitride semiconductor light emitting device
JP5145617B2 (en) N-type nitride semiconductor laminate and semiconductor device using the same
US8525203B2 (en) Semiconductor light emitting device
TW201011952A (en) Group iii nitride based semiconductor light emitting element and epitaxial wafer
US7718992B2 (en) Nitride semiconductor device
JP2008288397A (en) Semiconductor light-emitting apparatus
TW201115784A (en) Nitride-based semiconductor light-emitting element
JP2008118049A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
US20080258131A1 (en) Light Emitting Diode
JP2001119102A (en) Iii nitride compound semiconductor laser diode
JP2004006957A (en) Optical semiconductor equipment
JP2008288532A (en) Nitride semiconductor device
WO2011101929A1 (en) Semiconductor light-emitting device and method for manufacturing the same
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP3724213B2 (en) Gallium nitride compound semiconductor light emitting device
JP2010080741A (en) Semiconductor light-emitting element
JP2011258843A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
JP2002280673A (en) Semiconductor light emitting device
KR20110084683A (en) Light emitting device having active region of quantum well structure
US11538960B2 (en) Epitaxial light emitting structure and light emitting diode
JP3470074B2 (en) Optical semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410