JPH07240205A - 燃料電池およびアノードの製造方法 - Google Patents

燃料電池およびアノードの製造方法

Info

Publication number
JPH07240205A
JPH07240205A JP6291805A JP29180594A JPH07240205A JP H07240205 A JPH07240205 A JP H07240205A JP 6291805 A JP6291805 A JP 6291805A JP 29180594 A JP29180594 A JP 29180594A JP H07240205 A JPH07240205 A JP H07240205A
Authority
JP
Japan
Prior art keywords
mixture
fuel cell
anode
ysz
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6291805A
Other languages
English (en)
Inventor
Aristides Naoumidis
アリスティデス・ナオウミディス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of JPH07240205A publication Critical patent/JPH07240205A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

(57)【要約】 【目的】 固体を用いた燃料電池(SOFC)または塩
溶融電極を用いた燃料電池(MCFC) 【構成】 この電池のアノードが炭化タングステンとイ
オン電導性酸化物、例えばイットリウムで完全安定化し
た酸化ジルコニウム(YSZ)とより成る固体混合物よ
り成るかまたはアルカリ土類金属の微量成分含有のセラ
ートまたはトラート(Thorat)より成る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、固体電解質を有する燃
料電池(SOFC)または塩溶融電解質を有している燃
料電池(MCFC)に関する(SOFC=Solid
Oxide Fuel Cell;MCFC=Molt
ed Cabonate Fuel Cell)。更に
本発明はアノードの製造方法にも関する。
【0002】
【従来技術】固体電解質を有している高温燃料電池(S
OFC)は、運転している間に、適合した時間にわたっ
て全ての機能部分に高い信頼度が要求されている。これ
を達成するために、色々な大きさのシステムが目下世界
的に探究されている。この場合、色々に変えられたいわ
る古典的材料が使用される。
【0003】これらには以下のものがある: − 電解質としての、イットリウム(8%)で完全に安
定化された酸化ジルコニウム(YSZ) − 空中電極としての、ストロンチウムを微量含有する
灰チタン石、ランタン−亜マンガン酸塩 − 燃料電極としての、金属ニッケルとYSZとの混合
物より成るCERMET − 内部コネクターとしての、金属製(Crベースの合
金)またはセラミック製(ランタン−亜クロム酸塩より
成る微量混入物含有灰チタン石)板状物 この系の重大な問題の一つは、燃料電極、即ちアノード
にある。金属とセラミックとの間の界面の熱力学的不安
定さのために、リストラクチャリングの為に、アノード
の金属は電気化学的活性の喪失および電極の電導性の破
壊という結果を伴う傾向がある。これらの効果は、種々
の石炭生成物のガス化からのガス状燃料を用いる場合
に、不純物、例えば硫黄または硫黄化合物がニッケルを
汚す場合に特に顕著である。更に金属のNiが、メタン
−水蒸気−混合物の密封系リホーミングの場合に強過ぎ
る触媒作用を示し、その際に電極が三相境界に炭素が析
出することによって毒され得る。NiをPdまたはCo
に部分的にまたは全体的に交換することによってリホー
ミングの際の高い触媒作用を低下させるという提案が既
に確かめられている。しかしながらこの系を用いたので
はCERMETの界面の不安定さの問題が解消できな
い。
【0004】
【発明の構成】この問題の本発明の解決法は、冒頭に記
載の燃料電池において、アノードが炭化タングステンと
イオン電導性酸化物、例えばイットリウムで完全安定化
した酸化ジルコニウム(YSZ)とより成る固体混合物
より成るかまたは微量成分含有の、アルカリ土類金属の
セラートまたはトラート(Thorat)より成ること
を特徴とする、上記燃料電池にある。
【0005】従って本発明のアノードの場合には金属ニ
ッケルは炭化タングステンに交換される。このアノード
は従来に見られた、CERMET−アノードの欠点を避
けている。
【0006】この場合、アノードの固形混合物は有利に
は30〜80容量% の炭化タングステンを含有してい
る。アノードを製造する本発明の方法は、固体混合物を
形成するために、YSZ−粉末とWO3 または、熱分解
によりWO3 を生じるタングステン化合物との混合物を
製造し、そしてこの混合物を次に600〜1000℃の
温度範囲においてCO/CO2 −雰囲気でYSZ−WC
−混合物に転化することを本質としている。この場合、
タングステン化合物としてはタングステン酸またはタン
グステン酸アンモニウムを使用しそして粉末混合物は場
合によってはペーストとしてスクリーン印刷によって電
解質表面に塗布する。
【0007】WCを色々なやり方でYSZと混合し、そ
して公知の方法で電解質の表面に、然もSOFCのアノ
ード側に塗布する。この半電極の極性電圧を測定する電
気化学的試験で、これらの系が白金電極と同様な挙動を
示すことが判る。
【0008】この系の長時間安定性を測定する別の実験
で、固体混合物をH2 −雰囲気において1100℃で1
000時間以上保存した後に組織に変化がないこと──
即ち、一つの相または他の相の凝集が生じないことが判
った。この混合物をH2 S含有水素雰囲気で1000℃
で350時間にわたる短い実験でも同様に、確認可能な
組織変化が生じない。
【0009】第1図にはSOFCの本発明のアノードの
ための粉末の製法がそして第2図にはSOFCのアノー
ドの製法がフローシートとして図示している。
【0010】図1に記載の噴霧乾燥は、タングステン酸
アンモニウム並びにタングステン酸のゲルでも、既に出
発材料を分解する際に良好な粉末形態をもたらす。
【図面の簡単な説明】
【図1】この図はSOFCの本発明のアノードのための
粉末の製法のフローシートである。
【図2】この図はSOFCのアノードの製法のフローシ
ートである。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 固体電解質含有燃料電池(SOFC)ま
    たは塩溶融電解質含有燃料電池(MCFC)において、
    アノードが炭化タングステンとイオン電導性酸化物、例
    えばイットリウムで完全安定化した酸化ジルコニウム
    (YSZ)とより成る固体混合物より成るかまたはアル
    カリ土類金属の微量成分含有のセラートまたはトラート
    (Thorat)より成ることを特徴とする、上記燃料
    電池。
  2. 【請求項2】 アノードの固体混合物が30〜80容量
    % のWCを含有する、請求項1に記載の燃料電池。
  3. 【請求項3】 請求項1に記載のアノードを製造する方
    法において、固体混合物を生じるために、YSZ−粉末
    とWO3 または、熱分解によりWO3 を生じるタングス
    テン化合物との混合物を製造し、そしてこの混合物を次
    に600〜1000℃の温度範囲においてCO/CO2
    −雰囲気でYSZ−WC−混合物に転化することを特徴
    とする、上記方法。
  4. 【請求項4】 タングステン化合物としてタングステン
    酸またはタングステン酸アンモニウムを使用しそして粉
    末混合物を電解質表面に塗布する、請求項3に記載の方
    法。
  5. 【請求項5】 ペーストとしての粉末混合物をスクリー
    ン印刷によって塗布する請求項4に記載の方法。
JP6291805A 1993-11-27 1994-11-25 燃料電池およびアノードの製造方法 Withdrawn JPH07240205A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4340486:3 1993-11-27
DE4340486A DE4340486C1 (de) 1993-11-27 1993-11-27 Brennstoffzelle und Verfahren zur Herstellung der Brennstoffzelle

Publications (1)

Publication Number Publication Date
JPH07240205A true JPH07240205A (ja) 1995-09-12

Family

ID=6503620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6291805A Withdrawn JPH07240205A (ja) 1993-11-27 1994-11-25 燃料電池およびアノードの製造方法

Country Status (5)

Country Link
US (1) US5470672A (ja)
EP (1) EP0655795A3 (ja)
JP (1) JPH07240205A (ja)
CA (1) CA2136680A1 (ja)
DE (1) DE4340486C1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19543759C1 (de) * 1995-11-24 1997-03-20 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung eines Katalysators für die Reformierungsreaktion
DE19547700C2 (de) * 1995-12-20 1998-09-17 Forschungszentrum Juelich Gmbh Elektrodensubstrat für eine Brennstoffzelle
US6099985A (en) * 1997-07-03 2000-08-08 Gas Research Institute SOFC anode for enhanced performance stability and method for manufacturing same
US6383682B1 (en) * 2000-04-07 2002-05-07 Telcordia Technologies, Inc. Yttrium-ion rechargeable battery cells
US20040076868A1 (en) * 2002-10-18 2004-04-22 Peter Mardilovich Fuel cell and method for forming
RU2361329C2 (ru) * 2004-05-19 2009-07-10 Сри Интернэшнл Электрохимический элемент с жидким анодом
US7297435B2 (en) * 2005-03-10 2007-11-20 Ovonic Fuel Cell Company, Llc Solid oxide fuel cell
US20080032174A1 (en) * 2005-11-21 2008-02-07 Relion, Inc. Proton exchange membrane fuel cells and electrodes
US7833645B2 (en) 2005-11-21 2010-11-16 Relion, Inc. Proton exchange membrane fuel cell and method of forming a fuel cell
US8026020B2 (en) 2007-05-08 2011-09-27 Relion, Inc. Proton exchange membrane fuel cell stack and fuel cell stack module
US9293778B2 (en) * 2007-06-11 2016-03-22 Emergent Power Inc. Proton exchange membrane fuel cell
US8003274B2 (en) 2007-10-25 2011-08-23 Relion, Inc. Direct liquid fuel cell

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT47254B (de) * 1910-01-16 1911-04-10 Heinrich Max Olbricht Wasserrohrkessel.
US3481787A (en) * 1964-06-11 1969-12-02 Engelhard Ind Inc Fuel cell comprising a raney catalyst alloy consisting of platinum and a member selected from the group consisting of zirconium,tungsten and rhenium
US3502506A (en) * 1966-12-29 1970-03-24 Exxon Research Engineering Co Electrochemical cell with tungsten bronze catalyst on anode
DE2027482A1 (de) * 1970-06-04 1971-12-16 Battelle Institut E V Verfahren zur Erhöhung der Aktivität von porösen Brennstoffzellenelektroden
JPS5760752B2 (ja) * 1974-06-24 1982-12-21 Matsushita Electric Ind Co Ltd
US3977901A (en) * 1974-10-23 1976-08-31 Westinghouse Electric Corporation Metal/air cells and improved air electrodes for use therein
JPS601827B2 (ja) * 1980-03-31 1985-01-17 工業技術院長 Mhd発電機用材料
US4511636A (en) * 1983-11-07 1985-04-16 The United States Of America As Represented By The United States Department Of Energy Molten carbonate fuel cell matrices
US4661423A (en) * 1984-02-01 1987-04-28 Tokyo Shibaura Denki Kabushiki Kaisha Fuel cell electrolyte matrix and method for manufacturing the same
US4925745A (en) * 1985-03-29 1990-05-15 Institute Of Gas Technoloy Sulfur tolerant molten carbonate fuel cell anode and process
DD243800A1 (de) * 1985-11-18 1987-03-11 Akad Wissenschaften Ddr Wc-elektrode fuer elektrochemische zellen
JPS6366861A (ja) * 1986-09-05 1988-03-25 Kawasaki Heavy Ind Ltd 溶融炭酸塩燃料電池
JPS6391959A (ja) * 1986-10-03 1988-04-22 Hitachi Ltd 電極触媒材料およびその製造方法
US4937152A (en) * 1988-09-26 1990-06-26 Nkk Corporation Fuel cell
JP2528989B2 (ja) * 1990-02-15 1996-08-28 日本碍子株式会社 固体電解質型燃料電池
JPH04118861A (ja) * 1990-09-10 1992-04-20 Fuji Electric Co Ltd 固体電解質型燃料電池およびその製造方法
JPH0668881A (ja) * 1992-08-13 1994-03-11 Matsushita Electric Ind Co Ltd 溶融炭酸塩型燃料電池
US5306579A (en) * 1992-10-30 1994-04-26 Aer Energy Resources, Inc. Bifunctional metal-air electrode

Also Published As

Publication number Publication date
US5470672A (en) 1995-11-28
EP0655795A3 (de) 1996-11-13
EP0655795A2 (de) 1995-05-31
DE4340486C1 (de) 1995-06-01
CA2136680A1 (en) 1995-05-28

Similar Documents

Publication Publication Date Title
CA1292274C (en) Cermet electrode
JPH07240205A (ja) 燃料電池およびアノードの製造方法
EP0448517B1 (en) Carbonate fuel cell anodes
EP0126511B1 (en) Porous electrode
JPH11219710A (ja) 固体電解質型燃料電池の電極およびその製造方法
JPH0737591A (ja) 溶融炭酸塩型燃料電池カソードとその溶解抑制方法
Liu et al. The electrochemical performance of LSM with A-site non-stoichiometry under cathodic polarization
JP2514748B2 (ja) 溶融炭酸塩燃料電池の始動法
Swette et al. Oxygen electrodes for rechargeable alkaline fuel cells. III
JP2947495B2 (ja) 固体電解質型燃料電池の燃料電極作製法
JP7426066B2 (ja) アンモニア電解合成用電解質-電極接合体
JP2000348736A (ja) 固体電解質燃料電池
JPH03141555A (ja) 溶融炭酸塩燃料電池用燃料極の製法
JPH07249412A (ja) 電気化学セル
US3507701A (en) Process of using fuel cell including tungsten oxide catalyst
US3269867A (en) Fuel cell
Beyribey et al. Electrochemical behaviour and sulfur tolerance of VxMo (1− x) Oy as solid oxide fuel cell anode
JP7561418B2 (ja) 電気化学システム及び電気化学システムの酸素極の製造方法
JPH03105867A (ja) 溶融炭酸塩燃料電池
JPS6366861A (ja) 溶融炭酸塩燃料電池
JPH0440832B2 (ja)
JPH10247498A (ja) 燃料極材料
Barbi et al. A parameter for defining the energetic efficiency of the cathodic process at high temperature, high current density electrolysis of steam
JPS6366856A (ja) 溶融塩燃料電池用の電極
JP2520281B2 (ja) 溶融炭酸塩型燃料電池の電解質板

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205