JPH07235315A - Cylindrical solid electrolyte fuel cell - Google Patents

Cylindrical solid electrolyte fuel cell

Info

Publication number
JPH07235315A
JPH07235315A JP6049670A JP4967094A JPH07235315A JP H07235315 A JPH07235315 A JP H07235315A JP 6049670 A JP6049670 A JP 6049670A JP 4967094 A JP4967094 A JP 4967094A JP H07235315 A JPH07235315 A JP H07235315A
Authority
JP
Japan
Prior art keywords
fuel electrode
current collecting
parts
solid electrolyte
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6049670A
Other languages
Japanese (ja)
Other versions
JP3688305B2 (en
Inventor
Takenori Nakajima
武憲 中島
Masakatsu Nagata
雅克 永田
Tsutomu Iwazawa
力 岩沢
Satoru Yamaoka
悟 山岡
Mikiyuki Ono
幹幸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP04967094A priority Critical patent/JP3688305B2/en
Publication of JPH07235315A publication Critical patent/JPH07235315A/en
Application granted granted Critical
Publication of JP3688305B2 publication Critical patent/JP3688305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce current collecting resistance, simplify structure, and reduce cost by performing the improvement by inclining a support tube, a fuel electrode and a part of a current collecting lead. CONSTITUTION:When cells 20a and 20b are put in a high temperature atmosphere of 1000 deg.C when a fuel cell 1 is actuated, current collecting parts 13, fuel electrodes 11 and insulating parts 12 different in materials of a fuel electrode tube 10 are heated. In joining places of the current collecting parts 13 of nickel and the insulating parts 12 of zirconia, though thermal expansions are different from each other, the same kind joining as a part of inclined parts 14a between both is performed. Thereby, the joining sides of both cause the same thermal expansion as a part of the inclined parts 14a, and do not separate from each other due to thermal fitting. The inclined parts 14a and 14e on both left and right ends abundantly contain metallic nickel in a current collecting part side boundary. Since left and right current collecting parts 13 are metallic nickel and are comparatively thickly formed as a constitutive element of the fuel electrode tube 10, resistance is very small. Since a voltage loss becomes very small by the inclined parts 14a and 14b and the current collecting parts 13, an electric current can be efficiently collected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、円筒横縞形の固体電
解質燃料電池(SOFC)に関し、特に集電手段と支持
手段とを兼ねた燃料電極管の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical horizontal stripe type solid oxide fuel cell (SOFC), and more particularly to a structure of a fuel electrode tube which also serves as a current collecting means and a supporting means.

【0002】[0002]

【従来の技術】固体電解質型の燃料電池は、固体イオン
導電体としてのセラミックスのジルコニアにイットリア
を固溶した安定化ジルコニア(YSZ)が電解質に使用
され、この電解質層を挟んで燃料電極と空気電極とを形
成したものである。この安定化ジルコニアは、1000
℃の高温になると酸素イオンの透過性が高くなり、電子
導電性がほとんど無く、酸素や水素のガスを透過しない
等の特性を有することから、この特性を電解質に利用し
ている。この場合に、イオン透過性が高いとは言え他の
方式と比較すると低いため、固体電解質が極めて薄い膜
状に生成される。こうして構成要素の全てが固体になる
ため、電池構造が簡素化し、高温で作動するため電極反
応が非常に活発で効率が良くなり、触媒等も不要になる
等の利点を有する。
2. Description of the Related Art In a solid electrolyte fuel cell, stabilized zirconia (YSZ), which is a solid solution of yttria in ceramic zirconia as a solid ionic conductor, is used as an electrolyte. The electrolyte layer is sandwiched between the fuel electrode and the air. And an electrode. This stabilized zirconia is 1000
At high temperatures of ° C, oxygen ions have high permeability, have almost no electronic conductivity, and do not permeate oxygen or hydrogen gas. Therefore, this property is used for the electrolyte. In this case, although the ion permeability is high compared with other methods, the solid electrolyte is formed in an extremely thin film. In this way, all of the constituent elements are solid, so that the battery structure is simplified, the electrode reaction is very active and the efficiency is improved because it operates at high temperature, and there is an advantage that a catalyst or the like is unnecessary.

【0003】一方、固体電解質が1000℃の高温で作
動するため、空気電極と燃料電極も必然的にその高温雰
囲気となり、高温加熱、強い酸化や還元反応、熱膨張等
の影響を受ける。そこで空気電極は、酸素の高温雰囲気
で化学的に安定であり、更に電子導電性が高く、酸素ガ
スの透過性が良く、電解質との熱膨張の整合が良いこと
が要求され、このような条件を満たす材料として例えば
ペロブスカイト形ランタン系複合酸化物を使用して薄い
多孔質膜に形成されている。燃料電極は、電子導電性や
電解質との熱膨張の整合が良く、水素との燃焼反応や反
応物の除去等が良いことが要求され、このため例えば金
属のニッケルとジルコニアとの混合物のサーメットを使
用して薄い多孔質膜に形成されている。また複数個のセ
ルを接続するインターコネクターも、高温雰囲気で安定
で導電性の良いセラミックスが使用されている。
On the other hand, since the solid electrolyte operates at a high temperature of 1000 ° C., the air electrode and the fuel electrode inevitably become the high temperature atmosphere, and are affected by high temperature heating, strong oxidation and reduction reaction, thermal expansion and the like. Therefore, the air electrode is required to be chemically stable in a high temperature atmosphere of oxygen, have high electronic conductivity, have good oxygen gas permeability, and have good thermal expansion matching with the electrolyte. For example, a perovskite-type lanthanum-based composite oxide is used as a material satisfying the above conditions to form a thin porous film. The fuel electrode is required to have good electron conductivity and thermal expansion matching with the electrolyte, and to have good combustion reaction with hydrogen and removal of reactants. Therefore, for example, a cermet of a mixture of metallic nickel and zirconia is used. It is formed into a thin porous membrane. Also, as the interconnector for connecting a plurality of cells, ceramics that are stable and have good conductivity in a high temperature atmosphere are used.

【0004】これらセラミックスの固体電解質、2つの
電極等で実際にセルをを構成する場合は、例えば機械的
に支持する多孔絶縁性の支持体を使用し、その支持体の
上に各種の薄膜を多層に積層形成して、三層一体化膜に
構成される。この薄膜形成の場合には、各膜に要求され
る異なった条件を満たすため、各種溶射法、スラリ法等
が用いられている。また平板形にした場合は端部でのガ
スシールの問題があるため、円筒形構造にすることが多
い。
When a cell is actually constituted by these ceramic solid electrolytes, two electrodes, etc., for example, a mechanically supporting porous insulating support is used, and various thin films are formed on the support. It is laminated in multiple layers to form a three-layer integrated film. In the case of forming this thin film, various spraying methods, slurry methods and the like are used in order to satisfy different conditions required for each film. Further, in the case of the flat plate shape, there is a problem of gas sealing at the end portion, and therefore, a cylindrical structure is often used.

【0005】従来、円筒横縞形の固体電解質燃料電池
は、例えば図3のように構成されている。即ち、燃料電
池1はアルミナやジルコニアを使用した多孔絶縁性の筒
状支持管2を有し、この支持管2の上に例えば3つのセ
ル3a〜3cが直列配置されている。即ち、支持管2の
上の最も内側に燃料電極4が、ニッケルとジルコニアの
サーメットの多孔質膜で断続的に形成され、この燃料電
極4の外周側と燃料電極4同士との間に安定化ジルコニ
アの固体電解質5が、絶縁体を兼ねて階段状に形成され
ている。またインターコネクター6が、燃料電極4の外
周側から固体電解質5の側に形成され、固体電解質5と
インターコネクター6とに跨がって空気電極7が、複合
酸化物の多孔質膜で形成されている。こうしてセル3a
〜3cは、支持管2で支持して三層一体化膜に構成さ
れ、セル3a〜3c同士が固体電解質5で絶縁され、且
つインターコネクター6により電子を通すと共に直列接
続されている。
Conventionally, a cylindrical horizontal stripe type solid electrolyte fuel cell is constructed, for example, as shown in FIG. That is, the fuel cell 1 has a porous insulating tubular support tube 2 made of alumina or zirconia, and three cells 3a to 3c are arranged in series on the support tube 2, for example. That is, the fuel electrode 4 is intermittently formed of a cermet porous film of nickel and zirconia on the innermost side of the support tube 2 and is stabilized between the outer peripheral side of the fuel electrode 4 and the fuel electrodes 4. The solid electrolyte 5 made of zirconia is formed in a step shape also as an insulator. Further, an interconnector 6 is formed from the outer peripheral side of the fuel electrode 4 to the solid electrolyte 5 side, and an air electrode 7 is formed of a porous film of a composite oxide across the solid electrolyte 5 and the interconnector 6. ing. Thus cell 3a
3c are supported by the support tube 2 to form a three-layer integrated film, cells 3a to 3c are insulated from each other by the solid electrolyte 5, and electrons are passed by the interconnector 6 and connected in series.

【0006】一方、支持管2のセル3a,3cから外れ
た左右両側の箇所に集電リード8a,8bが薄膜で形成
されている。これら集電リード8a,8bは支持管2と
の熱膨張を整合するため、ニッケル等の金属、またはニ
ッケルとジルコニアのサーメットが使用されている。そ
して図の右側の正極側集電リード8aはインターコネク
ター6を介して右側のセル3aの空気電極7に接続さ
れ、左側の負極側集電リード8bは左側のセル3cの燃
料電極4に接続されている。また集電リード8a,8b
等の外周側はガスシール層9で被覆され、こうして燃料
電池1が全体として細い筒状で3つのセル3a〜3cを
横縞模様に配置した構造となっている。
On the other hand, current collecting leads 8a and 8b are formed of a thin film on the left and right sides of the support tube 2 which are separated from the cells 3a and 3c. In order to match the thermal expansion of the current collecting leads 8a and 8b with the support tube 2, a metal such as nickel or a cermet of nickel and zirconia is used. The positive electrode side current collecting lead 8a on the right side of the drawing is connected to the air electrode 7 of the right side cell 3a via the interconnector 6, and the negative electrode side current collecting lead 8b on the left side is connected to the fuel electrode 4 of the left side cell 3c. ing. In addition, current collecting leads 8a, 8b
The outer peripheral side of the above is covered with a gas seal layer 9, and thus the fuel cell 1 has a structure of a thin tubular shape as a whole in which three cells 3a to 3c are arranged in a horizontal stripe pattern.

【0007】そこで燃料電池1の作動時には、セル3a
〜3cを1000℃の高温雰囲気にして支持管2の内部
に燃料の水素等を、周囲に空気中の酸素を連続的に供給
する。すると空気電極7では酸素が外部回路を流れる電
子と反応してイオン化され、この酸素イオンが固体電解
質5を通って燃料電極4に達する。そして燃料電極4で
はその酸素イオンが水素と結合して電子と水とを生じる
のであり、このような電気化学反応により電気を発生す
る。この場合に、3つのセル3a〜3cが直列接続され
ることで、3つのセル3a〜3cの電圧を加算した合計
電圧が、左右の集電リード8a,8bで集電して外に取
り出される。
Therefore, when the fuel cell 1 is in operation, the cell 3a
˜3c is set to a high temperature atmosphere of 1000 ° C. to continuously supply hydrogen as a fuel into the support tube 2 and oxygen in the air to the surroundings. Then, in the air electrode 7, oxygen reacts with the electrons flowing in the external circuit and is ionized, and the oxygen ions reach the fuel electrode 4 through the solid electrolyte 5. At the fuel electrode 4, the oxygen ions combine with hydrogen to generate electrons and water, and electricity is generated by such an electrochemical reaction. In this case, since the three cells 3a to 3c are connected in series, the total voltage obtained by adding the voltages of the three cells 3a to 3c is collected by the left and right current collecting leads 8a and 8b and taken out. .

【0008】[0008]

【発明が解決しようとする課題】ところで、上記従来技
術のものにあっては、集電リード8a,8bが薄膜で長
く形成されている。このため集電リード8a,8bの部
分の抵抗が大きくなって、電圧損失が大きい等の問題が
ある。
By the way, in the above-mentioned prior art, the current collecting leads 8a, 8b are formed of a thin film and are long. Therefore, there is a problem that the resistance of the current collecting leads 8a and 8b is increased and the voltage loss is large.

【0009】この発明は、このような点に鑑み、支持
管、燃料電極及び集電リードの部分の構成を改善して、
集電抵抗を低減し且つ構造を簡素化することを目的とす
るものである。
In view of the above, the present invention improves the structure of the support tube, the fuel electrode and the current collecting lead,
The purpose is to reduce current collecting resistance and simplify the structure.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
この発明は、材料の異なる集電部、絶縁部及び燃料電極
が同一径の筒状に形成されて軸方向一直線上に配置さ
れ、燃料電極と同心円上に固体電解質および空気電極が
薄膜多層に形成されてセルが構成され、その燃料電極が
軸線方向での一端側の集電部に接続され、かつ空気電極
が軸線方向での他端側の集電部に接続された円筒形固体
電解質燃料電池であって、材料の異なる集電部、絶縁部
及び燃料電極の相互の中間部分に、該中間部分の両側に
位置する部分の材料を混合し且つその配合割合を軸方向
に傾斜化した傾斜部を設け、この傾斜部を介し集電部、
絶縁部及び燃料電極を順次接合して、集電手段と支持手
段とを兼ねた燃料電極管を形成したことを特徴とするも
のである。
To achieve this object, the present invention is directed to a fuel collecting part, an insulating part, and a fuel electrode, which are made of different materials, which are formed in a cylindrical shape having the same diameter and are arranged in a straight line in the axial direction. A solid electrolyte and an air electrode are formed in a thin film multilayer on a concentric circle with the electrode to form a cell, and the fuel electrode is connected to a current collector on one end side in the axial direction, and the air electrode is the other end in the axial direction. A cylindrical solid oxide fuel cell connected to the current collector of the side, the intermediate part of the current collector, the insulating part and the fuel electrode of different materials, the material of the parts located on both sides of the intermediate part. An inclined portion is provided which is mixed and whose mixing ratio is inclined in the axial direction, and a current collecting portion is provided via this inclined portion.
It is characterized in that the insulating portion and the fuel electrode are sequentially joined to form a fuel electrode tube which also serves as a current collecting means and a supporting means.

【0011】またこの発明では、燃料電極は傾斜部を介
して前記集電部に接続し、空気電極はインターコネクタ
ーと傾斜部とを介して前記集電部に接続することができ
る。
Further, according to the present invention, the fuel electrode can be connected to the current collector through the inclined portion, and the air electrode can be connected to the current collector through the interconnector and the inclined portion.

【0012】さらにこの発明では、集電部は金属のニッ
ケルで形成し、絶縁部はジルコニアで形成し、燃料電極
はニッケルとジルコニアのサーメットで形成することが
できる。
Further, in the present invention, the current collecting portion may be formed of nickel metal, the insulating portion may be formed of zirconia, and the fuel electrode may be formed of cermet of nickel and zirconia.

【0013】[0013]

【作用】上記構成によるこの発明では、燃料電極管が傾
斜機能を有する傾斜部を介して集電部、絶縁部及び燃料
電極を順次接合して形成されることで、例えば集電部が
金属のニッケル、絶縁部がジルコニア、燃料電極がニッ
ケルとジルコニアのサーメットを使用する場合に、これ
ら構成要素のいずれも傾斜部により同種接合した状態に
なる。
In the present invention having the above-described structure, the fuel electrode tube is formed by sequentially joining the current collecting portion, the insulating portion, and the fuel electrode through the inclined portion having the inclination function. When nickel, zirconia is used for the insulating part, and nickel and zirconia cermet is used for the fuel electrode, all of these components are in the state of being joined together by the inclined part.

【0014】このため1000℃の高温雰囲気で作動す
る際に、燃料電極管は材料の異なる集電部、絶縁体部及
び燃料電極のいずれの接合箇所も、傾斜部との同種接合
の熱膨張により熱的に整合して大きい接着強度が確保さ
れ、機械的に強く一体結合して保持される。このため燃
料電極管でセルを確実に支持することが可能になって、
支持管等が不要になる。またセルで発生した電気は、燃
料電極管の傾斜部のニッケルを多く含む部分とニッケル
の集電部で集電されて、電圧損失が大幅に低減される。
Therefore, when the fuel electrode tube is operated in a high temperature atmosphere of 1000 ° C., the fuel electrode tube is joined to the inclined portion by the thermal expansion of the same kind of joint between the collector portion, the insulator portion and the fuel electrode which are made of different materials. It is thermally aligned to ensure a high adhesive strength, and is mechanically strong and integrally held. Therefore, it becomes possible to securely support the cell with the fuel electrode tube,
Supporting tubes are unnecessary. Further, the electricity generated in the cell is collected by the nickel-rich portion of the inclined portion of the fuel electrode tube and the nickel current collector, and the voltage loss is greatly reduced.

【0015】[0015]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1において、円筒横縞形の固体電解質燃料電
池の全体の構成について説明する。符号1は固体電解質
燃料電池であり、比較的厚い筒状の燃料電極管10を有
し、この燃料電極管10に例えば2つのセル20a,2
0bが直列配置される。この燃料電極管10は、集電部
13として導電性の良い金属のニッケルが使用され、絶
縁部12として絶縁性の良いジルコニアが使用され、多
孔質膜の燃料電極11としてニッケルとジルコニアのサ
ーメットが使用される。これら材料の異なる集電部1
3、絶縁部12及び燃料電極11が同一径の筒状に形成
されて、図1のように軸方向一直線上に配置され、集電
と支持を兼ねることが可能になっている。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, the overall configuration of a cylindrical horizontal stripe solid oxide fuel cell will be described. Reference numeral 1 denotes a solid electrolyte fuel cell, which has a relatively thick tubular fuel electrode tube 10, and for example, two cells 20a, 2 are provided in this fuel electrode tube 10.
0b are arranged in series. In this fuel electrode tube 10, nickel, which is a metal having good conductivity, is used as the current collecting portion 13, zirconia having good insulating properties is used as the insulating portion 12, and cermet of nickel and zirconia is used as the fuel electrode 11 of the porous membrane. used. Current collector 1 made of different materials
3, the insulating portion 12 and the fuel electrode 11 are formed in a cylindrical shape having the same diameter and are arranged on a straight line in the axial direction as shown in FIG. 1, so that they can serve both as a collector and a support.

【0016】ここで材料の異なる集電部13、絶縁部1
2及び燃料電極11を単に接合しただけでは、異種材料
の接合となる。このため1000℃の高温雰囲気では、
接合箇所で熱膨張の相違により熱的不整合となって剥離
等を生じる。そこでこの高温雰囲気中での燃料電極管1
0の異種材料の接合箇所で、熱的に整合して機械的特性
を強化するため、2個づつの集電部13、絶縁部12及
び燃料電極11が接合する5箇所に、それぞれ第1ない
し第5の傾斜部14a〜14eが介設されている。
Here, the current collecting portion 13 and the insulating portion 1 made of different materials are used.
Simply joining 2 and the fuel electrode 11 results in joining different materials. Therefore, in a high temperature atmosphere of 1000 ° C,
Due to the difference in thermal expansion at the joint, thermal mismatch occurs and peeling occurs. Therefore, the fuel electrode tube 1 in this high temperature atmosphere
In order to strengthen the mechanical properties by thermally matching at the joints of different materials of 0, the first to the 5th joints of the two current collecting portions 13, the insulating portions 12 and the fuel electrodes 11 are formed respectively. Fifth inclined portions 14a to 14e are provided.

【0017】図の最も右側の第1の傾斜部14aは、ジ
ルコニアの絶縁部12とニッケルの集電部13の接合箇
所であるから、両者のジルコニアとニッケルの材料が混
合される。そしてこれら材料の配合割合が、図2のよう
に集電部側境界ではニッケルが略100%で集電部13
と同種接合し、絶縁部側境界ではジルコニアが略100
%で絶縁部12と同種接合するように軸方向に変化して
傾斜化されている。第2の傾斜部14bは、ニッケルと
ジルコニアのサーメットの燃料電極11とジルコニアの
絶縁部12の接合箇所であるから、ニッケルとジルコニ
アが混合され、その配合割合が同図のように、絶縁部側
境界ではジルコニアが略100%、燃料電極側境界では
サーメットと同一の配合割合に傾斜化されている。
The first sloping portion 14a on the rightmost side of the drawing is a joint portion of the insulating portion 12 of zirconia and the current collecting portion 13 of nickel, so that both zirconia and nickel materials are mixed. As shown in FIG. 2, the mixing ratio of these materials is about 100% nickel at the boundary of the current collecting portion side, and the current collecting portion 13
The same type of zirconia is bonded at the boundary of the insulating part.
%, It changes in the axial direction and is inclined so as to join the insulating portion 12 with the same kind. Since the second inclined portion 14b is a joint portion between the fuel electrode 11 of the cermet of nickel and zirconia and the insulating portion 12 of zirconia, nickel and zirconia are mixed, and the mixing ratio thereof is as shown in the figure. At the boundary, zirconia is approximately 100%, and at the boundary on the fuel electrode side, the composition ratio is the same as that of cermet.

【0018】第3と第4の傾斜部14c,14dは、第
2の傾斜部14bと同様に傾斜化される。最も左側の第
5の傾斜部14eは、ニッケルの集電部13とサーメッ
トの燃料電極11の接合箇所であるから、ニッケルとジ
ルコニアが混合され、その配合割合が燃料電極側境界で
はサーメットと同一の配合割合に、集電部側境界ではニ
ッケルが略100%に傾斜化されている。これら傾斜部
14a〜14eの傾斜機能は、例えば溶射法を使用する
と、傾斜部成形時の材料供給の際にその配合割合を制御
することで、軸方向の配合割合を任意に変化させて傾斜
化することができる。
The third and fourth inclined portions 14c and 14d are inclined similarly to the second inclined portion 14b. Since the leftmost fifth inclined portion 14e is the joint between the nickel current collector 13 and the cermet fuel electrode 11, nickel and zirconia are mixed, and the mixing ratio is the same as that of cermet at the fuel electrode side boundary. In the blending ratio, nickel is graded to about 100% at the boundary on the current collector side. The tilting function of these tilted portions 14a to 14e is, for example, when a thermal spraying method is used, by controlling the blending ratio at the time of material supply at the time of molding the tilted portion, the blending ratio in the axial direction can be arbitrarily changed to make the tilt. can do.

【0019】こうして燃料電極管10の材料の異なる集
電部13、絶縁部12及び燃料電極11が、いずれも傾
斜部14a〜14eにより、図2のように同種材料の接
合状態で順次一直線上に接合して一体化される。また全
ての傾斜部14a〜14eでは金属のニッケルが含まれ
ることで、導電性が良好になり、このため傾斜部14a
〜14eを電気回路に用いることが可能になる。
In this way, the current collecting portion 13, the insulating portion 12 and the fuel electrode 11 which are made of different materials of the fuel electrode tube 10 are all aligned in a straight line by the inclined portions 14a to 14e in the joined state of the same material as shown in FIG. Joined and integrated. Further, since the metallic nickel is contained in all the inclined portions 14a to 14e, the conductivity is improved, and therefore the inclined portion 14a is formed.
It becomes possible to use ~ 14e in an electric circuit.

【0020】続いて、セル20a,20bの構成につい
て説明する。第1のセル20aは、燃料電極11と傾斜
部14bとの外周側に安定化ジルコニアからなる固体電
解質21が形成されている。また傾斜部14aと絶縁部
12との外周側に、高温雰囲気で安定で導電性の良いセ
ラミックスのインターコネクター23が形成されてい
る。そして固体電解質21とインターコネクター23と
に跨がってこれらの外周側に複合酸化物からなる多孔質
膜の空気電極22が形成されて、実質的に三層一体化膜
に構成されている。また第2のセル20bは、燃料電極
11と傾斜部14dとの外周側に同一の固体電解質21
が形成され、傾斜部14cと絶縁部12との外周側に同
一のインターコネクター23が形成されている。そして
固体電解質21とインターコネクター23とに跨がって
これらの外周側に同一の空気電極22が形成されて、三
層一体化膜に構成されている。更に、左右両端のニッケ
ルの集電部13の外周側はガスシール層24によって被
覆されている。
Next, the structure of the cells 20a and 20b will be described. In the first cell 20a, a solid electrolyte 21 made of stabilized zirconia is formed on the outer peripheral side of the fuel electrode 11 and the inclined portion 14b. Further, a ceramic interconnector 23 which is stable and has good conductivity in a high temperature atmosphere is formed on the outer peripheral side of the inclined portion 14a and the insulating portion 12. Further, a porous membrane air electrode 22 made of a complex oxide is formed on the outer peripheral side of the solid electrolyte 21 and the interconnector 23 to substantially form a three-layer integrated membrane. Further, the second cell 20b has the same solid electrolyte 21 on the outer peripheral side of the fuel electrode 11 and the inclined portion 14d.
The same interconnector 23 is formed on the outer peripheral side of the inclined portion 14c and the insulating portion 12. The same air electrode 22 is formed on the outer peripheral side of the solid electrolyte 21 and the interconnector 23 to form a three-layer integrated film. Further, the outer peripheral sides of the nickel current collectors 13 at the left and right ends are covered with a gas seal layer 24.

【0021】こうして2つのセル20a,20bは、燃
料電極管10の外周側にそれぞれ機械的に支持して設け
られている。そしてセル20a,20b同士が絶縁部1
2で絶縁され、インターコネクター23と第3の傾斜部
14cで直列接続されている。また第1のセル20aの
空気電極側がインターコネクター23と第1の傾斜部1
4aとにより右側の集電部13に接続され、第2のセル
20bの燃料電極側が第5の傾斜部14eにより左側の
集電部13に接続されている。そこで燃料電池1は、全
体として細い筒状で2つのセル20a,20bを横縞模
様に配置した構造となっている。
Thus, the two cells 20a and 20b are provided on the outer peripheral side of the fuel electrode tube 10 so as to be mechanically supported. The cells 20a and 20b are insulated from each other by the insulating part 1.
It is insulated by 2, and is connected in series by the interconnector 23 and the third inclined portion 14c. The air electrode side of the first cell 20a is connected to the interconnector 23 and the first inclined portion 1
4a is connected to the right side current collecting part 13, and the fuel electrode side of the second cell 20b is connected to the left side current collecting part 13 by the fifth inclined part 14e. Therefore, the fuel cell 1 has a structure in which two cells 20a and 20b are arranged in a horizontal stripe pattern in a thin tubular shape as a whole.

【0022】次に、この実施例の作用について説明す
る。先ず、燃料電池1の作動時にセル20a,20bを
1000℃の高温雰囲気すると、燃料電極管10の材料
の異なる集電部13、燃料電極11及び絶縁部12が高
温に加熱される。そこで例えばニッケルの集電部13と
ジルコニアの絶縁部12の接合箇所では、それ自体の熱
膨張が相違するが、集電部13と絶縁部12とのいずれ
も両者の間の傾斜部14aの一部と同種接合となってい
る。このため集電部13と絶縁部12との接合側は傾斜
部14aの一部と同一に熱膨張して熱的に整合し、この
ため上記高温雰囲気でも剥離等を生じることなく大きい
接着強度が確保される。
Next, the operation of this embodiment will be described. First, when the cells 20a and 20b are subjected to a high temperature atmosphere of 1000 ° C. during the operation of the fuel cell 1, the current collecting portion 13, the fuel electrode 11 and the insulating portion 12 made of different materials of the fuel electrode tube 10 are heated to a high temperature. Therefore, for example, the joint portion between the nickel current collector 13 and the zirconia insulating portion 12 has different thermal expansions, but both the current collector 13 and the insulating portion 12 have a sloped portion 14a between them. It is the same kind of joint as the department. Therefore, the joint side between the current collecting portion 13 and the insulating portion 12 is thermally expanded and thermally matched in the same manner as a part of the inclined portion 14a, and thus a large adhesive strength is achieved without peeling or the like even in the high temperature atmosphere. Reserved.

【0023】以下同様にして、他の集電部13、燃料電
極11及び絶縁部12の接合箇所でも、傾斜部14b〜
14eにより高温雰囲気で熱的に整合して、大きい接着
強度が確保される。そこで高温雰囲気中の燃料電極管1
0は、材料の異なる集電部13、燃料電極11及び絶縁
部12を強固に一体結合した状態に保持され、この燃料
電極管10により2つのセル20a,20bが確実に支
持される。
In the same manner, the sloped portions 14b to 14b are also formed at other joints of the current collector 13, the fuel electrode 11 and the insulator 12.
14e provides thermal bonding in a high temperature atmosphere and ensures a high adhesive strength. Therefore, the fuel electrode tube 1 in a high temperature atmosphere
No. 0 is held in a state where the current collector 13, the fuel electrode 11, and the insulating portion 12 made of different materials are firmly joined together, and the fuel electrode tube 10 reliably supports the two cells 20a, 20b.

【0024】続いて、燃料電極管10の内部に燃料の水
素等を、周囲に空気中の酸素を連続的に供給すると、絶
縁部12で絶縁された2つのセル20a,20bでそれ
ぞれ電気化学反応する。即ち、高温雰囲気の空気電極2
2では酸素が外部回路を流れる電子と活発に反応してイ
オン化され、このイオンが高温雰囲気の安定化ジルコニ
アの固体電解質21をその特性により通る。そして燃料
電極11では固体電解質21を通った酸素イオンが水素
と活発に結合し、電子と水とを生じるように燃焼反応し
て電気を発生する。このとき2つのセル20a,20b
で発生した電圧は、インターコネクター23と第3の傾
斜部14cの直列接続により加算され、この合計電圧が
インターコネクター23、左右両端の傾斜部14a,1
4eを介し集電部13で集電される。
Then, when hydrogen or the like of the fuel is continuously supplied to the inside of the fuel electrode tube 10 and oxygen in the air is continuously supplied to the surroundings, an electrochemical reaction is caused in each of the two cells 20a and 20b insulated by the insulating portion 12. To do. That is, the air electrode 2 in a high temperature atmosphere
In 2, oxygen is actively reacted with the electrons flowing in the external circuit and ionized, and the ions pass through the solid electrolyte 21 of stabilized zirconia in a high temperature atmosphere due to its characteristics. Then, in the fuel electrode 11, the oxygen ions that have passed through the solid electrolyte 21 are actively combined with hydrogen, and a combustion reaction is generated so as to generate electrons and water to generate electricity. At this time, the two cells 20a, 20b
The voltage generated at 1 is added by the serial connection of the interconnector 23 and the third inclined portion 14c, and this total voltage is added to the interconnector 23 and the inclined portions 14a, 1 at the left and right ends.
Current is collected by the current collector 13 via 4e.

【0025】この場合に、左右両端の傾斜部14a,1
4eは集電部側境界に金属のニッケルを多く含んでい
る。また左右の集電部13は金属のニッケルであり、且
つ燃料電極管10の構成要素として比較的厚く形成され
るため抵抗が非常に小さい。そこで、これら傾斜部14
a,14eと集電部13により電圧損失が非常に小さい
状態で効率良く集電される。
In this case, the inclined portions 14a, 1 at the left and right ends
4e contains a large amount of metallic nickel at the boundary on the current collector side. Further, the left and right current collectors 13 are made of nickel metal and are formed relatively thick as constituent elements of the fuel electrode tube 10, so that the resistance is very small. Therefore, these inclined portions 14
Power is efficiently collected by a and 14e and the current collector 13 with a very small voltage loss.

【0026】以上、この発明の実施例について説明した
が、燃料電極管の集電部、絶縁部及び燃料電極の材料、
配置が異なる場合、他の構成要素を付加する場合にも同
様に適応できることは勿論である。
The embodiments of the present invention have been described above. The materials of the current collecting portion, the insulating portion and the fuel electrode of the fuel electrode tube,
Of course, when the arrangement is different, the same can be applied to the case where other components are added.

【0027】[0027]

【発明の効果】以上に説明したようにこの発明によれ
ば、円筒形固体電解質燃料電池において、材料の異なる
集電部、絶縁部及び燃料電極を互いに接合する部分に、
両者の材料を混合し且つその配合割合を軸方向に傾斜化
した傾斜部を設け、この傾斜部を介し集電部、絶縁部及
び燃料電極を順次接合して燃料電極管を形成する構成で
あるから、高温雰囲気中でいずれの接合箇所も熱的に整
合して、機械的に強い燃料電極管にすることができる。
また燃料電極管の金属の多い傾斜部と金属の集電管で集
電するので、集電抵抗を大幅に低減できる。さらに燃料
電極管によりセルを直接支持するので、支持管等が不要
になって、構造が大幅に単純化され、構造の単純化によ
り、製造時間が短縮化し、コスト低減が図れる。そして
燃料電極管は金属を中心とした材料で製造されるので、
低コスト化を図ることができるなどの効果を奏する。
As described above, according to the present invention, in a cylindrical solid electrolyte fuel cell, a current collecting part, an insulating part and a fuel electrode made of different materials are joined to each other,
A configuration is provided in which a sloped portion is provided in which both materials are mixed and the mixing ratio thereof is inclined in the axial direction, and the current collector, the insulating portion, and the fuel electrode are sequentially joined via the sloped portion to form a fuel electrode tube. Therefore, it is possible to thermally align all the joints in a high temperature atmosphere to form a mechanically strong fuel electrode tube.
In addition, since the inclined portion of the fuel electrode tube having a large amount of metal and the metal current collecting tube collect current, the current collecting resistance can be greatly reduced. Further, since the cells are directly supported by the fuel electrode tube, a supporting tube or the like is not required, and the structure is greatly simplified. Due to the simplification of the structure, the manufacturing time can be shortened and the cost can be reduced. And since the fuel electrode tube is made of materials centered on metal,
An effect such as cost reduction can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る円筒形固体電解質燃料電池の実
施例を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a cylindrical solid electrolyte fuel cell according to the present invention.

【図2】燃料電極管の材料の配分状態を示す図である。FIG. 2 is a diagram showing a material distribution state of a fuel electrode tube.

【図3】従来の円筒横縞形固体電解質燃料電池を示す断
面図である。
FIG. 3 is a cross-sectional view showing a conventional cylindrical horizontal stripe solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1…円筒形固体電解質燃料電池、 10…燃料電極管、
11…燃料電極、12…絶縁部、 13…集電部、
14a,〜14e…傾斜部、 20a,20b…セル、
21…固体電解質、 22…空気電極。
1 ... Cylindrical solid electrolyte fuel cell, 10 ... Fuel electrode tube,
11 ... Fuel electrode, 12 ... Insulating part, 13 ... Current collecting part,
14a, -14e ... inclined part, 20a, 20b ... cell,
21 ... Solid electrolyte, 22 ... Air electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岡 悟 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 小野 幹幸 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Satoru Yamaoka 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Mikiyuki Ono 1-1-5 Kiba, Koto-ku, Tokyo Shares Inside Fujikura

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 材料の異なる集電部、絶縁部及び燃料電
極が同一径の筒状に形成されて軸方向一直線上に配置さ
れ、燃料電極と同心円上に固体電解質および空気電極が
薄膜多層に形成されてセルが構成され、その燃料電極が
軸線方向での一端側の集電部に接続され、かつ空気電極
が軸線方向での他端側の集電部に接続された円筒形固体
電解質燃料電池において、 材料の異なる集電部、絶縁部及び燃料電極の相互の中間
部分に、該中間部分の両側に位置する部分の材料を混合
し且つその配合割合を軸方向に傾斜化した傾斜部を設
け、この傾斜部を介し集電部、絶縁部及び燃料電極を順
次接合して、集電手段と支持手段とを兼ねた燃料電極管
を形成したことを特徴とする円筒形固体電解質燃料電
池。
1. A current collecting portion, an insulating portion, and a fuel electrode made of different materials are formed in a cylindrical shape having the same diameter and arranged in a straight line in the axial direction, and a solid electrolyte and an air electrode are formed in a thin film multilayer on a concentric circle with the fuel electrode. Cylindrical solid electrolyte fuel whose fuel electrode is connected to the current collector on one end side in the axial direction and whose air electrode is connected to the current collector on the other end side in the axial direction In the battery, an inclined portion in which the materials of portions located on both sides of the intermediate portion are mixed with each other in the intermediate portion of the current collecting portion, the insulating portion, and the fuel electrode of different materials, and the mixing ratio thereof is inclined in the axial direction is provided. A cylindrical solid electrolyte fuel cell, characterized in that a fuel electrode tube serving as a current collecting means and a supporting means is formed by sequentially connecting the current collecting section, the insulating section and the fuel electrode through the inclined section.
【請求項2】 燃料電極は傾斜部を介して前記集電部に
接続され、空気電極はインターコネクターと傾斜部とを
介して前記集電部に接続されていることを特徴とする請
求項1に記載の円筒形固体電解質燃料電池。
2. The fuel electrode is connected to the current collector via an inclined portion, and the air electrode is connected to the current collector via an interconnector and an inclined portion. The cylindrical solid electrolyte fuel cell described in 1 ..
【請求項3】 集電部は金属のニッケルであり、絶縁部
はジルコニアであり、燃料電極はニッケルとジルコニア
のサーメットであることを特徴とする請求項1に記載の
円筒形固体電解質燃料電池。
3. The cylindrical solid electrolyte fuel cell according to claim 1, wherein the current collecting portion is metallic nickel, the insulating portion is zirconia, and the fuel electrode is a cermet of nickel and zirconia.
JP04967094A 1994-02-23 1994-02-23 Cylindrical solid electrolyte fuel cell Expired - Fee Related JP3688305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04967094A JP3688305B2 (en) 1994-02-23 1994-02-23 Cylindrical solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04967094A JP3688305B2 (en) 1994-02-23 1994-02-23 Cylindrical solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH07235315A true JPH07235315A (en) 1995-09-05
JP3688305B2 JP3688305B2 (en) 2005-08-24

Family

ID=12837613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04967094A Expired - Fee Related JP3688305B2 (en) 1994-02-23 1994-02-23 Cylindrical solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3688305B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130286A (en) * 2006-11-17 2008-06-05 Mitsubishi Heavy Ind Ltd Cylindrical fuel cell and its manufacturing method, cylindrical water electrolytic device and its manufacturing method
JP2008226789A (en) * 2007-03-15 2008-09-25 Kyocera Corp Horizontal-stripe type fuel battery cell and its manufacturing method
JP2013157190A (en) * 2012-01-30 2013-08-15 Kyocera Corp Solid oxide fuel cell, cell stack device, fuel cell module, and fuel cell device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130286A (en) * 2006-11-17 2008-06-05 Mitsubishi Heavy Ind Ltd Cylindrical fuel cell and its manufacturing method, cylindrical water electrolytic device and its manufacturing method
JP2008226789A (en) * 2007-03-15 2008-09-25 Kyocera Corp Horizontal-stripe type fuel battery cell and its manufacturing method
JP2013157190A (en) * 2012-01-30 2013-08-15 Kyocera Corp Solid oxide fuel cell, cell stack device, fuel cell module, and fuel cell device

Also Published As

Publication number Publication date
JP3688305B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP5234554B2 (en) Solid oxide fuel cell stack structure
US8323845B2 (en) Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
JPH0159705B2 (en)
US20120009497A1 (en) Electrochemical cell holder and stack
JP2009129852A (en) Cell stack, and fuel cell
JP4633531B2 (en) Electrical joining structure and joining method of solid oxide fuel cell stack
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP2008243751A (en) Tube unit cell of solid oxide fuel cell, solid oxide fuel cell bundle, and solid oxide fuel cell module
US5372895A (en) Solid oxide fuel cell and method for manufacturing the same
JP3487630B2 (en) Cylindrical solid electrolyte fuel cell
JP6835768B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP3688305B2 (en) Cylindrical solid electrolyte fuel cell
JP6982582B2 (en) Electrochemical reaction cell stack
JPH07245107A (en) Solid electrolyte fuel cell
JPH0644981A (en) Flat plate-shaped solid electrolyte fuel cell
JP6917398B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7104129B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7194070B2 (en) Electrochemical reaction cell stack
JPH103932A (en) Cylindrical lateral stripe type solid electrolyte fuel cell
JP7187382B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP7288928B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP7194155B2 (en) Electrochemical reaction cell stack
JP6902511B2 (en) Electrochemical reaction cell stack
JP2675546B2 (en) Solid electrolyte fuel cell
JP2018014246A (en) Electrochemical reaction unit and electrochemical reaction cell stack

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees