JP2008226789A - Horizontal-stripe type fuel battery cell and its manufacturing method - Google Patents

Horizontal-stripe type fuel battery cell and its manufacturing method Download PDF

Info

Publication number
JP2008226789A
JP2008226789A JP2007067543A JP2007067543A JP2008226789A JP 2008226789 A JP2008226789 A JP 2008226789A JP 2007067543 A JP2007067543 A JP 2007067543A JP 2007067543 A JP2007067543 A JP 2007067543A JP 2008226789 A JP2008226789 A JP 2008226789A
Authority
JP
Japan
Prior art keywords
solid electrolyte
molded body
layer
inner electrode
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007067543A
Other languages
Japanese (ja)
Other versions
JP5118865B2 (en
Inventor
Osami Inoue
修身 井上
Kenji Horiuchi
賢治 堀内
Takaaki Somekawa
貴亮 染川
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Tokyo Gas Co Ltd
Original Assignee
Kyocera Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Tokyo Gas Co Ltd filed Critical Kyocera Corp
Priority to JP2007067543A priority Critical patent/JP5118865B2/en
Publication of JP2008226789A publication Critical patent/JP2008226789A/en
Application granted granted Critical
Publication of JP5118865B2 publication Critical patent/JP5118865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal-stripe type fuel battery cell and its manufacturing method, capable of preventing gas leak from a solid electrolyte and restraining degradation of power generation performance. <P>SOLUTION: Of the horizontal-stripe type fuel battery cell, power generation elements 13 each having a multilayer structure with an inner side electrode, a solid electrolyte and an outer side electrode laminated sequentially are formed with a given interval in each axial length direction on a surface of a stick-type porous support of electric insulation with a gas flow channel formed inside on an axial length direction. The inner side electrode of one of the power generation element and the outer side electrode of the other power generation element adjoining to the power generation element are electrically connected, and a plurality of power generation elements are connected in series. In the horizontal-stripe type fuel battery cell, concave parts are continuously formed in the axial length direction on the surface of the porous support, the inner side electrode and an insulation precise layer 33 are buried alternatively inside the concave parts, and further, the solid electrolyte is integrally laminated on a surface of the porous support, the inner side electrode and the insulation precise layer to laminate the outer side electrode on a surface facing to the inner side electrode of the solid electrolyte. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、横縞型燃料電池セル及びその製法に関するものである。   The present invention relates to a horizontal stripe fuel cell and a method for producing the same.

近年、次世代エネルギーとして、燃料電池セルを複数接続してなるセルスタックを、収納容器に収容した燃料電池が種々提案されている。このような燃料電池セルとしては、固体高分子形燃料電池セル、リン酸形燃料電池セル、溶融炭酸塩形燃料電池セル、固体電解質形燃料電池セルなど、各種のものが知られている。とりわけ、固体電解質形燃料電池セルは発電効率が高く、また、作動温度が700℃〜1000℃と高いため、その排熱を利用できるなどの利点を有しており、研究開発が推し進められている。
図6は、従来の横縞型の固体電解質形燃料電池セルを示すもので(特許文献1参照)、符号61は、カルシア安定化ジルコニア(CSZ)からなる基体管である。この基体管61の表面には、燃料極用の凹部(溝)62が形成されている。前記凹部62には、NiO/イットリア安定化ジルコニア(YSZ)からなる燃料極63が凸版印刷により形成されている。前記燃料極63を含む基体管61上には、YSZからなる固体電解質64、La0.9Sr0.1MnO3からなる空気極65、(NiCr/Al23+NiAl/Al23)からなるインターコネクター66、及びAl23からなる保護膜67が形成されている。
このような横縞型の固体電解質形燃料電池セルは次のようにして作製する。まず、基体管材料であるCSZをコールドアイソスタチックプレス(以下CIPと呼ぶ)法により燃料極用の凹部(溝)62を付与した形状に作製した後、1300℃で仮焼して基体管61を作製する。
次に、燃料極材料であるNiO/YSZスラリーを凸版印刷により基体管61の凹部62に成膜し、燃料極63とする。つづいて、固体電解質であるYSZスラリーと空気極材料であるLa0.9Sr0.1MnO3スラリーを凹部印刷により成膜し、1300℃で焼成し、固体電解質64と空気極65を形成する。更に、(NiCr/Al23+NiAl/Al23)からなるインターコネクター66、及びAl23からなる保護膜67を成膜し、横縞型の固体電解質形燃料電池セルが作製される。
このような横縞型の固体電解質形燃料電池セルでは、基体管61の凹部(溝)62に燃料極63を収容し、その上面に固体電解質64を形成することになるため、内部電極の側面及び上面を覆うように固体電解質64を形成する場合と比較して、固体電解質64に燃料極63の厚み分による段差が生じることがなく、固体電解質64からのガスリークを抑制することができる。
特開平8−106916号公報
In recent years, various types of fuel cells in which a cell stack formed by connecting a plurality of fuel cells is accommodated in a storage container have been proposed as next-generation energy. As such a fuel cell, various types such as a polymer electrolyte fuel cell, a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid electrolyte fuel cell are known. In particular, solid electrolyte fuel cells have advantages such as high power generation efficiency and high operating temperatures of 700 ° C. to 1000 ° C., so that the exhaust heat can be used, and research and development are being promoted. .
FIG. 6 shows a conventional horizontally striped solid electrolyte fuel cell (see Patent Document 1), and reference numeral 61 denotes a base tube made of calcia stabilized zirconia (CSZ). A recess (groove) 62 for the fuel electrode is formed on the surface of the base tube 61. A fuel electrode 63 made of NiO / yttria stabilized zirconia (YSZ) is formed in the recess 62 by letterpress printing. On the base tube 61 including the fuel electrode 63, a solid electrolyte 64 made of YSZ, an air electrode 65 made of La 0.9 Sr 0.1 MnO 3 , and an interconnector made of (NiCr / Al 2 O 3 + NiAl / Al 2 O 3 ). 66 and a protective film 67 made of Al 2 O 3 is formed.
Such a horizontal stripe type solid electrolyte fuel cell is manufactured as follows. First, CSZ, which is a base tube material, is formed into a shape provided with a recess (groove) 62 for a fuel electrode by a cold isostatic press (hereinafter referred to as CIP) method, and then calcined at 1300 ° C. to form a base tube 61. Is made.
Next, NiO / YSZ slurry, which is a fuel electrode material, is deposited on the recess 62 of the base tube 61 by letterpress printing to form the fuel electrode 63. Subsequently, a YSZ slurry that is a solid electrolyte and a La 0.9 Sr 0.1 MnO 3 slurry that is an air electrode material are formed by concave printing, and are baked at 1300 ° C. to form the solid electrolyte 64 and the air electrode 65. Further, an interconnector 66 made of (NiCr / Al 2 O 3 + NiAl / Al 2 O 3 ) and a protective film 67 made of Al 2 O 3 are formed to produce a horizontal stripe type solid oxide fuel cell. .
In such a horizontal stripe type solid electrolyte fuel cell, the fuel electrode 63 is accommodated in the recess (groove) 62 of the base tube 61 and the solid electrolyte 64 is formed on the upper surface thereof. Compared with the case where the solid electrolyte 64 is formed so as to cover the upper surface, a step due to the thickness of the fuel electrode 63 does not occur in the solid electrolyte 64, and gas leakage from the solid electrolyte 64 can be suppressed.
JP-A-8-106916

上記従来の横縞型の固体電解質形燃料電池セルでは、基体管61に、燃料極63を収容する凹部62を形成しており、燃料極63間には、基体管61の一部が存在しており、それにより隣設する燃料極63間の絶縁性を確保していた。
このような燃料電池セルでは、仮焼基体管の凹部に燃料極材料を充填し、この仮焼基体管の表面及び燃料極材料の上面に固体電解質成形体を形成し、固体電解質成形体表面に空気極材料を印刷し、焼成する際に、カルシア安定化ジルコニア(CSZ)からなる基体管61のCaが燃料極63と固体電解質64との間に拡散し、絶縁性の高い化合物を生成するため、発電性能が低下するという問題があった。
本発明の課題は、固体電解質からのガスリークを防止することができるとともに、発電性能の低下を抑制できる横縞型燃料電池セル及びその製法を提供することにある。
In the conventional horizontal stripe type solid oxide fuel cell described above, the base tube 61 is formed with the recess 62 for accommodating the fuel electrode 63, and a portion of the base tube 61 exists between the fuel electrodes 63. As a result, insulation between adjacent fuel electrodes 63 is secured.
In such a fuel battery cell, the recess of the calcined substrate tube is filled with the fuel electrode material, a solid electrolyte molded body is formed on the surface of the calcined substrate tube and the upper surface of the fuel electrode material, and the surface of the solid electrolyte molded body is formed. When the air electrode material is printed and fired, Ca in the base tube 61 made of calcia-stabilized zirconia (CSZ) diffuses between the fuel electrode 63 and the solid electrolyte 64 to generate a highly insulating compound. There was a problem that the power generation performance deteriorated.
An object of the present invention is to provide a horizontally-striped fuel cell that can prevent a gas leak from a solid electrolyte and suppress a decrease in power generation performance, and a method for manufacturing the same.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、支持体の表面の平面部に凹部を設け、内側電極と固体電解質の緻密層を交互に埋設形成することにより、固体電解質層に段差を生じることなくガスリークを防止できるとともに、固体電解質と内側電極との間に絶縁抵抗の高い化合物の生成を抑制でき、発電性能の低下を抑制できることを見出して、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have provided a recess in the planar portion of the surface of the support, and alternately embedded the inner electrode and the dense layer of the solid electrolyte, thereby forming a solid electrolyte. In order to complete the present invention, it is found that gas leakage can be prevented without causing a step in the layer, generation of a compound having high insulation resistance can be suppressed between the solid electrolyte and the inner electrode, and reduction in power generation performance can be suppressed. It came.

即ち、本発明における横縞型燃料電池セル及びその製法は、以下の構成を有する。
(1)本発明の横縞型燃料電池セルは、ガス流路が内部に軸長方向に形成された電気絶縁性の棒状多孔質支持体の表面に、内側電極、固体電解質および外側電極が順次積層された多層構造を有する発電素子をそれぞれ軸長方向に所定間隔をおいて形成し、一方の前記発電素子の内側電極と、該一方の発電素子に隣り合う他方の前記発電素子の外側電極とを電気的に接続し、前記複数の発電素子が直列に接続されている横縞型燃料電池セルにおいて、前記多孔質支持体の表面に軸長方向に凹部が連続して形成されており、該凹部に前記内側電極と絶縁性緻密層が交互に埋設され、さらに前記固体電解質が前記多孔質支持体、前記内側電極および前記絶縁性緻密層の表面に積層され、該固体電解質の前記内側電極に対向する部位の外表面に前記外側電極が積層されていることを特徴とする。
(2)前記絶縁性緻密層は、Mg、Ca及びSrを含有していないことを特徴とする。
(3)前記絶縁性緻密層は、固体電解質材料からなることを特徴とする。
(4)本発明の横縞型燃料電池セルの製法は、ガス流路が内部に軸長方向に形成された電気絶縁性材料からなる棒状多孔質支持体成形体の表面に、軸長方向に凹部を形成する工程と、該凹部に内側電極材料を軸長方向に所定間隔をおいて埋め込み複数の内側電極成形体を形成する工程と、該内側電極成形体及び前記多孔質支持体成形体表面並びに前記凹部内に固体電解質材料を印刷し、前記内側電極成形体間に固体電解質材料が充填された絶縁性緻密層成形体を形成すると共に、前記内側電極成形体表面に固体電解質成形体を形成する工程と、前記支持体成形体、前記内側電極成形体、前記固体電解質成形体及び前記内側電極成形体間に形成された絶縁性緻密層成形体を同時に焼成する工程とを具備することを特徴とする。
That is, the horizontally-striped fuel cell according to the present invention and the manufacturing method thereof have the following configuration.
(1) The horizontally striped fuel cell according to the present invention has an inner electrode, a solid electrolyte, and an outer electrode sequentially laminated on the surface of an electrically insulating rod-like porous support having a gas flow path formed in the axial direction. The power generation elements having a multilayered structure are formed at predetermined intervals in the axial length direction, and an inner electrode of one of the power generation elements and an outer electrode of the other power generation element adjacent to the one power generation element In the horizontally striped fuel cell in which the plurality of power generation elements are electrically connected and connected in series, a recess is continuously formed in the axial direction on the surface of the porous support, and the recess The inner electrode and the insulating dense layer are alternately embedded, and the solid electrolyte is laminated on the surface of the porous support, the inner electrode and the insulating dense layer, and faces the inner electrode of the solid electrolyte. On the outer surface of the part Wherein the electrodes are stacked.
(2) The insulating dense layer is characterized by not containing Mg, Ca and Sr.
(3) The insulating dense layer is made of a solid electrolyte material.
(4) The method for producing the horizontal stripe fuel cell according to the present invention is such that a gas flow path is recessed in the axial direction on the surface of a rod-shaped porous support body made of an electrically insulating material having an axial length formed therein. Forming a plurality of inner electrode molded bodies by embedding the inner electrode material in the recess at predetermined intervals in the axial direction, the inner electrode molded body and the surface of the porous support body, and A solid electrolyte material is printed in the recesses to form an insulating dense layer molded body filled with the solid electrolyte material between the inner electrode molded bodies, and a solid electrolyte molded body is formed on the surface of the inner electrode molded body. And a step of simultaneously firing the support molded body, the inner electrode molded body, the solid electrolyte molded body, and the insulating dense layer molded body formed between the inner electrode molded bodies. To do.

本発明の横縞型燃料電池セルは、(1)によれば、多孔質支持体の平面部に凹部を形成し、該凹部に複数の内側電極を埋設形成することにより、固体電解質層に段差を生じることなくガスリークの危険性を防止でき、信頼性の高い横縞型燃料電池セルを提供できる。さらに、凹部内の内側電極間に、多孔質支持体とは異なる材料からなる絶縁性緻密層が形成されることになり、多孔質支持体として使用される元素であるMg、Ca、Sr等が、固体電解質層と内側電極との間に拡散することを抑制することができ、絶縁抵抗の高い層が形成されることを抑制し、発電性能の低下を抑制できる。
また、凹部を設けることにより燃料極配設位置のずれを抑制することができ、寸法精度の高いセルを作製することが容易となり、コスト削減化と工程簡略化を可能にする。
また、(2)によれば、凹部内の内側電極間にMg、Ca、Srを含有しない絶縁性からなる緻密層を形成することにより、焼成時において上記の元素が拡散して内側電極と固体電解質との間に化合物を生成することを抑制できるため、高い発電効率を有することができる。
さらに、(3)によれば、凹部内の内側電極間に、固体電解質材料からなる絶縁性緻密層を形成することにより、Mg、Ca、Sr等の元素が拡散して内側電極と固体電解質との間に化合物を生成することを抑制できるため、高い発電効率を有することができる。さらに燃料電池セルに用いる材料種を少なくすることができ、コスト削減化と工程簡略化を可能にする。
本発明の横縞型燃料電池セルの製法によれば、固体電解質層の形成と同時に絶縁性緻密質層を形成することができ、絶縁性緻密質層を容易に形成することができる。
According to (1), the horizontally-striped fuel cell of the present invention has a step in the solid electrolyte layer by forming a recess in the flat portion of the porous support and embedding a plurality of inner electrodes in the recess. The risk of gas leakage can be prevented without occurring, and a highly reliable horizontal stripe fuel cell can be provided. Furthermore, an insulating dense layer made of a material different from that of the porous support is formed between the inner electrodes in the recess, and elements such as Mg, Ca, and Sr used as the porous support are formed. The diffusion between the solid electrolyte layer and the inner electrode can be suppressed, the formation of a layer having a high insulation resistance can be suppressed, and the decrease in power generation performance can be suppressed.
Further, the provision of the concave portion can suppress the shift of the fuel electrode arrangement position, and it becomes easy to manufacture a cell with high dimensional accuracy, thereby enabling cost reduction and process simplification.
Further, according to (2), by forming a dense layer made of an insulating material not containing Mg, Ca, Sr between the inner electrodes in the recess, the above elements diffuse during firing, and the inner electrode and the solid electrode are solid. Since it can suppress producing | generating a compound between electrolytes, it can have high electric power generation efficiency.
Further, according to (3), by forming an insulating dense layer made of a solid electrolyte material between the inner electrodes in the recesses, elements such as Mg, Ca, Sr are diffused, and the inner electrode and the solid electrolyte Since it can suppress producing | generating a compound in the meantime, it can have high power generation efficiency. Furthermore, the number of material types used for the fuel cell can be reduced, and cost reduction and process simplification can be realized.
According to the method for producing a horizontal stripe fuel cell of the present invention, an insulating dense layer can be formed simultaneously with the formation of the solid electrolyte layer, and the insulating dense layer can be easily formed.

以下、本発明の横縞型燃料電池セルの一実施形態について、添付図面を参照しながら詳細に説明する。
図1は、本発明の横縞型燃料電池セルの構造を示す一部破断の斜視図である。また、図2は図1のA−A線一部拡大断面図である。この燃料電池セル1は、中空平板状の電気絶縁性の多孔質支持体(以下、絶縁支持体11という)の対向する両面に、複数の発電素子13を絶縁支持体11の軸長方向(長さ方向:ガス流路形成方向)に沿って所定の間隔をおいて複数個配置し、それらを素子間接続部材17を介して直列に接続した「横縞型」といわれるものである。発電素子13は、絶縁支持体11の対向する表面および裏面にそれぞれ複数形成されている。
Hereinafter, an embodiment of a horizontal stripe fuel cell according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a partially broken perspective view showing the structure of a horizontal stripe fuel cell according to the present invention. 2 is a partially enlarged sectional view taken along line AA of FIG. The fuel battery cell 1 includes a plurality of power generating elements 13 disposed on opposite surfaces of a hollow plate-like electrically insulating porous support (hereinafter referred to as an insulating support 11) in the axial length direction (long) of the insulating support 11. A plurality of elements are arranged at predetermined intervals along the vertical direction (gas flow path forming direction), and these are connected in series via the inter-element connection member 17. A plurality of power generating elements 13 are respectively formed on the front and back surfaces of the insulating support 11 that face each other.

絶縁支持体11の表裏面における互いに隣接する発電素子13同士は、第1集電層17aおよび第2集電層17bからなる素子間接続部材17により直列に接続されている。すなわち、図2に示すように、一方の発電素子13の燃料極層13a(以下で、活性燃料極層13aともいう。)の上に第1集電層17aが形成され、この第1集電層17aは、軸長方向両端部を含めその周囲が固体電解質13bによりガスシール状態で被覆され、固体電解質13bから帯状に露出している。この第1集電層17aの露出した部分が第2集電層17bにより被覆され、この第2集電層17bが、他方の発電素子13の空気極層13c上に形成され、これにより、発電素子13同士が直列に電気的に接続された構造となっている。
なお、本実施形態では、燃料極として、固体電解質13b側の活性燃料極層13aと、絶縁支持体11側の集電燃料極層23との二層に形成した構造のものを示した。
The power generating elements 13 adjacent to each other on the front and back surfaces of the insulating support 11 are connected in series by an inter-element connection member 17 including a first current collecting layer 17a and a second current collecting layer 17b. That is, as shown in FIG. 2, a first current collecting layer 17a is formed on a fuel electrode layer 13a (hereinafter also referred to as an active fuel electrode layer 13a) of one power generating element 13, and this first current collecting layer is formed. The periphery of the layer 17a including both ends in the axial length direction is covered with the solid electrolyte 13b in a gas-sealed state and exposed from the solid electrolyte 13b in a strip shape. The exposed portion of the first current collecting layer 17a is covered with the second current collecting layer 17b, and this second current collecting layer 17b is formed on the air electrode layer 13c of the other power generating element 13, thereby generating power. The elements 13 are electrically connected in series.
In the present embodiment, the fuel electrode has a structure in which the fuel electrode is formed in two layers of the active fuel electrode layer 13a on the solid electrolyte 13b side and the current collecting fuel electrode layer 23 on the insulating support 11 side.

絶縁支持体11は多孔質であり、さらにその内部には、内径の小さな複数の燃料ガス流路12が、隔壁51(図1参照)で隔てられて軸長方向に延びるようにして貫通して設けられている。前記ガス流路12の数は、発電性能および構造強度の点から、例えば2〜14個が好ましく、6〜10個であるのがより好ましい。このように、絶縁支持体11の内部にガス流路12を複数形成することにより、絶縁支持体11の内部に大きなガス流路を1本形成する場合に比べて、絶縁支持体11を扁平板状とすることができ、燃料電池セル1の体積当たりの発電素子13の面積を増加し発電量を大きくすることができる。よって、必要とする発電量を得るためのセル本数を減らすことができる。また、セル間の接続箇所数を減少させることもできる。   The insulating support 11 is porous, and a plurality of fuel gas passages 12 with small inner diameters are separated by partition walls 51 (see FIG. 1) and extend in the axial length direction. Is provided. The number of the gas flow paths 12 is preferably 2 to 14, for example, and more preferably 6 to 10 in terms of power generation performance and structural strength. In this way, by forming a plurality of gas flow paths 12 inside the insulating support 11, the insulating support 11 is flattened compared to the case where one large gas flow path is formed inside the insulating support 11. It is possible to increase the power generation amount by increasing the area of the power generation element 13 per volume of the fuel cell 1. Therefore, the number of cells for obtaining the required power generation amount can be reduced. In addition, the number of connection points between cells can be reduced.

このガス流路12内に燃料ガス(水素ガス)を流し、かつ空気極層13cを空気等の酸素含有ガスに曝すことにより、活性燃料極層13aおよび空気極層13c間で下記式(1)、(2)に示す電極反応が生じ、両極間に電位差が発生し、発電するようになっている。
すなわち、空気極層13cでは、下記式(1)の電極反応を生じ、活性燃料極層13aでは、下記式(2)の電極反応を生じる。

Figure 2008226789
By flowing fuel gas (hydrogen gas) through the gas flow path 12 and exposing the air electrode layer 13c to an oxygen-containing gas such as air, the following formula (1) is established between the active fuel electrode layer 13a and the air electrode layer 13c. The electrode reaction shown in (2) occurs, a potential difference is generated between the two electrodes, and power is generated.
That is, the electrode reaction of the following formula (1) occurs in the air electrode layer 13c, and the electrode reaction of the following formula (2) occurs in the active fuel electrode layer 13a.
Figure 2008226789

本発明の絶縁支持体11は、図1、2に示したように、その表面および裏面に軸長方向に矩形の凹部が形成されており、該凹部に該凹部の深さおよび幅と同じ厚みおよび幅の燃料極(活性燃料極層13a、集電燃料極層23)および絶縁性緻密層33とが交互に軸長方向に埋設される。これにより、絶縁支持体11平面と活性燃料極層13aおよび絶縁性緻密層33の平面が同一平面となり、固体電解質を成膜する際に、絶縁支持体11と活性燃料極層13aに段差がないので、従来の段差部による未成膜部分がなくなり、均一な厚みの固体電解質層13bが形成される。その結果、ガスリークを抑制できる。また、凹部に活性燃料極層13a、集電燃料極層23が埋設されるため、燃料極の位置のずれを抑制することができ、寸法精度の高いセルスタックを作製することが容易となり、コスト削減化と工程簡略化を可能にすることができる。また、燃料極の位置ずれが抑制されるため、絶縁支持体11の表裏面での位置ずれをなくし、焼成時でのセルの反りを抑制できる。   As shown in FIGS. 1 and 2, the insulating support 11 of the present invention is formed with rectangular recesses on the front and back surfaces in the axial length direction, and the recess has the same thickness as the depth and width of the recesses. In addition, fuel electrodes (active fuel electrode layer 13a, current collecting fuel electrode layer 23) and insulating dense layers 33 having a width and a width are alternately embedded in the axial direction. Thereby, the plane of the insulating support 11 and the plane of the active fuel electrode layer 13a and the insulating dense layer 33 are the same plane, and there is no step between the insulating support 11 and the active fuel electrode layer 13a when the solid electrolyte is formed. Therefore, the non-film-formed part by the conventional level | step-difference part is lose | eliminated, and the solid electrolyte layer 13b of uniform thickness is formed. As a result, gas leak can be suppressed. In addition, since the active fuel electrode layer 13a and the current collecting fuel electrode layer 23 are embedded in the recesses, the displacement of the fuel electrode can be suppressed, and it becomes easy to manufacture a cell stack with high dimensional accuracy. Reduction and process simplification can be realized. Further, since the displacement of the fuel electrode is suppressed, the displacement of the insulating support 11 on the front and back surfaces can be eliminated, and the cell warpage during firing can be suppressed.

前記絶縁支持体11に形成される凹部深さは10〜500μmであり、また、前記絶縁支持体11の幅方向における両端部から0.1〜10mm離れた位置に形成されるのがよい。なお、前記凹部の厚み(深さ)は、絶縁支持体11と活性燃料極層13aに前記段差が生じないよう、活性燃料極層13aと集電燃料極層23の合計の厚みと同じになるよう設定するのがよい。   The depth of the recess formed in the insulating support 11 is 10 to 500 μm, and it is preferably formed at a position 0.1 to 10 mm away from both end portions in the width direction of the insulating support 11. The thickness (depth) of the recess is the same as the total thickness of the active fuel electrode layer 13a and the collector fuel electrode layer 23 so that the step does not occur in the insulating support 11 and the active fuel electrode layer 13a. It is better to set as follows.

前記絶縁性緻密層33は、前記絶縁支持体11とは異なる材料からなるのがよく、Mg、Ca、Srを含有しない絶縁性の緻密層であるのがよい。これにより、多孔質支持体に使用される元素であるMg、Ca、Sr等が、固体電解質層13bと活性燃料極層13aとの間に拡散することを抑制することができ、絶縁抵抗の高い層が形成されることを抑制できるので、発電性能の低下を抑制することができる。
また、前記絶縁性緻密層33は、固体電解質層13bと同じ材料からなるのが好ましい。これにより、前記絶縁性緻密層33と固体電解質層13bを同時に成膜することができ、このとき、上記したように、絶縁支持体11と活性燃料極層13aに段差がないので、均一な厚みの固体電解質層13bが形成され、セル毎の発電性能にバラツキがなくなり、安定して発電することができる。
The insulating dense layer 33 is preferably made of a material different from that of the insulating support 11, and is preferably an insulating dense layer not containing Mg, Ca, or Sr. Thereby, it can suppress that Mg, Ca, Sr, etc. which are elements used for a porous support body diffuse between the solid electrolyte layer 13b and the active fuel electrode layer 13a, and an insulation resistance is high. Since the formation of the layer can be suppressed, a decrease in power generation performance can be suppressed.
The insulating dense layer 33 is preferably made of the same material as the solid electrolyte layer 13b. Thereby, the insulating dense layer 33 and the solid electrolyte layer 13b can be simultaneously formed. At this time, as described above, there is no step between the insulating support 11 and the active fuel electrode layer 13a, so that the thickness is uniform. The solid electrolyte layer 13b is formed, and there is no variation in the power generation performance of each cell, and stable power generation can be achieved.

以下、燃料電池セル1を構成する各部材の材質を詳しく説明する。
(絶縁支持体)
本発明に係る絶縁支持体11は、Ni若しくはNi酸化物(NiO)と、希土類元素酸化物とからなっている。なお、希土類元素酸化物を構成する希土類元素としては、Y、La、Yb、Tm、Er、Ho、Dy、Gd、Sm、Prなどを例示することができるが、好ましくは、Y23やYb23、特にY23である。
Hereinafter, the material of each member constituting the fuel cell 1 will be described in detail.
(Insulating support)
The insulating support 11 according to the present invention is made of Ni or Ni oxide (NiO) and a rare earth element oxide. Examples of rare earth elements constituting rare earth element oxides include Y, La, Yb, Tm, Er, Ho, Dy, Gd, Sm, and Pr. Preferably, Y 2 O 3 or Yb 2 O 3 , especially Y 2 O 3 .

前記NiあるいはNiO(NiOは、発電時には、通常、水素ガスにより還元されてNiとして存在する)は、NiO換算で10〜25体積%、特に15〜20体積%の範囲で絶縁支持体11中に含有されているのがよい。
この絶縁支持体11の熱膨張係数は、通常、10.5〜12.5×10-6(1/K)程度である。
The Ni or NiO (NiO is usually reduced by hydrogen gas and present as Ni during power generation) is 10 to 25% by volume in terms of NiO, particularly 15 to 20% by volume in the insulating support 11. It should be contained.
The thermal expansion coefficient of the insulating support 11 is usually about 10.5 to 12.5 × 10 −6 (1 / K).

絶縁支持体11は、発電素子13間の電気的ショートを防ぐために電気絶縁性であることが必要であり、通常、10Ω・cm以上の抵抗率を有することが望ましい。Ni等の含量が前記範囲を超えると、電気抵抗値が低下し易い。また、Ni等の含量が前記範囲よりも少ないと、希土類元素酸化物(例えばY23)を単独で用いた場合と変わらなくなってしまい、発電素子13との熱膨張係数の調整が困難となる傾向がある。 The insulating support 11 needs to be electrically insulating in order to prevent an electrical short circuit between the power generating elements 13, and it is generally desirable that the insulating support 11 has a resistivity of 10 Ω · cm or more. When the content of Ni or the like exceeds the above range, the electric resistance value tends to decrease. Further, when the content of Ni or the like is less than the above range, it is not different from the case where a rare earth element oxide (for example, Y 2 O 3 ) is used alone, and it is difficult to adjust the thermal expansion coefficient with the power generation element 13. Tend to be.

また、Ni等以外の残量の全ては、通常、希土類元素酸化物の少なくとも1種である。しかし、少量、例えば5質量%以下の範囲で、MgOやSiO2などの他の酸化物、若しくは複合酸化物例えばジルコン酸カルシウムなどを含有していてもよい。
なお、前記絶縁支持体11は、燃料ガス流路12内の燃料ガスを活性燃料極層13aの表面まで導入可能でなければならず、このため、多孔質であることが必要である。一般に、その開気孔率は25%以上、特に30〜40%の範囲にあるのがよい。
Further, the remaining amount other than Ni or the like is usually at least one kind of rare earth element oxide. However, other oxides such as MgO and SiO 2 or composite oxides such as calcium zirconate may be contained in a small amount, for example, in the range of 5% by mass or less.
The insulating support 11 must be able to introduce the fuel gas in the fuel gas flow path 12 up to the surface of the active fuel electrode layer 13a, and therefore needs to be porous. In general, the open porosity should be 25% or more, especially in the range of 30-40%.

(燃料極層)
燃料極層は、前記式(2)の電極反応を生じさせるものであり、本実施形態においては、固体電解質13b側の活性燃料極層13aと、絶縁支持体11側の集電燃料極層23との二層構造に形成されている。
前記固体電解質13b側の活性燃料極層13aは、それ自体公知の多孔質の導電性セラミックスから形成される。例えば、希土類元素が固溶しているZrO2(安定化ジルコニア)と、Niおよび/又はNiO(以下、Ni等と呼ぶ)とからなる。この希土類元素が固溶した安定化ジルコニアとしては、後述する固体電解質13bに使用されているものと同様のものを用いるのがよい。
(Fuel electrode layer)
The fuel electrode layer causes the electrode reaction of the above formula (2). In the present embodiment, the active fuel electrode layer 13a on the solid electrolyte 13b side and the current collecting fuel electrode layer 23 on the insulating support 11 side. And a two-layer structure.
The active fuel electrode layer 13a on the solid electrolyte 13b side is formed of a known porous conductive ceramic. For example, it is composed of ZrO 2 (stabilized zirconia) in which a rare earth element is dissolved, and Ni and / or NiO (hereinafter referred to as Ni or the like). As the stabilized zirconia in which the rare earth element is dissolved, the same one used for the solid electrolyte 13b described later is preferably used.

活性燃料極層13a中の安定化ジルコニア含量は、35〜65体積%の範囲にあることが好ましく、またNi等の含量は、良好な集電性能を発揮させるため、NiO換算で65〜35体積%の範囲にあるのがよい。
さらに活性燃料極層13aの開気孔率は、15%以上、特に20〜40%の範囲にあるのがよい。
The stabilized zirconia content in the active fuel electrode layer 13a is preferably in the range of 35 to 65% by volume, and the content of Ni or the like is 65 to 35% in terms of NiO in order to exhibit good current collecting performance. % Should be in the range.
Further, the open porosity of the active fuel electrode layer 13a is preferably 15% or more, particularly preferably in the range of 20 to 40%.

前記活性燃料極層13aの熱膨張係数は、通常、12.3×10-6(1/K)程度である。
また、固体電解質13bとの熱膨張差に起因して発生する熱応力を吸収し、活性燃料極層13aの割れや剥離などを防止するという点から、活性燃料極層13aの厚みは、5〜15μmの範囲にあることが望ましい。
燃料極層のうち、前記絶縁支持体11側の集電燃料極層23は、絶縁支持体11と同様、Ni若しくはNi酸化物と、希土類元素酸化物との混合体である。
The thermal expansion coefficient of the active fuel electrode layer 13a is usually about 12.3 × 10 −6 (1 / K).
The active fuel electrode layer 13a has a thickness of 5 to 5 because it absorbs thermal stress generated due to the difference in thermal expansion from the solid electrolyte 13b and prevents cracking or peeling of the active fuel electrode layer 13a. It is desirable to be in the range of 15 μm.
In the fuel electrode layer, the current collecting fuel electrode layer 23 on the insulating support 11 side is a mixture of Ni or Ni oxide and rare earth element oxide, like the insulating support 11.

前記Ni或いはNi酸化物(NiOは、発電時には、通常、水素ガスにより還元されてNiとして存在する)は、NiO換算で30〜60体積%の範囲で希土類元素酸化物中に含有されているのがよい。この範囲で調整することにより、絶縁支持体11と集電燃料極層23との熱膨張差を2×10-6(1/K)以下とすることができる。 集電燃料極層23は、電流の流れを損なわないように、導電性であることが必要であり、通常、400S/cm以上の導電率を有していることが望ましい。良好な電気伝導度を有するという点から、Ni等の含量は30体積%以上が望ましい。 The Ni or Ni oxide (NiO is usually reduced by hydrogen gas and present as Ni during power generation) is contained in the rare earth element oxide in a range of 30 to 60% by volume in terms of NiO. Is good. By adjusting within this range, the difference in thermal expansion between the insulating support 11 and the collector fuel electrode layer 23 can be made 2 × 10 −6 (1 / K) or less. The current collecting fuel electrode layer 23 needs to be conductive so as not to impair the flow of current, and it is generally desirable that the current collecting fuel electrode layer 23 have a conductivity of 400 S / cm or more. From the viewpoint of having good electrical conductivity, the content of Ni or the like is desirably 30% by volume or more.

この集電燃料極層23の熱膨張係数は、通常、11.5×10-6(1/K)程度である。
また、この集電燃料極層23の厚みは、電気伝導度を向上するという点から、80μm以上であることが望ましい。
以上のように、燃料極を固体電解質13b側の活性燃料極層13aと、絶縁支持体11側の集電燃料極層23と二層に形成した構造であれば、絶縁支持体11側の集電燃料極層23のNiO換算でのNi量或いはNiO量を30〜60体積%の範囲内で調整することにより、発電素子13との接合性を損なうことなく、その熱膨張係数を、後述する固体電解質13bの熱膨張係数に近づけることができ、例えば両者の熱膨張差を、2×10-6/(1/K)未満とすることができる。したがって、燃料電池セル1の作製時、加熱時、冷却時において両者の熱膨張差に起因して発生する熱応力を小さくすることができるため、燃料極の割れや剥離などを抑制することができる。このため、燃料ガス(水素ガス)を流して発電を行う場合においても、絶縁支持体11との熱膨張係数の整合性は安定に維持され、熱膨張差による割れを有効に回避することができる。
The thermal expansion coefficient of the current collecting fuel electrode layer 23 is usually about 11.5 × 10 −6 (1 / K).
In addition, the thickness of the current collecting fuel electrode layer 23 is desirably 80 μm or more from the viewpoint of improving electric conductivity.
As described above, if the fuel electrode is formed in two layers, the active fuel electrode layer 13a on the solid electrolyte 13b side and the current collecting fuel electrode layer 23 on the insulating support member 11 side, the collector electrode on the insulating support member 11 side is used. By adjusting the Ni amount or NiO amount in terms of NiO of the electrofuel electrode layer 23 within the range of 30 to 60% by volume, the thermal expansion coefficient thereof will be described later without impairing the bondability with the power generating element 13. The thermal expansion coefficient of the solid electrolyte 13b can be approached, and for example, the difference in thermal expansion between them can be made less than 2 × 10 −6 / (1 / K). Therefore, since the thermal stress generated due to the difference in thermal expansion between the two during the production, heating, and cooling of the fuel battery cell 1 can be reduced, cracking and peeling of the fuel electrode can be suppressed. . Therefore, even when fuel gas (hydrogen gas) is flowed to generate power, the consistency of the thermal expansion coefficient with the insulating support 11 is stably maintained, and cracks due to thermal expansion differences can be effectively avoided. .

(固体電解質)
固体電解質13bは、希土類またはその酸化物を固溶させたZrO2からなる安定化ZrO2からなる緻密質なセラミックスで構成されている。
ここで、固溶させる希土類元素またはその酸化物としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなど、または、これらの酸化物などが挙げられ、好ましくは、Y、Yb、または、これらの酸化物が挙げられる。また、固体電解質13bは、8モル%のYが固溶している安定化ZrO2(8mol% Yttoria Stabilized Zirconia、以下、「8YSZ」という。)と熱膨張係数がほぼ等しいランタンガレート系(LaGaO3系)固体電解質を挙げることもできる。また、固体電解質13bは、例えば、厚さが10〜100μmであり、例えば、相対密度(アルキメデス法による)が93%以上、好ましくは、95%以上の範囲に設定される。
このような固体電解質13bは、電極間の電子の橋渡しをする電解質としての機能を有すると同時に、燃料ガスまたは酸素含有ガスのリーク(ガス透過)を防止するためにガス遮断性を有している。
(Solid electrolyte)
The solid electrolyte 13b is composed of a dense ceramic made of stabilized ZrO 2 composed of ZrO 2 which was a solid solution of rare earth or an oxide thereof.
Here, as rare earth elements to be dissolved or oxides thereof, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc. Or these oxides etc. are mentioned, Preferably, Y, Yb, or these oxides are mentioned. The solid electrolyte 13b is a lanthanum gallate system (LaGaO 3 ) having a thermal expansion coefficient substantially equal to that of stabilized ZrO 2 (8 mol% Yttoria Stabilized Zirconia, hereinafter referred to as “8YSZ”) in which 8 mol% of Y is dissolved. System) solid electrolytes. The solid electrolyte 13b has a thickness of 10 to 100 μm, for example, and has a relative density (according to Archimedes method) of 93% or more, preferably 95% or more.
Such a solid electrolyte 13b has a function as an electrolyte for bridging electrons between electrodes, and at the same time has a gas barrier property to prevent leakage of fuel gas or oxygen-containing gas (gas permeation). .

(空気極層)
空気極層13cは、導電性セラミックスから形成されている。導電性セラミックスとしては、例えば、ABO3型のペロブスカイト型酸化物が挙げられ、このようなペロブスカイト型酸化物としては、例えば、遷移金属型ペロブスカイト酸化物、好ましくは、LaMnO3系酸化物、LaFeO3系酸化物、LaCoO3系酸化物など、特にAサイトにLaを有する遷移金属型ペロブスカイト酸化物を挙げることができる。さらに好ましくは、600〜1000℃程度の比較的低温での電気伝導性が高いという観点から、LaCoO3系酸化物が挙げられる。
また、前記したペロブスカイト型酸化物において、AサイトにLaおよびSrが共存してもよく、また、BサイトにFe、CoおよびMnが共存してもよい。
このような空気極層13cは、前記した式(1)の電極反応を生ずることができる。
また、空気極層13cは、その開気孔率が、例えば、20%以上、好ましくは、30〜50%の範囲に設定される。開気孔率が前記した範囲内にあれば、空気極層13cが良好なガス透過性を有することができる。
また、空気極層13cは、その厚さが、例えば、30〜100μmの範囲に設定される。前記した範囲内にあれば、空気極層13cが良好な集電性を有することができる。
(Air electrode layer)
The air electrode layer 13c is made of conductive ceramics. Examples of conductive ceramics include ABO 3 type perovskite oxides. Examples of such perovskite oxides include transition metal type perovskite oxides, preferably LaMnO 3 oxides, LaFeO 3 oxides. Examples thereof include transition metal type perovskite oxides having La at the A site, such as oxides based on oxides and LaCoO 3 oxides. More preferably, from the viewpoint of high electrical conductivity at a relatively low temperature of about 600 to 1000 ° C., a LaCoO 3 oxide is used.
In the perovskite oxide described above, La and Sr may coexist at the A site, and Fe, Co, and Mn may coexist at the B site.
Such an air electrode layer 13c can cause the electrode reaction of the above-described formula (1).
Further, the air electrode layer 13c has an open porosity of, for example, 20% or more, and preferably 30 to 50%. If the open porosity is within the above-described range, the air electrode layer 13c can have good gas permeability.
Moreover, the thickness of the air electrode layer 13c is set in a range of 30 to 100 μm, for example. If it exists in an above-described range, the air electrode layer 13c can have favorable current collection property.

(素子間接続部材)
素子間接続部材17は、一方の発電素子13の活性燃料極層13aと隣り合う他方の発電素子13の空気極層13cとを電気的に接続するものであり、第1集電層17aと第2集電層17bとから構成され、これらは電気的に接続されている。第1集電層17aは一方の発電素子13の活性燃料極層13aと第2集電層13bを導通させるものであり、第2集電層17bは第1集電層17aと他方の発電素子13の空気極層13cとを導通させるものである。
前記素子間接続部材17は、導電性セラミックスから形成されるが、燃料ガス(水素ガス)及び空気等の酸素含有ガスと接触するため、耐還元性、耐酸化性を有していることが必要である。
このため、素子間接続部材17として、導電性セラミックス、金属、ガラスの入った金属ガラスを用いることができ、導電性セラミックスとしては、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO3系酸化物)が使用される。また、第1集電層17aは、絶縁支持体11内のガス流路12を通る燃料ガスと空気極層13cの外部を通る空気等の酸素含有ガスとのリークを防止するため、かかる導電性セラミックスは緻密質でなければならず、例えば93%以上、特に95%以上の相対密度(アルキメデス法)を有していることが好適である。なお、第1集電層17aの端面と、固体電解質13bの端面との間には、適当な接合層(例えばY23)を介在させることにより、シール性を向上させることもできる。
第1集電層17aとしては、金属層と、ガラスの入った金属ガラス層との二層構造としてもよい。金属層は、例えば、AgとNiの合金からなり、金属ガラス層は、Agとガラスからなる。前記金属ガラス層により、絶縁支持体11内のガス流路12を通る燃料ガスの第2集電層17bへのリーク、および空気極層13cの外部を通る酸素含有ガスの前記金属層へのリークを有効に防止することができる。また、第2集電層17bとしては、例えばAg−Pdから構成された多孔質層を使用することができる。
(Element connection member)
The inter-element connection member 17 electrically connects the active fuel electrode layer 13a of one power generation element 13 and the air electrode layer 13c of the other power generation element 13 adjacent to each other. 2 current collecting layers 17b, and these are electrically connected. The first current collecting layer 17a conducts the active fuel electrode layer 13a of one power generating element 13 and the second current collecting layer 13b, and the second current collecting layer 17b is connected to the first current collecting layer 17a and the other power generating element. The 13 air electrode layers 13c are electrically connected.
The inter-element connection member 17 is made of conductive ceramics, but needs to have reduction resistance and oxidation resistance because it contacts an oxygen-containing gas such as fuel gas (hydrogen gas) and air. It is.
For this reason, conductive ceramics, metal, and metal glass containing glass can be used as the inter-element connection member 17, and the lanthanum chromite perovskite oxide (LaCrO 3 oxide) is used as the conductive ceramic. used. The first current collecting layer 17a is electrically conductive to prevent leakage of fuel gas passing through the gas flow path 12 in the insulating support 11 and oxygen-containing gas such as air passing outside the air electrode layer 13c. Ceramics must be dense and preferably have a relative density (Archimedes method) of, for example, 93% or more, particularly 95% or more. In addition, a sealing property can also be improved by interposing an appropriate bonding layer (for example, Y 2 O 3 ) between the end face of the first current collecting layer 17a and the end face of the solid electrolyte 13b.
The first current collecting layer 17a may have a two-layer structure of a metal layer and a metal glass layer containing glass. The metal layer is made of, for example, an alloy of Ag and Ni, and the metal glass layer is made of Ag and glass. Due to the metal glass layer, the fuel gas passing through the gas flow path 12 in the insulating support 11 leaks to the second current collecting layer 17b, and the oxygen-containing gas passes outside the air electrode layer 13c to the metal layer. Can be effectively prevented. Moreover, as the 2nd current collection layer 17b, the porous layer comprised, for example from Ag-Pd can be used.

なお、上述した例においては、絶縁支持体11上に形成される発電素子13は、内側電極が活性燃料極層13aであり、外側電極が空気極層13cとなった層構造を有しているが、両電極の位置関係を逆とすることも勿論可能である。すなわち、絶縁支持体上に、空気極層、固体電解質、活性燃料極層をこの順に積層して発電素子を形成することもできる。この場合、絶縁支持体のガス流路内には、空気等の酸素含有ガスが導入され、燃料ガスは外側電極である活性燃料極層の外面に供給されることとなる。   In the above-described example, the power generating element 13 formed on the insulating support 11 has a layer structure in which the inner electrode is the active fuel electrode layer 13a and the outer electrode is the air electrode layer 13c. However, it is of course possible to reverse the positional relationship between the two electrodes. That is, an air generating layer can be formed by laminating an air electrode layer, a solid electrolyte, and an active fuel electrode layer in this order on an insulating support. In this case, an oxygen-containing gas such as air is introduced into the gas flow path of the insulating support, and the fuel gas is supplied to the outer surface of the active fuel electrode layer that is the outer electrode.

(製造方法)
次に、前記した横縞型燃料電池セルの製造方法について、図3〜図5を参照して、説明する。
(Production method)
Next, a method for manufacturing the horizontal stripe fuel cell described above will be described with reference to FIGS.

まず、絶縁支持体成形体41を作製する。絶縁支持体成形体41の材料として、体積基準での平均粒径(D50)(以下、単に「平均粒径」という。)が0.1〜10.0μmのMgO粉末に、必要により熱膨張係数調整用または接合強度向上用として、Ni粉末、NiO粉末、Y23粉末、または、希土類元素安定化ジルコニア粉末(YSZ)などを所定の比率で配合して混合し、混合後の熱膨張係数が固体電解質13bのそれとほぼ一致するように調整する。この混合粉末を、ポアー剤と、セルロース系有機バインダーと、水とからなる溶媒と混合し、押し出し成形して、内部にガス流路42を有する中空の板状形状で、平板部分に凹溝を有する扁平状の絶縁支持体成形体41(図3(b))を作製し、これを乾燥後、900℃〜1100℃にて仮焼処理する。ガス流路42及び凹部(溝)は、図3(b)に示すように、同一方向(軸長方向)に形成されている。 First, the insulating support body molded body 41 is produced. As a material for the insulating support molded body 41, MgO powder having an average particle diameter (D 50 ) (hereinafter simply referred to as “average particle diameter”) on a volume basis is 0.1 to 10.0 μm, and if necessary, thermal expansion is performed. Ni powder, NiO powder, Y 2 O 3 powder, rare earth element stabilized zirconia powder (YSZ), etc. are mixed at a predetermined ratio and mixed for coefficient adjustment or bonding strength improvement, and thermal expansion after mixing The coefficient is adjusted so as to substantially match that of the solid electrolyte 13b. This mixed powder is mixed with a solvent composed of a pore agent, a cellulose organic binder, and water, extruded, and formed into a hollow plate shape having a gas flow path 42 therein, and a groove is formed in a flat plate portion. A flat insulating support molded body 41 having a flat shape (FIG. 3B) is prepared, dried, and calcined at 900 ° C. to 1100 ° C. As shown in FIG. 3B, the gas flow path 42 and the recess (groove) are formed in the same direction (axial length direction).

次いで、燃料極層、固体電解質を作製する。まず、例えば、NiO粉末、Ni粉末と、YSZ粉末とを混合し、これにポアー剤を添加し、アクリル系バインダーとトルエンとを混合してスラリーとし、ドクターブレード法にてスラリーを塗布して乾燥し、厚さ5〜50μmの活性燃料極層テープ43aを作製する(図4(a))。
次に、活性燃料極層テープ43aと同様にして、例えば、NiO粉末、Ni粉末と、Y23などの希土類元素酸化物とを混合し、これにポアー剤を添加し、アクリル系バインダーとトルエンとを混合してスラリーとし、ドクターブレード法にてスラリーを塗布して乾燥し、厚さ80〜200μmの集電燃料極層テープ43を作製する。この集電燃料極層テープ43に前記活性燃料極層テープ43aを貼り付ける(図4(b))。当該貼り合わせたテープ(内側電極成形体)を発電素子13の形状にあわせて切断する(図4(c))。
Next, a fuel electrode layer and a solid electrolyte are produced. First, for example, NiO powder, Ni powder, and YSZ powder are mixed, a pore agent is added thereto, an acrylic binder and toluene are mixed to form a slurry, and the slurry is applied by a doctor blade method and dried. Then, an active fuel electrode layer tape 43a having a thickness of 5 to 50 μm is produced (FIG. 4A).
Next, in the same manner as the active fuel electrode layer tape 43a, for example, NiO powder, Ni powder, and rare earth element oxide such as Y 2 O 3 are mixed, a pore agent is added thereto, an acrylic binder, Toluene is mixed to form a slurry, and the slurry is applied by a doctor blade method and dried to produce a current collecting fuel electrode layer tape 43 having a thickness of 80 to 200 μm. The active fuel electrode layer tape 43a is attached to the current collecting fuel electrode layer tape 43 (FIG. 4B). The bonded tape (inner electrode molded body) is cut in accordance with the shape of the power generating element 13 (FIG. 4C).

その後、図4(d)に示すように、活性燃料極層テープ43aが貼り付けられた集電燃料極層テープ43を、前記仮焼した絶縁支持体成形体41の凹部(溝)内に、所定間隔をおいて横縞状に貼り付ける。なお、このとき一方の集電燃料極層テープ43と、他方の集電燃料極層テープ43とは、幅3〜20mmの間隔をあけて配置する。また、活性燃料極層テープ43aが貼り付けられた集電燃料極層テープ43の厚みは、凹部の深さと同一とし、活性燃料極層テープ43aの表面は、凹部が形成されていない絶縁支持体成形体41の平面と同一平面とする。
次に、この活性燃料極層テープ43a、集電燃料極層テープ43を貼り付けた状態で乾燥し、その後、900〜1100℃の温度範囲で仮焼する(図4(d))。そして、活性燃料極層43aの第1集電層47aを形成したい部分に、マスキングテープ21を貼り付ける(図4(e))。
Thereafter, as shown in FIG. 4 (d), the current collecting fuel electrode layer tape 43 to which the active fuel electrode layer tape 43 a is attached is placed in the recess (groove) of the calcined insulating support molded body 41. Affixed in a horizontal stripe at a predetermined interval. At this time, one current collecting fuel electrode layer tape 43 and the other current collecting fuel electrode layer tape 43 are arranged with an interval of 3 to 20 mm in width. Further, the thickness of the collector fuel electrode layer tape 43 to which the active fuel electrode layer tape 43a is attached is the same as the depth of the recess, and the surface of the active fuel electrode layer tape 43a is an insulating support in which no recess is formed. The same plane as the plane of the molded body 41 is used.
Next, the active fuel electrode layer tape 43a and the current collecting fuel electrode layer tape 43 are dried and then calcined in a temperature range of 900 to 1100 ° C. (FIG. 4D). Then, the masking tape 21 is attached to the portion of the active fuel electrode layer 43a where the first current collecting layer 47a is to be formed (FIG. 4 (e)).

次に、この積層体を、8YSZにアクリル系バインダーとトルエンを加えてスラリーとした固体電解質溶液に漬けて、固体電解質溶液から取り出す。このディップにより、全面に固体電解質43bの層が塗布されるとともに、活性燃料極層テープ43aが貼り付けられた集電燃料極層テープ43(内側電極成形体)間にも絶縁性緻密層成形体53として固体電解質材料からなる層が形成されることになる。この状態で、1150〜1200℃、2〜4時間焼成する。この焼成中に、マスキングテープ21とその上に塗布された固体電解質43bの層を除去することができる(図4(f))。   Next, this laminate is immersed in a solid electrolyte solution that is a slurry obtained by adding an acrylic binder and toluene to 8YSZ, and is taken out from the solid electrolyte solution. By this dipping, a layer of the solid electrolyte 43b is applied to the entire surface, and an insulating dense layer molded body is also formed between the collector fuel electrode layer tape 43 (inner electrode molded body) to which the active fuel electrode layer tape 43a is attached. 53, a layer made of a solid electrolyte material is formed. In this state, baking is performed at 1150 to 1200 ° C. for 2 to 4 hours. During this baking, the layer of the masking tape 21 and the solid electrolyte 43b applied thereon can be removed (FIG. 4 (f)).

次に、ランタンコバルタイト(LaCoO3)とイソプロピルアルコールとを混合したスラリーを印刷し、厚さ10〜100μmの空気極層43cを形成する。そして、950〜1150℃、2〜5時間焼き付ける(図4(g))。
そして、第1集電層47aを形成したい部分にAg/Niからなる金属層のシートを貼り付け、さらにAgとガラスを含む金属ガラス層のシートを貼り付けて(図4(g))、その後、1000〜1200℃で熱処理を行う。
最後に、第2集電層47bを所定位置に塗布して、横縞型燃料電池セルを得ることができる(図4(i))。
Next, the slurry was mixed with lanthanum cobaltite (LaCoO 3) and isopropyl alcohol by printing, to form the air electrode layer 43c having a thickness of 10 to 100 [mu] m. Then, baking is performed at 950 to 1150 ° C. for 2 to 5 hours (FIG. 4G).
And the sheet | seat of the metal layer which consists of Ag / Ni is affixed on the part which wants to form the 1st current collection layer 47a, Furthermore, the sheet | seat of the metal glass layer containing Ag and glass is affixed (FIG.4 (g)), and then , Heat treatment is performed at 1000 to 1200 ° C.
Finally, the second current collecting layer 47b can be applied at a predetermined position to obtain a horizontally striped fuel cell (FIG. 4 (i)).

なお、上記形態では、固体電解質43bの層をディップにより形成した形態について説明したが、本発明では、固体電解質材料からなるスラリーをテープ化し、このテープを活性燃料極層テープ43aおよび絶縁支持体成形体41の表面に巻き付けても良い。この場合、予め、図5に示すように、固体電解質シート(絶縁性緻密層成形体53)と活性燃料
極層テープ43aが貼り付けられた集電燃料極層テープ43とを転写シート上に連結し、これを転写するか、もしくは活性燃料極層テープ43aが貼り付けられた集電燃料極層テープ43間に固体電解質材料のスラリーを充填する必要がある。
また、前記した各層の積層方法については、テープ積層、ペースト印刷、ディップ、および、スプレー吹きつけのいずれの積層法を用いてもよい。好ましくは、積層時の乾燥工程が短時間であり、工程の短時間化の観点から、ディップにより各層を積層する。
In the above embodiment, the embodiment in which the layer of the solid electrolyte 43b is formed by dipping has been described. However, in the present invention, the slurry made of the solid electrolyte material is taped, and this tape is formed into the active fuel electrode layer tape 43a and the insulating support body. It may be wound around the surface of the body 41. In this case, as shown in FIG. 5, a solid electrolyte sheet (insulating dense layer molded body 53) and a current collecting fuel electrode layer tape 43 to which an active fuel electrode layer tape 43a is attached are connected on a transfer sheet in advance. However, it is necessary to transfer this, or to fill the current collecting fuel electrode layer tape 43 to which the active fuel electrode layer tape 43a is attached with the slurry of the solid electrolyte material.
In addition, as for the lamination method of each layer described above, any lamination method of tape lamination, paste printing, dip, and spray spraying may be used. Preferably, the drying process at the time of lamination is short, and each layer is laminated by dipping from the viewpoint of shortening the process.

以上、本発明の実施の形態を説明したが、本発明は、前記の形態に限定されるものではない。例えば、前記の例では絶縁支持体11は、中空の板状で内部に複数のガス流路12を有するものとして説明したが、絶縁支持体11は、円筒状でもよく、ガス流路12の数は一つでもよく、さらに絶縁体であればその材質も問わない。さらに、上記形態では、活性燃料極層13aと集電燃料極層23を有する場合について説明したが、活性燃料極層13aだけの場合であっても、同様の効果を有する。その他、本発明の範囲内で種々の変更を施すことが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, in the above example, the insulating support 11 is described as a hollow plate having a plurality of gas flow paths 12 inside, but the insulating support 11 may be cylindrical and the number of gas flow paths 12 There may be only one, and any material may be used as long as it is an insulator. Further, in the above embodiment, the case where the active fuel electrode layer 13a and the current collecting fuel electrode layer 23 are provided has been described. In addition, various modifications can be made within the scope of the present invention.

本発明の燃料電池セル1の構造を示す一部破断斜視図である。It is a partially broken perspective view which shows the structure of the fuel battery cell 1 of this invention. 図2は図1のA−A線一部拡大断面図である。2 is a partially enlarged sectional view taken along line AA of FIG. (a)は本発明の絶縁支持体の製造工程図、(b)は絶縁支持体の斜視図である。(A) is a manufacturing-process figure of the insulation support body of this invention, (b) is a perspective view of an insulation support body. 本発明の燃料電池セルの製造工程図である。It is a manufacturing-process figure of the fuel battery cell of this invention. 本発明の絶縁支持体に積層する前の燃料極層および絶縁性緻密層からなるテープの斜視図である。It is a perspective view of the tape which consists of a fuel electrode layer and an insulating dense layer before laminating | stacking on the insulating support body of this invention. 従来の燃料電池セルの構造を示す断面図である。It is sectional drawing which shows the structure of the conventional fuel cell.

符号の説明Explanation of symbols

1 燃料電池セル
11 絶縁支持体
12 燃料ガス流路
13 発電素子(13a:活性燃料極層、13b:固体電解質、13c:空気極層)
17 素子間接続部材(17a:第1集電層、17b:第2集電層)
23 集電燃料極層
33 絶縁性緻密層
DESCRIPTION OF SYMBOLS 1 Fuel cell 11 Insulation support body 12 Fuel gas flow path 13 Electric power generation element (13a: Active fuel electrode layer, 13b: Solid electrolyte, 13c: Air electrode layer)
17 Inter-element connection member (17a: first current collecting layer, 17b: second current collecting layer)
23 current collecting fuel electrode layer 33 insulating dense layer

Claims (4)

ガス流路が内部に軸長方向に形成された電気絶縁性の棒状多孔質支持体の表面に、
内側電極、固体電解質および外側電極が順次積層された多層構造を有する発電素子をそれぞれ軸長方向に所定間隔をおいて形成し、
一方の前記発電素子の内側電極と、該一方の発電素子に隣り合う他方の前記発電素子の外側電極とを電気的に接続し、前記複数の発電素子が直列に接続されている横縞型燃料電池セルにおいて、
前記多孔質支持体の表面に軸長方向に凹部が連続して形成されており、該凹部に前記内側電極と絶縁性緻密層が交互に埋設され、さらに前記固体電解質が前記多孔質支持体、前記内側電極および前記絶縁性緻密層の表面に積層され、前記固体電解質の前記内側電極に対向する部位の外表面に前記外側電極が積層されていることを特徴とする横縞型燃料電池セル。
On the surface of the electrically insulating rod-like porous support body in which the gas flow path is formed in the axial direction inside,
A power generation element having a multilayer structure in which an inner electrode, a solid electrolyte, and an outer electrode are sequentially laminated is formed at predetermined intervals in the axial length direction,
A horizontally striped fuel cell in which an inner electrode of one of the power generating elements and an outer electrode of the other power generating element adjacent to the one power generating element are electrically connected, and the plurality of power generating elements are connected in series In the cell
Concave portions are continuously formed in the axial length direction on the surface of the porous support, and the inner electrodes and insulating dense layers are alternately embedded in the concave portions, and the solid electrolyte is the porous support, A horizontal stripe fuel cell, wherein the fuel cell is stacked on the inner electrode and the insulating dense layer, and the outer electrode is stacked on an outer surface of the solid electrolyte facing the inner electrode.
前記絶縁性緻密層は、Mg、Ca及びSrを含有していないことを特徴とする請求項1記載の横縞型燃料電池セル。   The horizontal stripe fuel cell according to claim 1, wherein the insulating dense layer does not contain Mg, Ca, and Sr. 前記絶縁性緻密層は、固体電解質材料からなることを特徴とする請求項1または2記載の横縞型燃料電池セル。   3. The horizontal stripe fuel cell according to claim 1, wherein the insulating dense layer is made of a solid electrolyte material. ガス流路が内部に軸長方向に形成された電気絶縁性材料からなる棒状多孔質支持体成形体の表面に、軸長方向に凹部を形成する工程と、
該凹部に内側電極材料を軸長方向に所定間隔をおいて埋め込み複数の内側電極成形体を形成する工程と、
該内側電極成形体及び前記多孔質支持体成形体表面並びに前記凹部内に固体電解質材料を印刷し、前記内側電極成形体間に固体電解質材料が充填された絶縁性緻密層成形体を形成すると共に、前記内側電極成形体表面に固体電解質成形体を形成する工程と、
前記支持体成形体、前記内側電極成形体、前記固体電解質成形体及び前記内側電極成形体間に形成された絶縁性緻密層成形体を同時に焼成する工程とを具備することを特徴とする横縞型燃料電池セルの製法。
Forming a recess in the axial direction on the surface of the rod-shaped porous support molded body made of an electrically insulating material in which the gas flow path is formed in the axial direction;
A step of embedding an inner electrode material in the recess at predetermined intervals in the axial length direction to form a plurality of inner electrode molded bodies;
A solid electrolyte material is printed on the inner electrode molded body and the surface of the porous support molded body and in the recesses, thereby forming an insulating dense layer molded body filled with the solid electrolyte material between the inner electrode molded bodies. Forming a solid electrolyte molded body on the inner electrode molded body surface;
A step of simultaneously firing the support molded body, the inner electrode molded body, the solid electrolyte molded body, and the insulating dense layer molded body formed between the inner electrode molded bodies. Manufacturing method of fuel cell.
JP2007067543A 2007-03-15 2007-03-15 Horizontally-striped fuel cell and method for producing the same Active JP5118865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067543A JP5118865B2 (en) 2007-03-15 2007-03-15 Horizontally-striped fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067543A JP5118865B2 (en) 2007-03-15 2007-03-15 Horizontally-striped fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008226789A true JP2008226789A (en) 2008-09-25
JP5118865B2 JP5118865B2 (en) 2013-01-16

Family

ID=39845139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067543A Active JP5118865B2 (en) 2007-03-15 2007-03-15 Horizontally-striped fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5118865B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023328A (en) * 2009-07-13 2011-02-03 Samsung Electro-Mechanics Co Ltd Fuel cell with one-piece support
JP4800439B1 (en) * 2010-07-15 2011-10-26 日本碍子株式会社 Fuel cell structure
WO2012008385A1 (en) 2010-07-15 2012-01-19 日本碍子株式会社 Fuel cell structural body
JP2012043779A (en) * 2010-07-23 2012-03-01 Ngk Insulators Ltd Fuel cell structure
WO2012128201A1 (en) 2011-03-18 2012-09-27 日本碍子株式会社 Solid oxide fuel cell
JP5116181B1 (en) * 2011-10-14 2013-01-09 日本碍子株式会社 Fuel cell stack structure
JP5198675B1 (en) * 2011-10-25 2013-05-15 日本碍子株式会社 Fuel cell structure
JP2013093178A (en) * 2011-10-25 2013-05-16 Ngk Insulators Ltd Fuel cell structure
JP2013110093A (en) * 2011-10-25 2013-06-06 Ngk Insulators Ltd Fuel cell structure
JP2013110090A (en) * 2011-10-25 2013-06-06 Ngk Insulators Ltd Fuel cell structure
JP5587479B1 (en) * 2013-09-24 2014-09-10 日本碍子株式会社 Fuel cell
JP5883536B1 (en) * 2014-12-25 2016-03-15 日本碍子株式会社 Fuel cell
US9954232B2 (en) 2011-10-05 2018-04-24 Ngk Insulators, Ltd. Fuel cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235315A (en) * 1994-02-23 1995-09-05 Fujikura Ltd Cylindrical solid electrolyte fuel cell
JP2000106192A (en) * 1998-07-27 2000-04-11 Mitsubishi Heavy Ind Ltd Substrate tube for fuel cell and its material
JP2002329505A (en) * 2001-04-27 2002-11-15 Mitsubishi Heavy Ind Ltd Method of manufacturing fuel cell tube
JP2002358984A (en) * 2001-06-01 2002-12-13 Mitsubishi Heavy Ind Ltd Base pipe for fuel cell, material of base pipe for fuel cell, and manufacturing method of fuel cell cell pipe
JP2003115301A (en) * 2001-10-03 2003-04-18 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte-type fuel cell
JP2003117917A (en) * 2001-10-10 2003-04-23 Mitsubishi Heavy Ind Ltd Apparatus and method for conveying and molding cylindrical product as well as apparatus and method for conveying and film forming cylindrical product
WO2004088783A1 (en) * 2003-03-31 2004-10-14 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
JP2005174722A (en) * 2003-12-10 2005-06-30 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell, water electrolytic cell, and manufacturing method of solid oxide fuel cell
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2006019059A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solid electrolyte fuel battery cell, cell stack, and fuel battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235315A (en) * 1994-02-23 1995-09-05 Fujikura Ltd Cylindrical solid electrolyte fuel cell
JP2000106192A (en) * 1998-07-27 2000-04-11 Mitsubishi Heavy Ind Ltd Substrate tube for fuel cell and its material
JP2002329505A (en) * 2001-04-27 2002-11-15 Mitsubishi Heavy Ind Ltd Method of manufacturing fuel cell tube
JP2002358984A (en) * 2001-06-01 2002-12-13 Mitsubishi Heavy Ind Ltd Base pipe for fuel cell, material of base pipe for fuel cell, and manufacturing method of fuel cell cell pipe
JP2003115301A (en) * 2001-10-03 2003-04-18 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte-type fuel cell
JP2003117917A (en) * 2001-10-10 2003-04-23 Mitsubishi Heavy Ind Ltd Apparatus and method for conveying and molding cylindrical product as well as apparatus and method for conveying and film forming cylindrical product
WO2004088783A1 (en) * 2003-03-31 2004-10-14 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
JP2005174722A (en) * 2003-12-10 2005-06-30 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell, water electrolytic cell, and manufacturing method of solid oxide fuel cell
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2006019059A (en) * 2004-06-30 2006-01-19 Kyocera Corp Solid electrolyte fuel battery cell, cell stack, and fuel battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023328A (en) * 2009-07-13 2011-02-03 Samsung Electro-Mechanics Co Ltd Fuel cell with one-piece support
US8703352B2 (en) 2010-07-15 2014-04-22 Ngk Insulators, Ltd. Solid oxide fuel cell having a closed recessed structure
EP2592682A4 (en) * 2010-07-15 2013-06-12 Ngk Insulators Ltd Fuel cell structural body
WO2012008385A1 (en) 2010-07-15 2012-01-19 日本碍子株式会社 Fuel cell structural body
EP2592682A1 (en) * 2010-07-15 2013-05-15 NGK Insulators, Ltd. Fuel cell structural body
JP2012124134A (en) * 2010-07-15 2012-06-28 Ngk Insulators Ltd Structure of fuel cell
JP4800439B1 (en) * 2010-07-15 2011-10-26 日本碍子株式会社 Fuel cell structure
WO2012008386A1 (en) 2010-07-15 2012-01-19 日本碍子株式会社 Fuel cell structural body
US9005844B2 (en) 2010-07-15 2015-04-14 Ngk Insulators, Ltd. Structure of solid oxide fuel cell
JP2012043779A (en) * 2010-07-23 2012-03-01 Ngk Insulators Ltd Fuel cell structure
WO2012128201A1 (en) 2011-03-18 2012-09-27 日本碍子株式会社 Solid oxide fuel cell
US8945789B2 (en) 2011-03-18 2015-02-03 Ngk Insulators, Ltd. Solid oxide fuel cell
US9954232B2 (en) 2011-10-05 2018-04-24 Ngk Insulators, Ltd. Fuel cell
JP5116181B1 (en) * 2011-10-14 2013-01-09 日本碍子株式会社 Fuel cell stack structure
JP2013110093A (en) * 2011-10-25 2013-06-06 Ngk Insulators Ltd Fuel cell structure
JP5198675B1 (en) * 2011-10-25 2013-05-15 日本碍子株式会社 Fuel cell structure
JP2013110090A (en) * 2011-10-25 2013-06-06 Ngk Insulators Ltd Fuel cell structure
JP2013110115A (en) * 2011-10-25 2013-06-06 Ngk Insulators Ltd Fuel cell structure
JP2013093178A (en) * 2011-10-25 2013-05-16 Ngk Insulators Ltd Fuel cell structure
JP5587479B1 (en) * 2013-09-24 2014-09-10 日本碍子株式会社 Fuel cell
JP5883536B1 (en) * 2014-12-25 2016-03-15 日本碍子株式会社 Fuel cell

Also Published As

Publication number Publication date
JP5118865B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5118865B2 (en) Horizontally-striped fuel cell and method for producing the same
JP5175527B2 (en) Cell stack and fuel cell
JP5132878B2 (en) Fuel cell, fuel cell stack and fuel cell
JP5175461B2 (en) Horizontally-striped fuel cell and fuel cell
JP5080951B2 (en) Horizontal stripe fuel cell stack and fuel cell
JP4718959B2 (en) Horizontal stripe fuel cell
JP2013101924A (en) Stack structure for fuel cell
JP4741815B2 (en) Cell stack and fuel cell
JP5192723B2 (en) Horizontally-striped fuel cell and fuel cell
JP5241663B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP5162724B1 (en) Bonding material and fuel cell stack structure using the bonding material
JP2008186665A (en) Unit cell of fuel cell, cell stack and fuel cell
JP5417543B1 (en) Horizontal stripe fuel cell
JP2004179071A (en) Cell for fuel cell, and fuel cell
JP2008192327A (en) Horizontally striped cell of fuel battery, cell stack, and fuel battery
JP4851692B2 (en) Solid electrolyte fuel cell stack, bundle and fuel cell
JP5132879B2 (en) Horizontal stripe fuel cell and fuel cell
JP2005093241A (en) Solid oxide fuel cell
JP4465175B2 (en) Solid electrolyte fuel cell
JP5179131B2 (en) Horizontal stripe fuel cell and fuel cell
JP2007250368A (en) Lateral stripe type fuel cell and fuel cell
JP5449076B2 (en) Fuel cell
JP5179153B2 (en) Horizontally-striped fuel cell, cell stack, and fuel cell
JP2007149509A (en) Fuel battery cell, and fuel cell
JP4925574B2 (en) Fuel cell and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Ref document number: 5118865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350