JP2000106192A - Substrate tube for fuel cell and its material - Google Patents

Substrate tube for fuel cell and its material

Info

Publication number
JP2000106192A
JP2000106192A JP11204278A JP20427899A JP2000106192A JP 2000106192 A JP2000106192 A JP 2000106192A JP 11204278 A JP11204278 A JP 11204278A JP 20427899 A JP20427899 A JP 20427899A JP 2000106192 A JP2000106192 A JP 2000106192A
Authority
JP
Japan
Prior art keywords
base tube
fuel cell
weight
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11204278A
Other languages
Japanese (ja)
Other versions
JP3631923B2 (en
Inventor
Hiroshi Tsukuda
洋 佃
Akihiro Yamashita
晃弘 山下
Kenichiro Kosaka
健一郎 小阪
Osao Kudome
長生 久留
Yoshiharu Watanabe
義治 渡邉
Toru Hojo
北條  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20427899A priority Critical patent/JP3631923B2/en
Priority to US09/490,857 priority patent/US6379832B1/en
Priority to DE60010811T priority patent/DE60010811T2/en
Priority to EP00101442A priority patent/EP1071150B1/en
Publication of JP2000106192A publication Critical patent/JP2000106192A/en
Application granted granted Critical
Publication of JP3631923B2 publication Critical patent/JP3631923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate tube for improving a power generating characteristic, avoiding damages, even in the time of high temperature rise rate, and providing a high utilization ratio of fuel, by adding and mixing coarse grains into a substrate tube material of the fuel cell, realizing uneven contraction at sintering, and by heightening porosity of the substrate tube. SOLUTION: A mixture, obtained by adding coarse grains into the substrate tube material, is used as a composite material for a substrate tube, and the porosity can be heightened through uneven contraction at sintering, to enlarge the average pore diameter, thus gas permeability can be improved. Here, the size of the coarse grains added is set at more than 5 μm without the particular upper limit, also it is also effective at about 500 μm. Although the compounding ratio of the coarse grains is not particularly limited, porosity is improved in the case of the compounding ratio of 10-40 wt.%. However it will not improve further, even if the coarse grains are added beyond 40 wt.%. The sintering temperature at production of the substrate tube is preferably about 1,300-1,500 deg.C. At a temperature below 1,300 deg.C, an electrolyte and an inter connector are densified inadequately. While the densification of the fuel electrode is advanced in the sintering at a temperature exceeding 1,500 deg.C, the preferable sintering temperature is set at 1,300-1,500 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は基体管の気孔率及び
気孔径を向上させ、燃料電池の発電特性の向上を図った
燃料電池の基体管及びその材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a base tube for a fuel cell, which has improved porosity and pore diameter of the base tube to improve power generation characteristics of the fuel cell, and a material thereof.

【0002】[0002]

【従来の技術】図1に溶射型の固体電解質型燃料電池の
基体管の概略を示す。図1に示すように、溶射型の固体
電解質型燃料電池(SOFC)は、カルシア安定化ジル
コニア(CSZ)多孔質円筒管の基体管1に、燃料極側
電極2としてNiとイットリア安定化ジルコニア(YS
Z)とのサーメットをプラズマ溶射で成膜する。次いで
この上に電解質3として酸素イオン伝導性のYSZをプ
ラズマ溶射で成膜する。その後、この上に空気側電極4
としてLaCoO3 をアセチレンフレーム溶射で成膜し
て燃料電池を構成する。最後に、NiAlとアルミナの
サーメットで成膜した導電性接続材(インタコネクタ)
5で上記燃料極側電極2と空気側電極4とを直列に接続
している。
2. Description of the Related Art FIG. 1 schematically shows a base tube of a thermal spray type solid oxide fuel cell. As shown in FIG. 1, a thermal spray type solid oxide fuel cell (SOFC) is composed of a porous cylindrical tube of calcia-stabilized zirconia (CSZ) and a base tube 1 of Ni and yttria-stabilized zirconia (fuel electrode side electrode 2). YS
C) is formed by plasma spraying. Next, YSZ having oxygen ion conductivity is formed thereon as the electrolyte 3 by plasma spraying. Then, the air side electrode 4
The fuel cell is formed by depositing LaCoO 3 by acetylene flame spraying. Finally, a conductive connecting material (interconnector) formed with a cermet of NiAl and alumina
5, the fuel electrode 2 and the air electrode 4 are connected in series.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来技
術の溶射法による燃料電池の製造は手間がかかると共に
製造コストがかかり、低コスト化が望まれている。
However, the production of a fuel cell by the conventional thermal spraying method is troublesome and requires a high production cost, and it is desired to reduce the cost.

【0004】このため、焼結回数の少ない、基体管と燃
料極及び電解質を一体に焼結する共焼結型の燃料電池の
開発がなされているが、発電特性に対して基体管のガス
透過性が充分でないという、問題がある。
For this reason, a co-sintering type fuel cell has been developed in which the number of times of sintering is small, and the base tube, the fuel electrode and the electrolyte are integrally sintered. There is a problem that the sex is not enough.

【0005】また、従来技術の基体管の問題として、熱
サイクル時の速い昇降温速度で著しく劣化する点があげ
られる。
Another problem with the prior art base tube is that it deteriorates significantly at a high temperature rise / fall rate during a thermal cycle.

【0006】すなわち、50℃/時以下の昇降温速度の
場合には熱サイクル前後で性能変化が認められないが、
50℃/時以上の昇降温速度では熱サイクル1回当たり
10%程度の出力低下が発生する場合がある。
That is, when the temperature rises and falls at a rate of 50 ° C./hour or less, no change in performance is observed before and after the heat cycle.
At a heating / cooling rate of 50 ° C./hour or more, the output may decrease by about 10% per heat cycle.

【0007】これは、燃料電池を集合させて用いる場合
に、昇降温速度を極めて緩やかにしなければ、燃料電池
集合体の一部で50℃/時以上の昇降温速度になる部分
が発生し、セルを損傷するおそれがある。
[0007] This is because, when the fuel cells are assembled and used, if the temperature rise / fall rate is not made very slow, a part of the fuel cell assembly will have a temperature rise / fall rate of 50 ° C / hour or more, The cell may be damaged.

【0008】したがって、200℃/時程度の速い昇降
温速度でも損傷しないセルが望まれている。
Therefore, a cell which is not damaged even at a high temperature rising / falling rate of about 200 ° C./hour is desired.

【0009】さらに,基体管の課題として,燃料利用率
の向上があげられる。従来技術の基体管の燃料利用率は
投入した燃料の70%程度であるが,燃料利用率の向上
が図れれば燃料電池の効率を向上できる。
Another problem of the base tube is to improve the fuel utilization. The fuel utilization of the conventional base tube is about 70% of the injected fuel, but if the fuel utilization is improved, the efficiency of the fuel cell can be improved.

【0010】本発明は、上記問題に鑑み、基一体焼結型
の燃料電池の製造に際し、基体管の気孔率及び気孔径を
向上させ、燃料電池の発電特性の向上を図ると共に、速
い昇降温速度でも損傷せず、さらに燃料利用率の高い燃
料電池用基体管及びその材料を提供することを課題とす
る。
In view of the above problems, the present invention improves the porosity and pore diameter of a base tube when manufacturing a fuel cell of a base integrated sintering type, thereby improving the power generation characteristics of the fuel cell and increasing the temperature. An object of the present invention is to provide a fuel cell base tube which is not damaged even at a high speed and has a high fuel utilization rate, and a material therefor.

【0011】[0011]

【課題を解決するための手段】前記課題を解決する本発
明の[請求項1]の発明は、燃料電池の基体管原料に粗
粒を添加・混合し、焼結時に収縮を不均一化し、基体管
の気孔率を高くすることを特徴とする。
According to the first aspect of the present invention, which solves the above-mentioned problems, coarse particles are added and mixed to a raw material for a base tube of a fuel cell to make shrinkage nonuniform during sintering. The porosity of the base tube is increased.

【0012】[請求項2]の発明は、請求項1におい
て、上記基体管原料の平均粒径が0.5〜2μmであり、
上記粗粒の粒径が5μm以上であることを特徴とする。
The invention according to claim 2 is the invention according to claim 1, wherein the base tube raw material has an average particle size of 0.5 to 2 μm,
The coarse particles have a particle diameter of 5 μm or more.

【0013】[請求項3]の発明は、請求項1又は2に
おいて、上記添加粗粒が10〜40重量%配合してなる
ことを特徴とする。
[0013] The invention of claim 3 is characterized in that, in claim 1 or 2, the added coarse particles are blended in an amount of 10 to 40% by weight.

【0014】[請求項4]の発明は、請求項1乃至3に
おいて、上記基体管原料がカルシア安定化ジルコニア
(CSZ)であることを特徴とする。
According to a fourth aspect of the present invention, in the first to third aspects, the base tube material is calcia stabilized zirconia (CSZ).

【0015】[請求項5]の発明は、燃料電池の基体管
原料が微粒のカルシア安定化ジルコニア(CSZ)であ
り、該基体管原料と同一粒径のNiO,CoO,Fe
O,Fe2 3 ,CaTiO2 ,SrTiO2 ,Ba2
TiO3 のいずれか一種若しくは2種以上より選ばれて
なる添加微粒を混合し、焼結時に収縮を不均一化し、気
孔率を高くすることを特徴とする。
The invention according to claim 5 is that the raw material for the base tube of the fuel cell is fine calcia-stabilized zirconia (CSZ), and NiO, CoO, Fe having the same particle size as the raw material for the base tube.
O, Fe 2 O 3 , CaTiO 2 , SrTiO 2 , Ba 2
It is characterized in that added fine particles selected from one or two or more of TiO 3 are mixed to make the shrinkage non-uniform during sintering and to increase the porosity.

【0016】[請求項6]の発明は、請求項5におい
て、上記基体管原料の平均粒径が0.5〜2μmであるこ
とを特徴とする。
A sixth aspect of the present invention is characterized in that, in the fifth aspect, the base tube material has an average particle size of 0.5 to 2 μm.

【0017】[請求項7]の発明は、請求項5又は6に
おいて、上記添加微粒が10〜40重量%配合してなる
ことを特徴とする。
[0017] The invention of claim 7 is characterized in that, in claim 5 or 6, the added fine particles are blended in an amount of 10 to 40% by weight.

【0018】[請求項8]の発明は、燃料電池の基体管
原料が平均粒径0.5〜2μmのカルシア安定化ジルコニ
ア(CSZ)であり、NiO,CoO,FeO,Fe2
3,CaTiO2 ,SrTiO2 ,Ba2 TiO3
いずれか一種若しくは2種以上より選ばれてなる5μm
以上の添加粗粒を添加・混合し、焼結時に収縮を不均一
化し、気孔率を高くすることを特徴とする。
[0018] The invention of claim 8 is that the raw material for the base tube of the fuel cell is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 µm, and NiO, CoO, FeO, Fe 2
5 μm selected from one or more of O 3 , CaTiO 2 , SrTiO 2 , and Ba 2 TiO 3
The above additive coarse particles are added and mixed to make the shrinkage non-uniform during sintering and increase the porosity.

【0019】[請求項9]の発明は、請求項8におい
て、上記粗粒が10〜40重量%配合してなることを特
徴とする。
[0019] The invention of claim 9 is characterized in that, in claim 8, the coarse particles are blended in an amount of 10 to 40% by weight.

【0020】[請求項10]の発明は、燃料電池の基体
管原料が平均粒径0.5〜2μmのカルシア安定化ジルコ
ニア(CSZ)であり、NiO,CoO,FeO,Fe
2 3 ,CaTiO2 ,SrTiO2 ,Ba2 TiO3
のいずれか一種若しくは2種以上より選ばれてなる0.5
μm〜3μmの添加微粒と、NiO,CoO,FeO,
Fe2 3 ,CaTiO2 ,SrTiO2 ,Ba2 Ti
3 のいずれか一種若しくは2種以上より選ばれてなる
5μm以上の添加粗粒とを添加・混合し、焼結時に収縮
を不均一化し、気孔率を高くすることを特徴とする。
[0020] The invention of claim 10 is a fuel cell substrate.
Tube material is calcia-stabilized zircon having an average particle size of 0.5 to 2 μm
Near (CSZ), NiO, CoO, FeO, Fe
TwoO Three, CaTiOTwo, SrTiOTwo, BaTwoTiOThree
0.5 selected from any one or more of
μm to 3 μm added fine particles, NiO, CoO, FeO,
FeTwoOThree, CaTiOTwo, SrTiOTwo, BaTwoTi
OThreeSelected from one or more of the following
Add and mix with coarse particles of 5μm or more and shrink during sintering
Are characterized by making the porosity non-uniform and increasing the porosity.

【0021】[請求項11]の発明は、請求項10にお
いて、上記添加微粒が5〜30重量%、上記添加粗粒が
5〜30重量%配合してなることを特徴とする。
The invention according to claim 11 is characterized in that, in claim 10, the added fine particles are blended in an amount of 5 to 30% by weight, and the added coarse particles are incorporated in an amount of 5 to 30% by weight.

【0022】[請求項12]の発明は、表面に燃料極側
電極、電解質膜、酸化剤側電極を順次積層してなる固体
電解質燃料電池用基体管の材料であって、基体管原料が
平均粒径0.5〜2μmのカルシア安定化ジルコニア(C
SZ)であり、NiO,CoO,FeO,Fe2 3
CaTiO2 ,SrTiO2 ,Ba2 TiO3 のいずれ
か一種若しくは2種以上より選ばれてなる5μm以上の
添加粗粒を添加・混合してなることを特徴とする。
The invention according to claim 12 is a material for a base tube for a solid electrolyte fuel cell having a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode sequentially laminated on the surface, wherein the base tube material is an average. Calcia-stabilized zirconia having a particle size of 0.5 to 2 μm (C
SZ), NiO, CoO, FeO, Fe 2 O 3 ,
It is characterized in that coarse particles of 5 μm or more selected from one or two or more of CaTiO 2 , SrTiO 2 and Ba 2 TiO 3 are added and mixed.

【0023】[請求項13]の発明は、請求項12にお
いて、上記粗粒が10〜40重量%配合してなることを
特徴とする。
A thirteenth aspect of the present invention is characterized in that, in the twelfth aspect, the coarse particles are blended in an amount of 10 to 40% by weight.

【0024】[請求項14]の発明は、表面に燃料極側
電極、電解質膜、酸化剤側電極を順次積層してなる固体
電解質燃料電池用基体管の材料であって、平均粒径0.5
〜2μmのカルシア安定化ジルコニア(CSZ)に対し
て、添加微粒として平均粒径0.5から3μmのNiO,
CoO, Fe2 3の1種類もしくは2種類以上を5重
量%から30重量%と、添加粗粒として平均粒径5μm
以上のNiO, CoO, Fe2 3,CaO安定化Zr
2 のいずれか1種若しくは2種以上を5重量%から3
0重量%とを添加・混合し、焼結時に収縮を不均一化
し、基体管の気孔率を高くすることを特徴とする。
The invention according to claim 14 is a material for a base tube for a solid electrolyte fuel cell, which is formed by sequentially laminating a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode on the surface, and has an average particle diameter of 0.1. 5
Calcium-stabilized zirconia (CSZ) having a mean particle size of 0.5 to 3 μm,
One or more of CoO and Fe 2 O 3 is 5 to 30% by weight, and the added coarse particles have an average particle size of 5 μm.
NiO, CoO, Fe 2 O 3 , CaO stabilized Zr
Any one or more of O 2 from 5% by weight to 3%
0% by weight is added and mixed to make the shrinkage non-uniform during sintering and to increase the porosity of the base tube.

【0025】[請求項15]の発明は、表面に燃料極側
電極、電解質膜、酸化剤側電極を順次積層してなる固体
電解質燃料電池用基体管の材料であって、平均粒径0.5
〜2μmのカルシア安定化ジルコニア(CSZ)に対し
て、平均粒径0.5μm以上のCaTiO3,SrTiO3,
BaTiO3 ,CaO安定化ZrO2 のいずれか1種若
しくは2種以上を5重量%から30重量%と、平均粒径
5μm以上のNiO,CoO, Fe2 3のいずれか1種
若しくは2種以上を5重量%から30重量%とを添加・
混合し、焼結時に収縮を不均一化し、基体管の気孔率を
高くすることを特徴とする。
The invention according to claim 15 is a material for a base tube for a solid electrolyte fuel cell, in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface, and has an average particle diameter of 0.1. 5
For calcia-stabilized zirconia (CSZ) of ~ 2 μm, CaTiO 3 , SrTiO 3 ,
One or more of BaTiO 3 and CaO-stabilized ZrO 2, in an amount of 5 to 30% by weight, and one or more of NiO, CoO, and Fe 2 O 3 having an average particle size of 5 μm or more From 5% to 30% by weight
It is characterized by mixing, making shrinkage non-uniform during sintering, and increasing the porosity of the base tube.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施形態を説明す
るが、本発明はこれに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

【0027】(1) 本発明の基体管用の複合材料は、基体
管原料に粗粒を添加・混合したものを用い、焼結時に収
縮を不均一化し、気孔率を高くしたものである。この結
果、本発明によれば、焼結時に収縮を均一化し気孔率を
高くしてガス透過性を向上させている。する。本発明に
より基体管の気孔率を高くすることができ、また基体管
の平均気孔径を大きくすることができ、この結果ガス透
過性の向上を図ることができる。
(1) The composite material for a base tube of the present invention is obtained by adding and mixing coarse particles to a base tube material, and has a non-uniform shrinkage during sintering and a high porosity. As a result, according to the present invention, shrinkage is made uniform during sintering, the porosity is increased, and the gas permeability is improved. I do. According to the present invention, the porosity of the base tube can be increased, and the average pore diameter of the base tube can be increased. As a result, the gas permeability can be improved.

【0028】ここで、本発明の基体管材料としては、平
均粒径が0.5〜2μm程度の微粒のカルシア安定化ジル
コニア(CSZ)であり、粗粒としては5μm以上、特
に好ましくは10μm程度のカルシア安定化ジルコニア
(CSZ)を混合するのがよい。
The base tube material of the present invention is a fine calcia-stabilized zirconia (CSZ) having an average particle size of about 0.5 to 2 μm, and a coarse particle of 5 μm or more, particularly preferably about 10 μm. Of calcia-stabilized zirconia (CSZ).

【0029】本発明の基体管の原料は特に限定されるも
のではないが、上記カルシア安定化ジルコニア(CS
Z)の代わりに、例えばMgO−MgAl2 4 ,Ca
TiO 3 −MgAl2 4 ,MgTiO3 −MgAl2
4 ,BaTiO3 −MgAl 2 4 等を挙げることが
できる。
The raw material for the base tube of the present invention is not particularly limited.
However, the above-mentioned calcia-stabilized zirconia (CS
Instead of Z), for example, MgO—MgAlTwoOFour, Ca
TiO Three-MgAlTwoOFour, MgTiOThree-MgAlTwo
OFour, BaTiOThree-MgAl TwoOFourEtc.
it can.

【0030】なお、添加する粗粒は5μm以上のもので
あれば、その粒径の上限は特に限定されるものではない
が、おおよそ500μm程度の場合でも効果が発現でき
る。
The upper limit of the particle size is not particularly limited as long as the coarse particles to be added have a particle size of 5 μm or more, but the effect can be exhibited even when the particle size is approximately 500 μm.

【0031】上記粗粒の配合は、特に限定されるもので
はないが、好適には10〜40重量%配合すればよい。
これは、10重量%未満であると、気孔率の向上が少な
く、一方40重量%を超えて添加しても更なる向上が図
れないからである。
The composition of the coarse particles is not particularly limited, but is preferably 10 to 40% by weight.
This is because if the content is less than 10% by weight, the porosity is little improved, and if it exceeds 40% by weight, no further improvement can be achieved.

【0032】また、本発明の基体管の製造時の焼結温度
は1300℃〜1500℃程度が好ましい。これは、焼
結温度が1300℃未満であると、電解質,インターコ
ネクタの緻密化が不充分となるので好ましくなく、一方
1500℃を超えた焼結では燃料極の緻密化が進行する
点で好ましくないからである。
The sintering temperature at the time of manufacturing the base tube of the present invention is preferably about 1300 ° C. to 1500 ° C. If the sintering temperature is lower than 1300 ° C., the densification of the electrolyte and the interconnector becomes inadequate. On the other hand, if the sintering temperature exceeds 1500 ° C., the densification of the fuel electrode proceeds. Because there is no.

【0033】(2) 本発明の基体材は、基体管の原料であ
る上記カルシア安定化ジルコニア(CSZ)に、金属酸
化物を添加させることで、発電時に該金属酸化物が還元
収縮し、新たに気孔を発生し、且つ気孔径を大きくさ
せ、ガス透過性を向上させている。この結果、本発明に
より気孔率を高くすることができ、また平均気孔径を大
きくすることができ、ガス透過性の向上を図ることがで
きる。
(2) The base material of the present invention is obtained by adding a metal oxide to the calcia-stabilized zirconia (CSZ), which is a raw material of the base tube, to reduce and shrink the metal oxide during power generation, In this case, pores are generated, the pore diameter is increased, and gas permeability is improved. As a result, according to the present invention, the porosity can be increased, the average pore diameter can be increased, and the gas permeability can be improved.

【0034】ここで、添加する金属酸化物は、NiO,
CoO,FeO,Fe2 3 のいずれか一種若しくは2
種以上より選ばれてなる添加微粒であり、この金属酸化
物の添加により、焼結時に収縮を不均一化し、気孔率を
高くすることができる。
Here, the metal oxide to be added is NiO,
Any one of CoO, FeO, Fe 2 O 3 or 2
These are added fine particles selected from at least one kind, and the addition of the metal oxide makes the shrinkage non-uniform at the time of sintering, thereby increasing the porosity.

【0035】また、上記金属酸化物の粒径を原料と同一
径とせずに、5μm以上、特に好ましくは20μm程度
のものを混合すると、金属酸化物の添加した発電時に還
元される収縮作用と、添加金属酸化物の粒径を大きくし
たことによる焼結時における収縮作用との相乗効果によ
り、気孔率の向上並びに気孔径の向上を図ることができ
る。
If the metal oxide is not mixed with the raw material having the same particle diameter as that of the raw material, but has a particle diameter of 5 μm or more, particularly preferably about 20 μm, the shrinkage effect reduced at the time of power generation with the addition of the metal oxide is obtained. By increasing the particle size of the added metal oxide and synergistic effect with the shrinkage action at the time of sintering, the porosity and the pore diameter can be improved.

【0036】上記金属酸化物の配合は、特に限定される
ものではないが、好適には5〜40重量%、好ましくは
10〜30重量%配合すればよい。これは、5重量%未
満であると、気孔率の向上が少なく、一方40重量%を
超えて添加しても更なる向上が図れないからである。
The mixing ratio of the metal oxide is not particularly limited, but may be 5 to 40% by weight, preferably 10 to 30% by weight. This is because if it is less than 5% by weight, the porosity is little improved, while if it exceeds 40% by weight, no further improvement can be achieved.

【0037】また、添加する酸化金属を微粒のものと、
粗粒のものとを所定割合添加することにより、気孔率の
向上、セル発電効率の向上及び熱サイクル時のリーク増
加率の抑制、燃料利用率の向上を図ることができる。
The metal oxide to be added may be finely divided,
By adding a predetermined amount of coarse particles, it is possible to improve the porosity, improve the power generation efficiency of the cell, suppress the rate of increase in leak during thermal cycling, and improve the fuel utilization rate.

【0038】すなわち、本発明の基体管材料は、基体管
原料のCaO安定化ZrO2 に対して、添加微粒として
平均粒径0.5から3μmのNiO, CoO, Fe2 3
の1種類もしくは2種類以上を5重量%から30重量%
と、添加粗粒として平均粒径5μm以上のNiO, Co
O, Fe2 3,CaO安定化ZrO2 のいずれか1種
若しくは2種以上を5重量%から30重量%とを添加し
てなるものである。
That is, the base tube material of the present invention is obtained by adding NiO, CoO, Fe 2 O 3 having an average particle size of 0.5 to 3 μm to CaO-stabilized ZrO 2 as a base tube raw material.
5% to 30% by weight of one or more types
And NiO, Co having an average particle size of 5 μm or more as added coarse particles
One or more of O, Fe 2 O 3 and CaO-stabilized ZrO 2 are added in an amount of 5 to 30% by weight.

【0039】また、本発明の基体管材料は、基体管原料
のCaO安定化ZrO2 に対して、平均粒径0.5μm以
上のCaTiO3,SrTiO3,BaTiO3 等のチタニ
ア系複合酸化物、CaO安定化ZrO2 のいずれか1種
若しくは2種以上を5重量%から30重量%と、平均粒
径5μm以上のNiO, CoO, Fe2 3のいずれか
1種若しくは2種以上を5重量%から30重量%とを添
加してなるものである。
Further, the base tube material of the present invention comprises a titania-based composite oxide such as CaTiO 3 , SrTiO 3 , and BaTiO 3 having an average particle size of 0.5 μm or more with respect to CaO-stabilized ZrO 2 as a base tube material. 5% to 30% by weight of one or more of CaO-stabilized ZrO 2 and 5% by weight of one or more of NiO, CoO, and Fe 2 O 3 having an average particle size of 5 μm or more % To 30% by weight.

【0040】ここで、上記添加する金属酸化物の粒径
は、NiO,CoO,FeO,Fe23 等の場合に
は、200μm程度を上限とする。また、CaTi
2 ,SrTiO2 ,Ba2 TiO3 の場合には、50
0〜700μm程度を上限とする。これは、燃料電池の
発電時にNiO,CoO,FeO,Fe2 3 等では、
200μm以上の粒径の場合には、発電時の還元雰囲気
においても熱収縮が生じ、強度的に弱くなるが、CaT
iO2 等のチタニア系複合酸化物の場合には、発電時の
還元雰囲気においても熱収縮が生ずることがないので、
電解質膜と熱膨張が整合し、強度的に弱くなるようなこ
とがないからである。この結果、熱サイクル時のリーク
率の上昇を抑えることができる。なお、本発明では、上
記チタニア系複合酸化物の代わりに、例えばCr2 3
等のクロニア系複合酸化物、クロムベースのLaCrO
3 等のランタン系複合化合物等を例示することができ
る。
Here, in the case of NiO, CoO, FeO, Fe 2 O 3 and the like, the upper limit of the particle diameter of the added metal oxide is about 200 μm. In addition, CaTi
In the case of O 2 , SrTiO 2 and Ba 2 TiO 3 , 50
The upper limit is about 0 to 700 μm. This is because NiO, CoO, FeO, Fe 2 O 3, etc.
In the case of a particle size of 200 μm or more, heat shrinkage occurs even in a reducing atmosphere during power generation and the strength becomes weak.
In the case of a titania-based composite oxide such as iO 2 , heat shrinkage does not occur even in a reducing atmosphere during power generation.
This is because the thermal expansion matches with the electrolyte membrane and the strength does not become weak. As a result, it is possible to suppress an increase in the leak rate during a thermal cycle. In the present invention, instead of the titania-based composite oxide, for example, Cr 2 O 3
Etc., chromium-based composite oxides, chromium-based LaCrO
Lanthanum-based composite compounds such as 3 can be exemplified.

【0041】[0041]

【実施例】本発明の効果を示す試験例及び実施例を以下
に説明するが、本発明はこれに限定されるものではな
い。
EXAMPLES Test examples and examples showing the effects of the present invention will be described below, but the present invention is not limited to these examples.

【0042】[試験例1]平均粒径1μmのCSZ原料
80重量%と、10μmのCSZ粗粒20重量%とを混
合させ、1350℃で焼結した。
Test Example 1 80% by weight of a CSZ raw material having an average particle size of 1 μm and 20% by weight of a coarse particle of CSZ having a particle size of 10 μm were mixed and sintered at 1350 ° C.

【0043】[試験例2]平均粒径1μmのCSZ原料
80重量%と、1μmのNiO原料20重量%とを混合
させ、1350℃で焼結した。
Test Example 2 80% by weight of a CSZ raw material having an average particle size of 1 μm and 20% by weight of a 1 μm NiO raw material were mixed and sintered at 1350 ° C.

【0044】[試験例3]平均粒径1μmのCSZ原料
80重量%と、20μmのNiO原料20重量%とを混
合させ、1350℃で焼結した。
Test Example 3 80% by weight of a CSZ raw material having an average particle diameter of 1 μm and 20% by weight of a NiO raw material having an average particle diameter of 20 μm were mixed and sintered at 1350 ° C.

【0045】[参考例1]参考例として、平均粒径1μ
mのCSZ原料のみを使用して同様に焼結した。
Reference Example 1 As a reference example, the average particle size was 1 μm.
Similarly, sintering was performed using only the m CSZ raw material.

【0046】これらの焼結物の気孔率、気孔径並びにセ
ル発電効率の結果を下記「表1」に示す。
The results of porosity, pore diameter and cell power generation efficiency of these sintered products are shown in Table 1 below.

【0047】[0047]

【表1】 [Table 1]

【0048】「表1」に示すように、本試験例にかかる
基体管はいずれも参考例に較べて気孔率が向上し、セル
発電効率が向上することが判明した。また、試験例3に
示すように、金属材料を添加し、さらに粒径を大きくし
た場合には、これらの相乗効果により、セル発電効率が
更に向上することが判明した。
As shown in Table 1, it was found that the porosity of each of the base tubes according to this test example was improved and the cell power generation efficiency was improved as compared with the reference example. Further, as shown in Test Example 3, it was found that when a metal material was added and the particle size was further increased, the synergistic effect of these effects further improved the cell power generation efficiency.

【0049】<実施例1〜19、比較例1〜7、実施例
20〜27及び比較例8〜11>図1に示す本発明に係
る多孔質管からなる基体管(基材部)1の複合材料の配
合を「表2」ならびに「表3」に示す。
<Examples 1 to 19, Comparative Examples 1 to 7, Examples 20 to 27 and Comparative Examples 8 to 11> The base tube (base portion) 1 made of the porous tube according to the present invention shown in FIG. The composition of the composite material is shown in "Table 2" and "Table 3".

【0050】この基体管1の表面に100μmのNi−
ジルコニアサーメットからなる燃料極側電極2、100
μmのYSZからなる電解質3、1000μmのSrを
0.1ドープしたLaMnO3 からなる空気側電極を積層
し、さらに燃料極側電極と空気側電極を接続するための
導電性接続材LaCrO3 を積層し電池とした。
The surface of the base tube 1 is coated with 100 μm Ni-
Fuel electrode side electrode 2, 100 made of zirconia cermet
3 μm of YSZ electrolyte, 1000 μm of Sr
An air-side electrode made of 0.1-doped LaMnO 3 was stacked, and a conductive connecting material LaCrO 3 for connecting the fuel electrode-side electrode and the air-side electrode was further stacked to obtain a battery.

【0051】この電池を急速昇降温を繰り回した後、そ
のリーク率の変化を比較した。また、気孔率及びセル発
電効率も測定した。その結果、「表2」ならびに「表
3」に示す実施例の配合によりリークの増加率を抑制で
きた。また,燃料利用率も向上できた。
After the battery was repeatedly heated and cooled rapidly, the change in the leak rate was compared. The porosity and cell power generation efficiency were also measured. As a result, the increase rate of leak was able to be suppressed by blending the examples shown in “Table 2” and “Table 3”. Also, the fuel utilization was improved.

【0052】本実施例においては、基体管1のセラミッ
クス原料は、「表2」ならびに「表3」に示す材料を用
意した。
In this example, the materials shown in Table 2 and Table 3 were prepared as the ceramic raw material for the base tube 1.

【0053】上記基体管1は押出成形法により作るが、
押出成形用助剤としてメチルセルロース、グリセリン、
水さらに潤滑剤としてステアリン酸エマルジョンを用い
た。それぞれの助剤は、セラミックス原料100重量部
に対してそれぞれ4重量部,5重量部,10重量部,0.
2重量部である。また、ステアリン酸エマルジョンは、
固形分濃度を15重量%とし、分散媒は水とした。
The base tube 1 is made by an extrusion molding method.
Methyl cellulose, glycerin,
Water and a stearic acid emulsion were used as a lubricant. The respective auxiliaries were 4 parts by weight, 5 parts by weight, 10 parts by weight, and 0.1 part by weight with respect to 100 parts by weight of the ceramic raw material.
2 parts by weight. Also, stearic acid emulsion is
The solid content concentration was 15% by weight, and the dispersion medium was water.

【0054】本実施例にかかる基体管の製造を以下に示
す。はじめに任意の割合にセラミック原料とメチルセル
ロースとを計量し、高速ミキサーに入れ3分間混合す
る。次に水,グリセリン,ステアリン酸エマルジョンを
計量し、添加後1分間混合する。次に、2軸ニーダを用
いて本混練を行ない、押出成形機を用いて円筒形状に成
形する。成形後、60℃で24時間乾燥し、電極材料塗
布した後1400℃で2時間熱処理して燃料電池を構成
した。
The manufacture of the base tube according to the present embodiment will be described below. First, a ceramic raw material and methylcellulose are weighed in an arbitrary ratio, put into a high-speed mixer, and mixed for 3 minutes. Next, water, glycerin and stearic acid emulsion are measured and mixed for 1 minute after the addition. Next, main kneading is performed using a biaxial kneader, and the mixture is formed into a cylindrical shape using an extruder. After molding, the fuel cell was dried at 60 ° C. for 24 hours, coated with an electrode material, and then heat-treated at 1400 ° C. for 2 hours to form a fuel cell.

【0055】得られたこれらのセルについて発電温度と
室温の昇降温を昇温速度200℃/時間の速度で5回行
ない、セル性能の変化を求めた。
With respect to these cells obtained, the power generation temperature and the temperature were raised and lowered at room temperature five times at a rate of 200 ° C./hour, and the change in cell performance was determined.

【0056】本発明の実施例の結果を「表2」ならびに
「表3」に示す。本発明の効果を明確にするために本発
明の範囲外である比較例も併せて示す。
The results of the examples of the present invention are shown in Table 2 and Table 3. In order to clarify the effects of the present invention, comparative examples that are out of the scope of the present invention are also shown.

【0057】[0057]

【表2】 [Table 2]

【0058】[0058]

【表3】 [Table 3]

【0059】「表2」より、本発明の成分範囲内である
実施例1から実施例19においては、昇降温を繰り返し
てもリーク率の増加は認められなかった。また、燃料利
用率も80%以上であり、良好と言える。さらに、セル
強度も3kg/ mm2 以上を示し良好であった。
According to Table 2, in Examples 1 to 19 within the range of the components of the present invention, no increase in the leak rate was observed even when the temperature was repeatedly increased and decreased. In addition, the fuel utilization is 80% or more, which can be said to be good. Further, the cell strength was 3 kg / mm 2 or more, which was good.

【0060】ここで、平均粒径0.5から3μmのNiO
の役割としては、熱サイクル時のリーク率の上昇を抑え
ることに寄与しているものと考えられる。比較例7にお
いて平均粒径0.5から3μmのNiOの量が少ない場合
に、熱サイクル時のリーク率の上昇が示された。これ
は、基体管の熱膨張係数を高くすることを意味するもの
と考えられ、同様の効果がCoO, Fe2 3などでも
予測できる。
Here, NiO having an average particle size of 0.5 to 3 μm is used.
Is considered to contribute to suppressing the rise in the leak rate during the thermal cycle. In Comparative Example 7, when the amount of NiO having an average particle size of 0.5 to 3 μm was small, an increase in the leak rate during the thermal cycle was shown. This is considered to mean that the coefficient of thermal expansion of the base tube is increased, and the same effect can be expected for CoO, Fe 2 O 3 and the like.

【0061】また、平均粒径0.5から3μmのNiOは
基体管を緻密化するという作用もあり、発明の成分範囲
を外れた比較例の場合では、燃料利用率の低下につなが
った。このことは比較例1と比較例6の結果により実証
される。
Further, NiO having an average particle size of 0.5 to 3 μm also has an effect of densifying the base tube, and in the case of the comparative example out of the component range of the present invention, it led to a decrease in fuel utilization. This is demonstrated by the results of Comparative Examples 1 and 6.

【0062】平均粒径5μm から200μmのNiO
の役割は、燃料利用率の向上に寄与するものと考えられ
る。これは、比較例5に示すように、平均粒径5μmか
ら200μm のNiO の量が少ない場合に、燃料利用
率が低下していることからも明らかである。
NiO having an average particle size of 5 μm to 200 μm
Is considered to contribute to the improvement of fuel utilization. This is evident from the fact that, as shown in Comparative Example 5, when the amount of NiO 2 having an average particle size of 5 μm to 200 μm is small, the fuel utilization is reduced.

【0063】また、平均粒径5μmから200μmのN
iOはセルの強度を向上させるという作用があり、発明
の成分範囲を外れると強度の低下につながる。比較例2
〜3はこれを実証するものである。
Further, N having an average particle size of 5 μm to 200 μm
iO has an effect of improving the strength of the cell, and if it is out of the component range of the invention, the strength will be reduced. Comparative Example 2
33 demonstrate this.

【0064】また、「表3」より、実施例20〜27に
おいて平均粒径0.5から3μm のNiO, CoO, F
2 3の1種類もしくは2種類以上を、5重量%から
30重量%、平均粒径5μmから200μmのNiO,
CoO, Fe2 3の1種類もしくは2種類以上を5重
量%から30重量%添加した基体管を用いた場合に同様
の効果が確認された。また、本発明の範囲外の比較例8
において添加する粗粒の平均粒径の範囲外ではセル強度
の低下が認められ、比較例9において添加する粗粒の添
加量の範囲外では燃料利用率の低下が認められる。
From Table 3, it can be seen that in Examples 20 to 27, NiO, CoO, F having an average particle size of 0.5 to 3 μm was used.
One or more of e 2 O 3 is NiO having a weight percentage of 5 to 30% by weight and an average particle size of 5 to 200 μm.
The same effect was confirmed when using a base tube to which 5 wt% to 30 wt% of one or more of CoO and Fe 2 O 3 was added. Comparative Example 8 outside the scope of the present invention
In Comparative Example 9, a decrease in cell strength was observed outside the range of the average particle size of the coarse particles added, and in Comparative Example 9, a decrease in the fuel utilization was observed outside the range of the amount of the coarse particles added.

【0065】さらに、本発明の範囲外の比較例10にお
いて添加する微粒の添加量が多い場合には燃料利用率が
低下し、比較例11において添加する微粒の添加量が少
ない場合では熱サイクル時のリーク率の増加が認められ
た。
Further, in Comparative Example 10 out of the scope of the present invention, when the added amount of the fine particles added was large, the fuel utilization decreased, and when the added amount of the fine particles added in Comparative Example 11 was small, the heat cycle was reduced. An increase in the leak rate was observed.

【0066】<実施例28〜48、比較例12〜18、
実施例49〜56及び比較例19〜22>図1に示す本
発明に係る多孔質管からなる基体管(基材部)1の複合
材料の配合を「表4」ならびに「表5」に示す。
<Examples 28 to 48, Comparative Examples 12 to 18,
Examples 49 to 56 and Comparative Examples 19 to 22> [Table 4] and [Table 5] show the composition of the composite material of the base tube (base portion) 1 made of the porous tube according to the present invention shown in FIG. .

【0067】この基体管1の表面に100μm のNi-
ジルコニアサーメットからなる燃料極側電極2、100
μmのYSZからなる電解質3、1000μm のSr
を0.1ドープしたLaMnO3 からなる空気側電極を積
層し、さらに燃料極側電極と空気側電極を接続するため
の導電性接続材LaCrO3 を積層し電池とした。この
電池を急速昇降温を繰り回した後、そのリーク率の変化
を比較した。また、気孔率及びセル発電効率も測定し
た。
A 100 μm Ni—
Fuel electrode side electrode 2, 100 made of zirconia cermet
electrolyte 3, made of YSZ of μm, Sr of 1000 μm
An air side electrode made of LaMnO 3 doped with 0.1 was laminated, and a conductive connecting material LaCrO 3 for connecting the fuel electrode side electrode and the air side electrode was further laminated to obtain a battery. After the battery was repeatedly heated and cooled rapidly, the change in the leak rate was compared. The porosity and cell power generation efficiency were also measured.

【0068】その結果、「表4」ならびに「表5」に示
す実施例の配合によりリークの増加率を抑制できた。ま
た,燃料利用率も向上できた。
As a result, it was possible to suppress the increase rate of the leak by blending the examples shown in Table 4 and Table 5. Also, the fuel utilization was improved.

【0069】本実施例においては、基体管1のセラミッ
クス原料は、「表4」ならびに「表5」に示す材料を用
意した。
In this example, the materials shown in Table 4 and Table 5 were prepared as the ceramic raw material for the base tube 1.

【0070】上記基体管1は押出成形法により作るが、
押出成形用助剤としてメチルセルロース,グリセリン,
水さらに潤滑剤としてステアリン酸エマルジョンを用い
た。それぞれの助剤は、セラミックス原料100重量部
に対してそれぞれ4重量部,5重量部,10重量部,0.
2重量部である。
The base tube 1 is made by an extrusion method.
Methylcellulose, glycerin,
Water and a stearic acid emulsion were used as a lubricant. The respective auxiliaries were 4 parts by weight, 5 parts by weight, 10 parts by weight, and 0.1 part by weight with respect to 100 parts by weight of the ceramic raw material.
2 parts by weight.

【0071】また、ステアリン酸エマルジョンは固形分
濃度が15重量%で分散媒は水である。
The stearic acid emulsion has a solid content of 15% by weight and the dispersion medium is water.

【0072】本実施例にかかる基体管の製造を以下に示
す。はじめに任意の割合にセラミック原料とメチルセル
ロースを計量し、高速ミキサーに入れ3分間混合する。
次に、水,グリセリン,ステアリン酸エマルジョンを計
量し、添加後1分間混合する。次に、2軸ニーダを用い
て本混練を行ない、押出成形機を用いて円筒形状に成形
する。成形後、60℃で24時間乾燥し、電極材料塗布
した後1400℃で2時間熱処理して燃料電池を構成し
た。
The manufacture of the base tube according to the present embodiment will be described below. First, a ceramic raw material and methylcellulose are weighed in an arbitrary ratio, put in a high-speed mixer, and mixed for 3 minutes.
Next, water, glycerin and stearic acid emulsion are weighed and mixed for 1 minute after the addition. Next, main kneading is performed using a biaxial kneader, and the mixture is formed into a cylindrical shape using an extruder. After molding, the fuel cell was dried at 60 ° C. for 24 hours, coated with an electrode material, and then heat-treated at 1400 ° C. for 2 hours to form a fuel cell.

【0073】これらのセルについて発電温度と室温の昇
降温を昇温速度200℃/時間の速度で5回行ない、セ
ル性能の変化を調査した。本発明の実施例を「表4」な
らびに「表5」に示す。本発明の効果を明確にするため
に本発明外の比較例も併せて示す。
With respect to these cells, the power generation temperature and the room temperature were raised and lowered five times at a rate of 200 ° C./hour, and changes in cell performance were examined. Examples of the present invention are shown in "Table 4" and "Table 5". In order to clarify the effects of the present invention, comparative examples other than the present invention are also shown.

【0074】[0074]

【表4】 [Table 4]

【0075】[0075]

【表5】 [Table 5]

【0076】「表4」より、本発明の成分範囲内である
実施例28から実施例48においては、昇降温を繰り返
してもリーク率の増加は認められなかった。また、燃料
利用率も80%以上であり良好と言える。さらに、セル
強度も3kg/mm2 以上を示し良好と考えられる。
According to Table 4, in Examples 28 to 48 within the component range of the present invention, no increase in the leak rate was observed even when the temperature was repeatedly increased and decreased. In addition, the fuel utilization is 80% or more, which is good. Further, the cell strength is 3 kg / mm 2 or more, which is considered to be good.

【0077】ここで、平均粒径0.5から200μmのC
aTiO3 の役割としては、熱サイクル時のリーク率の
上昇を抑えることに寄与しているものと考えられ、比較
例18において平均粒径0.5から200μmのCaTi
3 の量が少ない場合に熱サイクル時のリーク率の上昇
が認められたことからも明らかである。これは、基体管
の熱膨張係数を高くすることを意味するものと考えら
れ、同様の効果がSrTiO3,BaTiO3,CaO, M
gOなどでも予測できる。
Here, C having an average particle size of 0.5 to 200 μm is used.
It is considered that the role of aTiO 3 is to contribute to suppressing an increase in the leak rate during a thermal cycle. In Comparative Example 18, CaTiO having an average particle size of 0.5 to 200 μm was used.
It is also evident from the fact that when the amount of O 3 is small, an increase in the leak rate during the thermal cycle is observed. This is considered to mean that the coefficient of thermal expansion of the base tube is increased, and the same effect is obtained by SrTiO 3 , BaTiO 3 , CaO, M
gO can be predicted.

【0078】また、平均粒径0.5から200μmのCa
TiO3 は基体管を緻密化するという作用もあり、発明
の成分範囲を外れると燃料利用率の低下につながる。比
較例12と比較例17はこれを実証するものである。
Further, Ca having an average particle size of 0.5 to 200 μm
TiO 3 also has the effect of densifying the base tube, and if it is out of the component range of the invention, it will lead to a decrease in fuel utilization. Comparative Examples 12 and 17 demonstrate this.

【0079】ここで、平均粒径5μmから200μmの
NiOの役割は、燃料利用率の向上に寄与するものと考
えられ、比較例16で平均粒径5μmから200μmの
NiOの量が少ない場合に、燃料利用率が低下している
ことからも明らかである。
Here, it is considered that the role of NiO having an average particle size of 5 μm to 200 μm contributes to improvement of the fuel utilization rate. In Comparative Example 16, when the amount of NiO having an average particle size of 5 μm to 200 μm is small, This is evident from the drop in fuel utilization.

【0080】また、平均粒径5μmから200μmのN
iOはセルの強度を向上させるという作用があり、発明
の成分範囲を外れると強度の低下につながった。比較例
13〜15はこれを実証するものである。同様の効果
は、CoO やFe2 3等でも予測できる。
Further, N having an average particle size of 5 μm to 200 μm
iO has an effect of improving the strength of the cell, and if it is out of the component range of the invention, the strength is reduced. Comparative Examples 13 to 15 demonstrate this. A similar effect can be expected for CoO, Fe 2 O 3 and the like.

【0081】また、実施例44,45に示すように、平
均粒径300μm,500μmとしたCaTiO3 の場
合であっても、気孔率の向上及びセル強度が共に好まし
いものであった。
Further, as shown in Examples 44 and 45, even in the case of CaTiO 3 having an average particle size of 300 μm and 500 μm, both the improvement of the porosity and the cell strength were favorable.

【0082】また、「表5」より、実施例49から56
において平均粒径0.5から200μmのCaTiO3
SrTiO3 ,BaTiO3 の1種類もしくは2種類以
上を5重量% から30重量%、平均粒径5μm から
200μmのNiO, CoO,Fe2 3の1種類もしく
は2種類以上を5重量%から30重量%添加した基体管
を用いた場合に同様の効果が確認された。
Further, according to Table 5, Examples 49 to 56 were obtained.
CaTiO 3 having an average particle size of 0.5 to 200 μm,
5 wt% to 30 wt% of one or more of SrTiO 3 and BaTiO 3 , and 5 wt% to 30 wt of one or more of NiO, CoO, Fe 2 O 3 having an average particle size of 5 μm to 200 μm. The same effect was confirmed when using the base tube added with%.

【0083】また、本発明の範囲外の比較例19におい
て添加する粗粒の平均粒径の範囲外ではセル強度の低下
が認められ、比較例20において添加する粗粒の添加量
の範囲外では燃料利用率の低下が認められた。さらに、
本発明の範囲外の比較例21において添加する微粒の添
加量が多い場合には燃料利用率が低下し、比較例22に
おいて添加する微粒の添加量が少ない場合では熱サイク
ル時のリーク率の増加が認められた。
In Comparative Example 19 outside the range of the present invention, a decrease in cell strength was observed outside the range of the average particle diameter of the coarse particles added, and in Comparative Example 20, outside the range of the added amount of the coarse particles added. A decrease in fuel utilization was observed. further,
In Comparative Example 21 outside the scope of the present invention, when the added amount of the fine particles added was large, the fuel utilization decreased, and when the added amount of the fine particles added in Comparative Example 22 was small, the leakage rate during the thermal cycle increased. Was observed.

【0084】<実施例57〜59>図1に示す本発明に
係る多孔質管からなる基体管(基材部)1の複合材料の
配合を「表6」に示す。本実施例では、添加微粒として
NiOを用い、添加粗粒としてカルシア安定化ジルコニ
ア(CSZ)を用いたものである。
<Examples 57 to 59> Table 6 shows the composition of the composite material of the base tube (base portion) 1 composed of the porous tube according to the present invention shown in FIG. In this embodiment, NiO is used as added fine particles, and calcia-stabilized zirconia (CSZ) is used as added coarse particles.

【0085】この基体管1の表面に100μm のNi-
ジルコニアサーメットからなる燃料極側電極2、100
μmのYSZからなる電解質3、1000μm のSr
を0.1ドープしたLaMnO3 からなる空気側電極を積
層し、さらに燃料極側電極と空気側電極を接続するため
の導電性接続材LaCrO3 を積層し電池とした。この
電池を急速昇降温を繰り回した後、そのリーク率の変化
を比較した。また、気孔率及びセル発電効率も測定し
た。
A 100 μm Ni—
Fuel electrode side electrode 2, 100 made of zirconia cermet
electrolyte 3, made of YSZ of μm, Sr of 1000 μm
An air side electrode made of LaMnO 3 doped with 0.1 was laminated, and a conductive connecting material LaCrO 3 for connecting the fuel electrode side electrode and the air side electrode was further laminated to obtain a battery. After the battery was repeatedly heated and cooled rapidly, the change in the leak rate was compared. The porosity and cell power generation efficiency were also measured.

【0086】[0086]

【表6】 [Table 6]

【0087】また、「表6」より、実施例57から59
の基体管も昇降温を繰り返してもリーク率の増加は認め
られなかった。また、燃料利用率も80%以上であり良
好と言える。さらに、セル強度も3kg/mm2 以上を
示し良好と考えられる。
Further, according to Table 6, Examples 57 to 59 were obtained.
No increase in the leak rate was observed even when the temperature of the substrate tube was repeatedly increased and decreased. In addition, the fuel utilization is 80% or more, which is good. Further, the cell strength is 3 kg / mm 2 or more, which is considered to be good.

【0088】[0088]

【発明の効果】以上、説明したように本発明の[請求項
1]の発明よれば、燃料電池の基体管原料に粗粒を添加
・混合し、焼結時に収縮を不均一化し、基体管の気孔率
を高くするので、ガス透過性能が向上し、セル発電効率
の向上を図ることができる。
As described above, according to the first aspect of the present invention, coarse particles are added to and mixed with the raw material of the base tube of the fuel cell to make the shrinkage non-uniform during sintering. Since the porosity is increased, gas permeation performance is improved and cell power generation efficiency can be improved.

【0089】[請求項2]の発明によれば、請求項1に
おいて、上記基体管原料の平均粒径が0.5〜2μmであ
り、上記粗粒の粒径が5μm以上であるので、気孔率の
向上を図ることができる。
According to the second aspect of the present invention, in the first aspect, the average particle diameter of the base tube raw material is 0.5 to 2 μm, and the coarse particle diameter is 5 μm or more. The rate can be improved.

【0090】[請求項3]の発明によれば、請求項1又
は2において、上記添加粗粒が10〜40重量%配合し
てなるので、気孔率の向上を図ることができる。
According to the third aspect of the present invention, in the first or second aspect, the porosity can be improved because the added coarse particles are blended in an amount of 10 to 40% by weight.

【0091】[請求項4]の発明によれば、請求項1乃
至3において、上記基体管原料がカルシア安定化ジルコ
ニア(CSZ)であるので、特に、気孔率が20%と従
来の15%よりも向上が図られ、セル発電効率の向上を
図ることができる。
According to the fourth aspect of the present invention, in the first to third aspects, the base tube material is calcia-stabilized zirconia (CSZ), so that the porosity is particularly 20%, which is higher than that of the conventional 15%. And the cell power generation efficiency can be improved.

【0092】[請求項5]の発明によれば、燃料電池の
基体管原料が微粒のカルシア安定化ジルコニア(CS
Z)であり、該基体管原料と同一粒径のNiO,Co
O,FeO,Fe2 3 ,CaTiO2 ,SrTi
2 ,Ba2 TiO3 のいずれか一種若しくは2種以上
より選ばれてなる添加微粒を混合し、焼結時に収縮を不
均一化し、気孔率を高くするので、セル発電効率の向上
を図ることができる。
According to the invention of claim 5, the raw material for the base tube of the fuel cell is fine calcia stabilized zirconia (CS).
Z), and NiO, Co having the same particle size as the base tube raw material.
O, FeO, Fe 2 O 3 , CaTiO 2 , SrTi
Addition of fine particles selected from one or two or more of O 2 and Ba 2 TiO 3 to make the shrinkage non-uniform and increase the porosity during sintering, thereby improving the power generation efficiency of the cell Can be.

【0093】[請求項6]の発明によれば、請求項5に
おいて、上記基体管原料の平均粒径が0.5〜2μmであ
るので、セル発電効率の向上を図ることができる。
According to the sixth aspect of the present invention, since the average particle size of the base tube material is 0.5 to 2 μm in the fifth aspect, it is possible to improve the cell power generation efficiency.

【0094】[請求項7]の発明によれば、請求項5又
は6において、上記添加微粒が10〜40重量%配合し
てなるので、セル発電効率の向上を図ることができる。
According to the invention of [Claim 7], since the added fine particles are blended in 10 to 40% by weight according to Claim 5 or 6, the power generation efficiency of the cell can be improved.

【0095】[請求項8]の発明によれば、燃料電池の
基体管原料が平均粒径0.5〜2μmのカルシア安定化ジ
ルコニア(CSZ)であり、NiO,CoO,FeO,
Fe 2 3 ,CaTiO2 ,SrTiO2 ,Ba2 Ti
3 のいずれか一種若しくは2種以上より選ばれてなる
5μm以上の添加粗粒を添加・混合し、焼結時に収縮を
不均一化し、気孔率を高くするので、セル発電効率の向
上を図ることができる。
According to the invention of claim 8, the fuel cell
The base tube material is a calcia-stabilized die having an average particle size of 0.5 to 2 μm.
Luconia (CSZ), NiO, CoO, FeO,
Fe TwoOThree, CaTiOTwo, SrTiOTwo, BaTwoTi
OThreeSelected from one or more of the following
Add and mix coarse particles of 5μm or more to reduce shrinkage during sintering.
Improves cell power generation efficiency because of non-uniformity and high porosity
You can aim up.

【0096】[請求項9]の発明によれば、請求項8に
おいて、上記粗粒が10〜40重量%配合してなるの
で、セル発電効率の向上を図ることができる。
According to the ninth aspect of the present invention, in the eighth aspect, since the coarse particles are blended in an amount of 10 to 40% by weight, the power generation efficiency of the cell can be improved.

【0097】[請求項10]の発明によれば、燃料電池
の基体管原料が平均粒径0.5〜2μmのカルシア安定化
ジルコニア(CSZ)であり、NiO,CoO,Fe
O,Fe2 3 ,CaTiO2 ,SrTiO2 ,Ba2
TiO3 のいずれか一種若しくは2種以上より選ばれて
なる0.5μm〜3μmの添加微粒と、NiO,CoO,
FeO,Fe2 3 ,CaTiO2 ,SrTiO2 ,B
2 TiO3 のいずれか一種若しくは2種以上より選ば
れてなる5μm以上の添加粗粒とを添加・混合し、焼結
時に収縮を不均一化し、気孔率を高くするので、セル発
電効率の向上を図ることができる。
According to the invention of claim 10, the base tube material of the fuel cell is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, and NiO, CoO, Fe
O, Fe 2 O 3 , CaTiO 2 , SrTiO 2 , Ba 2
0.5 μm to 3 μm of added fine particles selected from one kind or two or more kinds of TiO 3 , NiO, CoO,
FeO, Fe 2 O 3 , CaTiO 2 , SrTiO 2 , B
a 2 TiO 3 is added and mixed with coarse particles of 5 μm or more selected from one or two or more of them to make the shrinkage non-uniform during sintering and increase the porosity. Improvement can be achieved.

【0098】[請求項11]の発明によれば、請求項1
0において、上記添加微粒が5〜30重量%、上記添加
粗粒が5〜30重量%配合してなるので、セル発電効率
の向上を図ることができる。
According to the invention of claim 11, claim 1 is
At 0, the added fine particles are blended in an amount of 5 to 30% by weight and the added coarse particles are blended in an amount of 5 to 30% by weight, so that the power generation efficiency of the cell can be improved.

【0099】[請求項12]の発明によれば、表面に燃
料極側電極、電解質膜、酸化剤側電極を順次積層してな
る固体電解質燃料電池用基体管の材料であって、基体管
原料が平均粒径0.5〜2μmのカルシア安定化ジルコニ
ア(CSZ)であり、NiO,CoO,FeO,Fe2
3 ,CaTiO2 ,SrTiO2 ,Ba2 TiO3
いずれか一種若しくは2種以上より選ばれてなる5μm
以上の添加粗粒を添加・混合してなるので、セル発電効
率の向上を図ることができる。
According to the twelfth aspect of the present invention, there is provided a material for a solid electrolyte fuel cell base tube having a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode sequentially laminated on the surface, wherein the base tube raw material is provided. Is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, and NiO, CoO, FeO, Fe 2
5 μm selected from one or more of O 3 , CaTiO 2 , SrTiO 2 , and Ba 2 TiO 3
Since the above-mentioned added coarse particles are added and mixed, the cell power generation efficiency can be improved.

【0100】[請求項13]の発明によれば、請求項1
2において、上記粗粒が10〜40重量%配合してなる
ので、セル発電効率の向上を図ることができる。
According to the invention of claim 13, claim 1 is provided.
In 2, since the coarse particles are blended in an amount of 10 to 40% by weight, the power generation efficiency of the cell can be improved.

【0101】[請求項14]の発明によれば、表面に燃
料極側電極、電解質膜、酸化剤側電極を順次積層してな
る固体電解質燃料電池用基体管の材料であって、平均粒
径0.5〜2μmのカルシア安定化ジルコニア(CSZ)
に対して、添加微粒として平均粒径0.5から3μmのN
iO, CoO, Fe2 3の1種類もしくは2種類以上
を5重量%から30重量%と、添加粗粒として平均粒径
5μm以上のNiO,CoO, Fe2 3,CaO安定化
ZrO2 のいずれか1種若しくは2種以上を5重量%か
ら30重量%とを添加・混合し、焼結時に収縮を不均一
化し、基体管の気孔率を高くするので、セル発電効率の
向上を図ることができる。
According to the fourteenth aspect of the present invention, there is provided a solid electrolyte fuel cell base tube material having a fuel electrode side electrode, an electrolyte membrane, and an oxidizing agent side electrode sequentially laminated on a surface thereof, and having an average particle diameter. 0.5 to 2 μm calcia stabilized zirconia (CSZ)
On the other hand, N having an average particle size of 0.5 to 3 μm
One or more of iO, CoO, and Fe 2 O 3 is 5 wt% to 30 wt%, and NiO, CoO, Fe 2 O 3 , and CaO stabilized ZrO 2 having an average particle size of 5 μm or more are added as coarse particles. One or two or more of them are added and mixed in an amount of 5% by weight to 30% by weight to make the shrinkage non-uniform during sintering and increase the porosity of the base tube, thereby improving the cell power generation efficiency. Can be.

【0102】[請求項15]の発明によれば、表面に燃
料極側電極、電解質膜、酸化剤側電極を順次積層してな
る固体電解質燃料電池用基体管の材料であって、平均粒
径0.5〜2μmのカルシア安定化ジルコニア(CSZ)
に対して、平均粒径0.5μm以上のCaTiO3,SrT
iO3,BaTiO3 ,CaO安定化ZrO2 のいずれか
1種若しくは2種以上を5重量%から30重量%と、平
均粒径5μm以上のNiO, CoO, Fe2 3のいず
れか1種若しくは2種以上を5重量%から30重量%と
を添加・混合し、焼結時に収縮を不均一化し、基体管の
気孔率を高くするので、セル発電効率の向上を図ること
ができる。
According to the invention of claim 15, there is provided a solid electrolyte fuel cell base tube material having a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode sequentially laminated on a surface thereof, and having an average particle diameter. 0.5 to 2 μm calcia stabilized zirconia (CSZ)
In contrast, CaTiO 3 , SrT having an average particle size of 0.5 μm or more
one or more of iO 3 , BaTiO 3 , and CaO-stabilized ZrO 2, in an amount of 5% by weight to 30% by weight, and any one of NiO, CoO, and Fe 2 O 3 having an average particle size of 5 μm or more; Addition and mixing of 5% by weight to 30% by weight of two or more types makes uneven shrinkage during sintering and increases the porosity of the base tube, so that the cell power generation efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶射型の固体電解質型燃料電池の基体管の概略
図である。
FIG. 1 is a schematic view of a base tube of a thermal spray type solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 基体管 2 燃料極側電極 3 電解質 4 空気側電極 5 導電性接続材(インタコネクタ) DESCRIPTION OF SYMBOLS 1 Base tube 2 Fuel electrode side electrode 3 Electrolyte 4 Air side electrode 5 Conductive connecting material (interconnector)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小阪 健一郎 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 久留 長生 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 渡邉 義治 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 北條 透 長崎県長崎市深堀町五丁目717番1 長菱 エンジニアリング株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichiro Kosaka 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Prefecture Inside the Nagasaki Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Nagao Kurume 1-1-1, Akunoura-cho, Nagasaki-city, Nagasaki Prefecture No. Mitsubishi Heavy Industries, Ltd.Nagasaki Shipyard (72) Inventor Yoshiharu Watanabe 1-1, Akunoura-cho, Nagasaki, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd.Nagasaki Shipyard (72) Inventor Toru Hojo 5-717 Fukahoricho, Nagasaki, Nagasaki No. 1 Nagaishi Engineering Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池の基体管原料に粗粒を添加・混
合し、焼結時に収縮を不均一化し、基体管の気孔率を高
くすることを特徴とする燃料電池用基体管。
1. A base tube for a fuel cell, wherein coarse particles are added and mixed to a base tube material of a fuel cell to make shrinkage nonuniform during sintering and to increase the porosity of the base tube.
【請求項2】 請求項1において、 上記基体管原料の平均粒径が0.5〜2μmであり、上記
粗粒の粒径が5μm以上であることを特徴とする燃料電
池用基体管。
2. The fuel cell base tube according to claim 1, wherein the base tube raw material has an average particle size of 0.5 to 2 μm, and the coarse particles have a particle size of 5 μm or more.
【請求項3】 請求項1又は2において、 上記添加粗粒が10〜40重量%配合してなることを特
徴とする燃料電池用基体管。
3. The fuel cell base tube according to claim 1, wherein the added coarse particles are blended in an amount of 10 to 40% by weight.
【請求項4】 請求項1乃至3において、 上記基体管原料がカルシア安定化ジルコニア(CSZ)
であることを特徴とする燃料電池用基体管。
4. The method according to claim 1, wherein the base tube material is calcia-stabilized zirconia (CSZ).
A base tube for a fuel cell, characterized in that:
【請求項5】 燃料電池の基体管原料が微粒のカルシア
安定化ジルコニア(CSZ)であり、該基体管原料と同
一粒径のNiO,CoO,FeO,Fe2 3 ,CaT
iO2 ,SrTiO2 ,Ba2 TiO3 のいずれか一種
若しくは2種以上より選ばれてなる添加微粒を混合し、
焼結時に収縮を不均一化し、気孔率を高くすることを特
徴とする燃料電池用基体管。
5. A material for a base material of a fuel cell, wherein the raw material of the base tube is calcia.
Stabilized zirconia (CSZ), the same as the base tube material
NiO, CoO, FeO, Fe of one particle sizeTwoO Three, CaT
iOTwo, SrTiOTwo, BaTwoTiOThreeAny kind of
Or, mixing the added fine particles selected from two or more,
It specializes in making the shrinkage uneven during sintering and increasing the porosity.
Substrates for fuel cells.
【請求項6】 請求項5において、 上記基体管原料の平均粒径が0.5〜2μmであることを
特徴とする燃料電池用基体管。
6. The base tube for a fuel cell according to claim 5, wherein the base tube raw material has an average particle size of 0.5 to 2 μm.
【請求項7】 請求項5又は6において、 上記添加微粒が10〜40重量%配合してなることを特
徴とする燃料電池用基体管。
7. The fuel cell base tube according to claim 5, wherein the added fine particles are blended in an amount of 10 to 40% by weight.
【請求項8】 燃料電池の基体管原料が平均粒径0.5〜
2μmのカルシア安定化ジルコニア(CSZ)であり、
NiO,CoO,FeO,Fe2 3 ,CaTiO2
SrTiO2 ,Ba2 TiO3 のいずれか一種若しくは
2種以上より選ばれてなる5μm以上の添加粗粒を添加
・混合し、焼結時に収縮を不均一化し、気孔率を高くす
ることを特徴とする燃料電池用基体管。
8. The raw material for a base tube of a fuel cell has an average particle size of 0.5 to 0.5.
2 μm calcia stabilized zirconia (CSZ),
NiO, CoO, FeO, Fe 2 O 3, CaTiO 2,
Addition and mixing of coarse particles of 5 μm or more selected from one or two or more of SrTiO 2 and Ba 2 TiO 3 to make shrinkage non-uniform and increase porosity during sintering. Substrate tube for a fuel cell.
【請求項9】 請求項8において、 上記粗粒が10〜40重量%配合してなることを特徴と
する燃料電池用基体管。
9. The base tube for a fuel cell according to claim 8, wherein the coarse particles are blended in an amount of 10 to 40% by weight.
【請求項10】 燃料電池の基体管原料が平均粒径0.5
〜2μmのカルシア安定化ジルコニア(CSZ)であ
り、NiO,CoO,FeO,Fe2 3 ,CaTiO
2 ,SrTiO2 ,Ba2 TiO3 のいずれか一種若し
くは2種以上より選ばれてなる0.5μm〜3μmの添加
微粒と、NiO,CoO,FeO,Fe 2 3 ,CaT
iO2 ,SrTiO2 ,Ba2 TiO3 のいずれか一種
若しくは2種以上より選ばれてなる5μm以上の添加粗
粒とを添加・混合し、焼結時に収縮を不均一化し、気孔
率を高くすることを特徴とする燃料電池用基体管。
10. The raw material for a base tube of a fuel cell has an average particle size of 0.5.
~ 2 μm calcia stabilized zirconia (CSZ)
NiO, CoO, FeO, FeTwoOThree, CaTiO
Two, SrTiOTwo, BaTwoTiOThreeAny kind of
Or 0.5 μm to 3 μm selected from two or more types
Fine particles, NiO, CoO, FeO, Fe TwoOThree, CaT
iOTwo, SrTiOTwo, BaTwoTiOThreeAny kind of
Or a coarse additive of 5 μm or more selected from two or more
Add and mix with the particles to make the shrinkage uneven during sintering,
A base tube for a fuel cell, wherein the base ratio is increased.
【請求項11】 請求項10において、 上記添加微粒が5〜30重量%、上記添加粗粒が5〜3
0重量%配合してなることを特徴とする燃料電池用基体
管。
11. The method according to claim 10, wherein the added fine particles are 5 to 30% by weight, and the added coarse particles are 5 to 3% by weight.
A base tube for a fuel cell, characterized by containing 0% by weight.
【請求項12】 表面に燃料極側電極、電解質膜、酸化
剤側電極を順次積層してなる固体電解質燃料電池用基体
管の材料であって、 基体管原料が平均粒径0.5〜2μmのカルシア安定化ジ
ルコニア(CSZ)であり、NiO,CoO,FeO,
Fe2 3 ,CaTiO2 ,SrTiO2 ,Ba2 Ti
3 のいずれか一種若しくは2種以上より選ばれてなる
5μm以上の添加粗粒を添加・混合してなることを特徴
とする燃料電池用基体管材料。
12. A material for a base tube for a solid electrolyte fuel cell comprising a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode sequentially laminated on the surface, wherein the base tube raw material has an average particle size of 0.5 to 2 μm. Calcia-stabilized zirconia (CSZ), NiO, CoO, FeO,
Fe 2 O 3 , CaTiO 2 , SrTiO 2 , Ba 2 Ti
A base tube material for a fuel cell, characterized by adding and mixing an additive coarse particle of 5 μm or more selected from one or more of O 3 .
【請求項13】 請求項12において、 上記粗粒が10〜40重量%配合してなることを特徴と
する燃料電池用基体管材料。
13. The base tube material for a fuel cell according to claim 12, wherein the coarse particles are blended in an amount of 10 to 40% by weight.
【請求項14】 表面に燃料極側電極、電解質膜、酸化
剤側電極を順次積層してなる固体電解質燃料電池用基体
管の材料であって、 平均粒径0.5〜2μmのカルシア安定化ジルコニア(C
SZ)に対して、 添加微粒として平均粒径0.5から3μmのNiO, Co
O, Fe2 3の1種類もしくは2種類以上を5重量%
から30重量%と、 添加粗粒として平均粒径5μm以上のNiO, CoO,
Fe2 3,CaO安定化ZrO2 のいずれか1種若し
くは2種以上を5重量%から30重量%とを添加・混合
し、焼結時に収縮を不均一化し、基体管の気孔率を高く
することを特徴とする基体管材料。
14. A calcia stabilized material having a mean particle size of 0.5 to 2 μm, which is a material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane and an oxidant side electrode are sequentially laminated on the surface. Zirconia (C
SZ), NiO, Co with an average particle size of 0.5 to 3 μm as added fine particles
5% by weight of one or more of O and Fe 2 O 3
To 30% by weight of NiO, CoO,
One or more of Fe 2 O 3 and CaO-stabilized ZrO 2 are added and mixed with 5% by weight to 30% by weight to make the shrinkage non-uniform during sintering and increase the porosity of the base tube. A base tube material characterized by the following.
【請求項15】 表面に燃料極側電極、電解質膜、酸化
剤側電極を順次積層してなる固体電解質燃料電池用基体
管の材料であって、 平均粒径0.5〜2μmのカルシア安定化ジルコニア(C
SZ)に対して、 平均粒径0.5μm以上のCaTiO3,SrTiO3,Ba
TiO3 ,CaO安定化ZrO2 のいずれか1種若しく
は2種以上を5重量%から30重量%と、 平均粒径5μm以上のNiO, CoO, Fe2 3のい
ずれか1種若しくは2種以上を5重量%から30重量%
とを添加・混合し、焼結時に収縮を不均一化し、基体管
の気孔率を高くすることを特徴とする基体管材料。
15. A calcia-stabilized material having a mean particle size of 0.5 to 2 μm, which is a material for a solid electrolyte fuel cell base tube having a surface on which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated. Zirconia (C
SZ), CaTiO 3 , SrTiO 3 , Ba having an average particle size of 0.5 μm or more
One or more of TiO 3 and CaO-stabilized ZrO 2, in an amount of 5 to 30% by weight, and one or more of NiO, CoO, and Fe 2 O 3 having an average particle size of 5 μm or more From 5% to 30% by weight
Characterized by adding and mixing the following to make uneven shrinkage during sintering and increasing the porosity of the base tube.
JP20427899A 1998-07-27 1999-07-19 Substrate tube for fuel cell and its material Expired - Fee Related JP3631923B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20427899A JP3631923B2 (en) 1998-07-27 1999-07-19 Substrate tube for fuel cell and its material
US09/490,857 US6379832B1 (en) 1999-07-19 2000-01-24 Base tube for fuel cell and material for base tube
DE60010811T DE60010811T2 (en) 1999-07-19 2000-01-25 Base tube for a fuel cell and material for this base tube
EP00101442A EP1071150B1 (en) 1999-07-19 2000-01-25 Base tube for fuel cell and material for base tube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21058198 1998-07-27
JP10-210581 1998-07-27
JP20427899A JP3631923B2 (en) 1998-07-27 1999-07-19 Substrate tube for fuel cell and its material

Publications (2)

Publication Number Publication Date
JP2000106192A true JP2000106192A (en) 2000-04-11
JP3631923B2 JP3631923B2 (en) 2005-03-23

Family

ID=26514386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20427899A Expired - Fee Related JP3631923B2 (en) 1998-07-27 1999-07-19 Substrate tube for fuel cell and its material

Country Status (1)

Country Link
JP (1) JP3631923B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379832B1 (en) * 1999-07-19 2002-04-30 Mitsubishi Heavy Industries, Ltd. Base tube for fuel cell and material for base tube
JP2002358984A (en) * 2001-06-01 2002-12-13 Mitsubishi Heavy Ind Ltd Base pipe for fuel cell, material of base pipe for fuel cell, and manufacturing method of fuel cell cell pipe
JP2003109613A (en) * 2001-09-28 2003-04-11 Mitsubishi Heavy Ind Ltd Method of manufacturing fuel cell pipe and ceramics manufacturing device
WO2004082058A1 (en) * 2003-03-13 2004-09-23 Tokyo Gas Company Limited Solid-oxide shaped fuel cell module
WO2004088783A1 (en) * 2003-03-31 2004-10-14 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
JP2005071948A (en) * 2003-08-28 2005-03-17 National Institute Of Advanced Industrial & Technology Hybrid porous tube, and manufacturing method of same
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2007329132A (en) * 2007-07-20 2007-12-20 National Institute Of Advanced Industrial & Technology Hybrid porous tube
JP2008226789A (en) * 2007-03-15 2008-09-25 Kyocera Corp Horizontal-stripe type fuel battery cell and its manufacturing method
WO2014207993A1 (en) * 2013-06-25 2014-12-31 Jx日鉱日石エネルギー株式会社 Anode support for solid oxide fuel cell, anode-supported solid oxide fuel cell, and fuel cell system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379832B1 (en) * 1999-07-19 2002-04-30 Mitsubishi Heavy Industries, Ltd. Base tube for fuel cell and material for base tube
JP2002358984A (en) * 2001-06-01 2002-12-13 Mitsubishi Heavy Ind Ltd Base pipe for fuel cell, material of base pipe for fuel cell, and manufacturing method of fuel cell cell pipe
JP4562951B2 (en) * 2001-06-01 2010-10-13 三菱重工業株式会社 SUBSTRATE TUBE FOR FUEL CELL, SUBSTRATE TUBE MATERIAL FOR FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL CELL
JP2003109613A (en) * 2001-09-28 2003-04-11 Mitsubishi Heavy Ind Ltd Method of manufacturing fuel cell pipe and ceramics manufacturing device
EP1603183A4 (en) * 2003-03-13 2008-03-12 Tokyo Gas Co Ltd Solid-oxide shaped fuel cell module
WO2004082058A1 (en) * 2003-03-13 2004-09-23 Tokyo Gas Company Limited Solid-oxide shaped fuel cell module
US7989113B2 (en) 2003-03-13 2011-08-02 Tokyo Gas Co., Ltd. Solid-oxide shaped fuel cell module
EP1603183A1 (en) * 2003-03-13 2005-12-07 Tokyo Gas Company Limited Solid-oxide shaped fuel cell module
WO2004088783A1 (en) * 2003-03-31 2004-10-14 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
JPWO2004088783A1 (en) * 2003-03-31 2006-07-06 東京瓦斯株式会社 Method for producing solid oxide fuel cell module
US7838166B2 (en) 2003-03-31 2010-11-23 Tokyo Gas Co., Ltd. Method for fabricating solid oxide fuel cell module
JP2005071948A (en) * 2003-08-28 2005-03-17 National Institute Of Advanced Industrial & Technology Hybrid porous tube, and manufacturing method of same
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2008226789A (en) * 2007-03-15 2008-09-25 Kyocera Corp Horizontal-stripe type fuel battery cell and its manufacturing method
JP2007329132A (en) * 2007-07-20 2007-12-20 National Institute Of Advanced Industrial & Technology Hybrid porous tube
WO2014207993A1 (en) * 2013-06-25 2014-12-31 Jx日鉱日石エネルギー株式会社 Anode support for solid oxide fuel cell, anode-supported solid oxide fuel cell, and fuel cell system

Also Published As

Publication number Publication date
JP3631923B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
KR100344936B1 (en) Tubular Solid Oxide Fuel Cell supported by Fuel Electrode and Method for the same
US4883497A (en) Formation of thin walled ceramic solid oxide fuel cells
CN107112545B (en) Anode for solid oxide fuel cell, method for producing same, and method for producing electrolyte layer-electrode assembly for fuel cell
JP6658754B2 (en) Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
KR101179130B1 (en) Segment-in-series type sofc sub-module, preparation method thereof and segment-in-series type sofc module using the same
JP2000106192A (en) Substrate tube for fuel cell and its material
EP3637518A1 (en) Multilayer structure of electrode and mixed ion/electron conductive electrolyte and method for producing same
JP3661676B2 (en) Solid oxide fuel cell
JP6174608B2 (en) Solid oxide fuel cell and method for producing the same
JP2006331743A (en) Horizontally striped fuel cell and its manufacturing method, fuel cell stack and its manufacturing method, and fuel cell
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
KR100660218B1 (en) Fabrication method for anode of solid oxide fuel cell
JP2020167092A (en) Material for formation of support body of solid oxide fuel cell, and utilization thereof
JP2003217597A (en) Solid electrolyte type fuel cell
JP2004087353A (en) Substrate tube for solid electrolyte fuel cell
JP3233807B2 (en) Substrate material for solid oxide fuel cells
JPH0769720A (en) Solid electrolytic material reinforced by dispersed composite material
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
EP1071150B1 (en) Base tube for fuel cell and material for base tube
JP2016072216A (en) Solid oxide fuel cell stack
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP6524756B2 (en) Solid oxide fuel cell stack
Ruiz‐Morales et al. Cost‐Effective Microstructural Engineering of Solid Oxide Fuel Cell Components for Planar and Tubular Designs
JP2015185246A (en) Anode support substrate and anode supported cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R151 Written notification of patent or utility model registration

Ref document number: 3631923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees