WO2014207993A1 - Anode support for solid oxide fuel cell, anode-supported solid oxide fuel cell, and fuel cell system - Google Patents

Anode support for solid oxide fuel cell, anode-supported solid oxide fuel cell, and fuel cell system Download PDF

Info

Publication number
WO2014207993A1
WO2014207993A1 PCT/JP2014/002720 JP2014002720W WO2014207993A1 WO 2014207993 A1 WO2014207993 A1 WO 2014207993A1 JP 2014002720 W JP2014002720 W JP 2014002720W WO 2014207993 A1 WO2014207993 A1 WO 2014207993A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
anode
oxide
anode support
support
Prior art date
Application number
PCT/JP2014/002720
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 康司
貴章 谷口
工藤 孝夫
達也 川田
圭司 八代
橋本 真一
大樹 進藤
浩史 雨澤
崇司 中村
Original Assignee
Jx日鉱日石エネルギー株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 国立大学法人東北大学 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2014207993A1 publication Critical patent/WO2014207993A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an anode support for a solid oxide fuel cell, an anode supported solid oxide fuel cell, and a fuel cell system.
  • Solid oxide fuel cells generally have higher power conversion efficiency than solid polymer fuel cells (PEFC). Further, not only hydrogen but also reformed gas obtained by reforming raw fuel such as hydrocarbon, alcohol and dimethyl ether (DME) can be used as the fuel. Furthermore, carbon monoxide, unreformed methane, etc. produced as a by-product during reforming of the raw fuel can also be used as a fuel for power generation.
  • heat for reforming is supplied by using the amount of heat generated in SOFC or heat obtained by burning surplus gas not used for power generation in the upper part of the cell. The ability to balance heat contributes to the high efficiency of SOFC.
  • the operating temperature of SOFC has often been 700 ° C or higher in the past.
  • operation at a lower temperature is possible by using an electrolyte material or an air electrode material which is operated at a low temperature (below 700 ° C.), which has been developed in recent years.
  • a low temperature below 700 ° C.
  • the reformer may not be sufficiently heated during startup or shutdown. For this reason, in addition to the increase in the methane concentration in the fuel gas, a situation may occur in which the reformed gas mixed with hydrocarbons of C2 or higher is supplied to the cell.
  • a cermet containing nickel (Ni) having high conductivity is preferably used as an anode support.
  • the reformed gas supplied from the reformer contains high-concentration methane and C2 or higher hydrocarbons, most of the methane and C2 or higher hydrocarbons are combined with coexisting steam by the catalytic action of Ni contained in the anode support.
  • the hydrogen-rich gas is used as a fuel for power generation.
  • some methane and C2 or higher hydrocarbons may precipitate as carbon on the anode support.
  • a fuel electrode in which a composite oxide SrZr 0.95 Y 0.05 O 3-0 ⁇ (SZY) having proton conductivity is added to Ni / YSZ cermet is used.
  • SZY composite oxide SrZr 0.95 Y 0.05 O 3-0 ⁇
  • the addition amount is changed to optimize the addition amount in terms of deterioration resistance, electrochemical characteristics, operational stability, and the like (see Non-Patent Document 3).
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for suppressing carbon deposition in an anode support for a solid oxide fuel cell.
  • the anode support includes at least one of Ni metal and Ni oxide, and has a porous base portion.
  • Ti, Zr, Nb On the surface of the base portion that contacts at least the fuel supplied to the anode catalyst layer, Ti, Zr, Nb, It has particles composed of one or more oxides of a single metal selected from the group consisting of Hf, Ta and Ce, or aggregates of the particles, and the content of the oxide is the total mass of the anode support. On the other hand, it is 0.5 mass% or more.
  • Another embodiment of the present invention is an anode-supported solid oxide fuel cell.
  • the anode-supported solid oxide fuel cell is provided on the surface of the anode support of the aspect described above, the anode catalyst layer provided on the surface of the anode support, and the surface of the anode catalyst layer opposite to the anode support.
  • Still another aspect of the present invention is a fuel cell system.
  • the fuel cell system includes an anode-supported solid oxide fuel cell according to the above-described embodiment, and reforming raw fuel using heat generated from the anode-supported solid oxide fuel cell, and an anode-supported solid oxide. And a reformer that generates fuel used for power generation of the fuel cell.
  • FIG. 1A is a perspective view showing a schematic structure of a main part of the fuel cell system according to the embodiment.
  • FIG. 1B is a vertical cross-sectional view schematically showing the structure of the main part of the fuel cell system according to the embodiment.
  • FIG. 2A is a horizontal sectional view schematically showing the structure of the fuel cell stack.
  • FIG. 2B is a schematic diagram showing an enlarged part of the anode support.
  • FIG. 3A is a horizontal cross-sectional view schematically showing a partial structure of a fuel cell stack provided in the fuel cell system according to the first modification.
  • FIG. 3B is a horizontal sectional view schematically showing the structure of the fuel cell according to Modification 2. It is a schematic diagram of an expansion measuring device.
  • Ni / YSZ Yttria-Stabilized Zilconia
  • Ni / GDC Gadolinia Doped Ceria
  • a carbon deposition test was conducted using a sample of the anode support to which was added with a low S / C reformed gas.
  • the inventors have found that a specific oxide significantly suppresses carbon deposition even when added in a small amount, and have arrived at the anode support, fuel cell, and fuel cell system according to the present embodiment.
  • the anode support, the fuel cell, and the fuel cell system according to the present embodiment will be described in detail.
  • FIG. 1A is a perspective view showing a schematic structure of a main part of a fuel cell system according to an embodiment.
  • FIG. 1B is a vertical cross-sectional view schematically showing the structure of the main part of the fuel cell system according to the embodiment.
  • FIG. 1A shows a state where the inside of the module case 2 is seen through. Since FIG. 1B is a schematic diagram, the arrangement of each part, the number of installations, and the like do not necessarily match those in FIG.
  • the fuel cell system 100 includes a hot module 1.
  • the hot module 1 includes a module case 2, a fuel cell stack 10 accommodated in the module case 2, a water vaporizer 50, and a reformer 6.
  • the module case 2 is composed of a substantially rectangular parallelepiped outer frame formed of a heat-resistant metal and a heat insulating material lined on the inner surface of the outer frame.
  • the module case 2 is provided with a supply pipe 3, a supply pipe 4 and a supply pipe 52.
  • the supply pipe 3 is a pipe for supplying raw fuel and ATR (autothermal reforming reaction) air into the case from the outside of the case.
  • the supply pipe 4 is a pipe for supplying cathode air (oxygen-containing gas) from the outside of the case into the case.
  • the supply pipe 52 is a pipe for supplying reforming water used for the steam reforming reaction from the outside of the case into the case.
  • the module case 2 is provided with an exhaust port 5.
  • raw fuel city gas, LPG, methanol, dimethyl ether (DME), kerosene and the like are used.
  • the water vaporizer 50 and the reformer 6 are arranged in the upper part of the module case 2 and above the fuel cell stack 10.
  • a supply pipe 52 is connected to the water vaporizer 50, and a supply pipe 3 is connected to the reformer 6.
  • the water vaporizer 50 vaporizes the reforming water supplied from the supply pipe 52.
  • Vaporized reforming water (steam) is supplied to the reformer 6.
  • the reformer 6 includes a case formed of a heat-resistant metal and a reforming catalyst that is accommodated in the case and used for reforming raw fuel.
  • the reformer 6 is a raw material supplied from the supply pipe 3 by a self-thermal reforming reaction using ATR air supplied from the supply pipe 3 or a steam reforming reaction using water vapor supplied from the water vaporizer 50.
  • the fuel is reformed into a fuel gas rich in hydrogen (reformed gas).
  • the manifold 8 is a fuel supply path that is supplied to the anode catalyst layer 23 described later.
  • the manifold 8 is disposed below the fuel cell stack 10 and distributes the reformed gas supplied from the reformer 6 to the plurality of fuel cells 20 included in the fuel cell stack 10.
  • the fuel cell stack 10 is disposed in the lower part of the module case 2, below the reformer 6 and the water vaporizer 50, and fixed on the manifold 8.
  • the manifold 8 includes a box-shaped main body having an opening and an upper lid that closes the opening of the box-shaped main body.
  • the upper lid is fixed to the box-shaped main body by, for example, an inorganic glass composition.
  • the upper lid functions as a holding member for the fuel cell stack 10.
  • the upper lid is provided with a plurality of holes for fixing the anode support 21 of each fuel cell 20, and the lower end portion of each anode support 21 is inserted into each opening, and a fixing material such as an adhesive is provided. It is fixed by.
  • the adhesive used as the fixing material include silica-alumina based inorganic adhesives.
  • the anode support 21 is fixed to the upper lid by solidifying the inorganic adhesive by firing in a state where the lower end portion of each anode support 21 is held in each opening of the upper lid via the inorganic adhesive. can do. Further, an adhesive layer for fixing the anode support 21 and the upper lid is covered with a sealing material. Thereby, the junction part of the anode support body 21 and an upper cover is sealed gas tight (airtight).
  • the fuel cell stack 10 is an assembly of a plurality of fuel cells 20 (cells).
  • a plurality of (shown five for simplicity in FIG. 1) vertically long fuel cells 20 are arranged in a row in the horizontal direction.
  • a current collecting member 30 is interposed between the side surfaces of the adjacent fuel cells 20.
  • a plurality of fuel cells 20 in a row are arranged on a plane, so that a large number of fuel cells 20 are arranged in a matrix (see FIG. 2).
  • the outermost current collecting member 30 in each row is electrically connected to the conductive member 40.
  • Each of the fuel cells 20 is provided with a plurality of gas passages 22 extending from the lower end to the upper end of the fuel cell 20.
  • Each gas flow path 22 communicates with the manifold 8 at its lower end.
  • the upper end portion of the gas flow path 22 is opened to a space sandwiched between the reformer 6 and the water vaporizer 50 and the fuel cell stack 10.
  • the space constitutes a combustion portion for fuel gas discharged from the upper end portion of the gas flow path 22.
  • Most of the fuel gas flowing from the manifold 8 into the gas flow path 22 is supplied to the fuel cell 20. Excess fuel gas that is not supplied to the fuel cell 20 is supplied from the upper end of the gas flow path 22 to the combustion unit.
  • FIG. 2A is a horizontal sectional view schematically showing the structure of the fuel cell stack.
  • a cylindrical flat plate fuel cell 20 is illustrated.
  • the fuel cell 20 is an anode-supported solid oxide fuel cell, and includes an anode support 21, a gas flow path 22, an anode catalyst layer 23 (fuel electrode layer), and an electrolyte layer 24 (solid oxide electrolyte layer).
  • a cathode catalyst layer 25 air electrode layer
  • an interconnector 26 is an interconnector 26.
  • the anode support 21 is a porous body containing at least one of Ni metal and Ni oxide.
  • the anode support 21 is a plate-shaped piece having a flat oval horizontal cross-sectional shape and extending in the vertical direction (vertical direction) (see FIG. 1B).
  • the anode support 21 has a lower surface located on the manifold 8 side, an upper surface located on the reformer 6 side, two flat side surfaces (flat side surfaces) facing each other, and two semi-cylindrical surface shapes facing each other. And side surfaces (two curved side surfaces arranged in a direction orthogonal to the direction in which the two flat side surfaces are arranged).
  • the anode support 21 has a plurality of gas flow paths 22 at the center thereof.
  • the gas flow path 22 is provided along the longitudinal direction of the anode support 21.
  • One end (lower end) of the gas passage 22 is located on the lower surface of the anode support 21, and the other end (upper end) of the gas passage 22 is located on the upper surface of the anode support 21.
  • four gas flow paths 22 are provided in each anode support 21.
  • the anode support 21 is fixed to the manifold 8, and one end of the gas flow path 22 is communicated with the manifold 8.
  • the reformed gas generated in the reformer 6 is distributed to the gas flow paths 22 of the fuel cells 20 by the manifold 8 and flows from one end of the gas flow paths 22 to the other end side.
  • the interconnector 26 is provided on one flat side surface of the anode support 21 (on the left flat side surface in the fuel cell stack 10-1 in the first row in FIG. 2A).
  • the interconnector 26 is a conductive member for collecting current from the anode of each fuel cell 20.
  • the interconnector 26 can be made of, for example, a conductive ceramic.
  • the anode catalyst layer 23 is provided on the surface of the anode support 21.
  • the anode catalyst layer 23 is laminated at least on the other flat side surface of the anode support 21 (on the right flat side surface in the fuel cell stack 10-1 in the first row in FIG. 2A). Is done.
  • the electrolyte layer 24 is provided on the surface of the anode catalyst layer 23 opposite to the anode support 21. In the present embodiment, the electrolyte layer 24 covers the entire surface of the anode catalyst layer 23.
  • the cathode catalyst layer 25 is provided on the surface of the electrolyte layer 24 opposite to the anode catalyst layer 23. In the present embodiment, the cathode catalyst layer 25 is laminated on the main surface of the electrolyte layer 24. Therefore, the anode support 21 is disposed on the side opposite to the interconnector 26.
  • the anode catalyst layer 23, the electrolyte layer 24, and the cathode catalyst layer 25 are laminated in this order on one surface of the anode support 21 having the gas flow path 22, and the other surface of the anode support 21. And an interconnector 26 is formed.
  • the constituent materials of the anode support 21, the anode catalyst layer 23, the electrolyte layer 24, and the cathode catalyst layer 25 will be described in detail later.
  • the plurality of fuel cells 20 are arranged in a row so that one cathode catalyst layer 25 and the other interconnector 26 in two adjacent fuel cells 20 face each other, and are joined to each other via a current collecting member 30.
  • the interconnector 26 located on the left side of each fuel cell 20 is connected to the cathode catalyst layer 25 located on the right side of the left fuel cell 20 via the current collecting member 30.
  • a plurality of fuel cells 20 arranged in a row are connected in series to form the fuel cell stack 10.
  • the fuel cell stack 10 includes a first row of fuel cell stacks 10-1 and a second row of fuel cell stacks 10-2.
  • the current collecting member 30 can be composed of a member having a predetermined shape formed from a metal or alloy having elasticity, or a member obtained by performing a predetermined surface treatment on a felt made of metal fiber or alloy fiber.
  • raw fuel for hydrogen production and, if necessary, ATR air are supplied from the supply pipe 3 to the reformer 6, and reforming water is supplied from the supply pipe 52 to the water vaporizer 50. Supplied.
  • the reformer 6 reforms the raw fuel by a steam reforming reaction or an autothermal reforming reaction to generate a hydrogen-rich reformed gas used for power generation of the fuel cell 20.
  • the generated reformed gas is supplied to the manifold 8 through the reformed gas supply pipe 7.
  • the reformed gas supplied to the manifold 8 is distributed to each fuel cell 20 and rises in the gas flow path 22 of each fuel cell 20.
  • cathode air is introduced into the module case 2 from the supply pipe 4.
  • the cathode air introduced into the module case 2 is supplied to each fuel cell 20, and oxygen in the cathode air reaches the cathode catalyst layer 25.
  • an electrode reaction represented by the following formula (5) occurs in the cathode catalyst layer 25 located on the outer peripheral side of each fuel cell 20.
  • O 2 ⁇ produced in the cathode catalyst layer 25 permeates the electrolyte layer 24 and reaches the anode catalyst layer 23.
  • an electrode reaction represented by the following formula (6) occurs in the anode catalyst layer 23 located on the center side of the fuel cell 20.
  • power generation is performed in the fuel cell 20.
  • surplus reformed gas that has not been used for the electrode reaction is released into the module case 2 from the upper end of the anode support 21.
  • This reformed gas is burned in the combustion section located between the reformer 6 and the water vaporizer 50 and the fuel cell stack 10.
  • Predetermined ignition means (not shown) is provided in the module case 2, and when the reformed gas starts to be released to the combustion section, the ignition means is activated and combustion of the reformed gas is started.
  • surplus air that has not been used for the electrode reaction is used for combustion of the reformed gas.
  • the inside of the module case 2 becomes a high temperature of, for example, about 600 ° C. to 1000 ° C.
  • the water vaporizer 50 and the reformer 6 perform the vaporization and reforming reaction of the reforming water using the heat generated from the fuel cell 20 and the heat generated by the combustion of the reformed gas.
  • the exhaust gas generated by the combustion of the reformed gas in the module case 2 is discharged out of the module case 2 through the exhaust port 5.
  • FIG. 2B is a schematic diagram showing an enlarged part of the anode support.
  • the anode support 21 is required to have gas permeability in order to permeate fuel from the gas flow path 22 to the anode catalyst layer 23. Further, the anode support 21 is required to have conductivity in order to transmit electrons generated in the anode catalyst layer 23 to the interconnector 26.
  • the anode support 21 has a base 210 that is porous. By making the base 210 porous, the reformed gas can be transmitted from the gas flow path 22 to the anode catalyst layer 23.
  • the base 210 contains at least one of Ni metal and Ni oxide.
  • Ni contained in the base 210 takes the state of Ni oxide during the manufacture of the anode support 21 and the fuel cell 20 and before the fuel cell system 100 is driven, and is reduced during the driving of the fuel cell system 100 to form Ni metal. It can take a state.
  • Ni metal and Ni oxide are not distinguished from each other and are illustrated as a nickel portion 212. Since the base 210 has the nickel portion 212, conductivity can be imparted to the anode support 21.
  • the base 210 includes at least one of Ni metal and Ni oxide (that is, the nickel portion 212), and at least one oxide 214 selected from the group consisting of Y 2 O 3 , a zirconia-based composite oxide, and a ceria-based composite oxide. It is preferable that the composite is That is, the base 210 is preferably a cermet composed of Ni metal and / or Ni oxide and a porous conductive ceramic. Examples of the zirconia-based composite oxide include YSZ, ScSZ (Scandia Stabilized Zirconia) and the like.
  • Examples of the ceria-based composite oxide include SDC (Samaria-Doped Ceria), YDC (Yttria-Doped Ceria), LDC (La 2 O 3 -doped Ceria), GDC (Gadolinia-doped Ceria), and the like.
  • the anode support 21 preferably has an open porosity of 20% or more, more preferably 25% to 50%.
  • the anode support 21 preferably has a conductivity of 100 S / cm or higher, more preferably 200 S / cm or higher.
  • the base 210 is preferably 30% by mass or more in terms of Ni oxide with respect to the total mass of the anode support 21 (for example, the total mass of the base 210 and the oxide particle part 220 described later). More preferably, it contains 30 mass% to 90 mass%, more preferably 40 mass% to 80 mass% of Ni atoms.
  • the dimension of the anode support 21 is 7 cm to 20 cm in height (length from the upper end to the lower end), for example.
  • a composite composition containing nickel oxide and oxide 214 is processed into a support shape by means of extrusion molding or the like, and subjected to appropriate firing treatment to obtain predetermined dimensions and porosity.
  • a preferred example is a method of forming a cermet having the same.
  • the cermet is subjected to a reduction treatment before it is used as a fuel cell after all cell constituent layers are finally formed.
  • This reduction treatment is usually performed by heating the fuel cell 20 or the fuel cell stack 10 to a predetermined temperature in a reducing gas stream such as hydrogen gas or hydrogen gas diluted with nitrogen.
  • the anode support 21 has titanium (Ti), zirconium (Zr), niobium (Nb), hafnium (Hf), tantalum (on the surface in contact with the fuel supplied to the anode catalyst layer 23 at least in the base 210.
  • the oxide of these metals alone is at least the nickel portion constituting the base 210 on the surface of the base 210 that contacts the fuel (including the surface of the base 210 as well as the surface of the internal pores). It exists as particles (primary particles) that are distinguished from 212 and oxide 214, or exists as aggregates (secondary particles) formed by aggregation of these particles.
  • these metal single oxides exist as single compound domains on the base 210.
  • the oxide particles 220 are illustrated without distinction between particles and aggregates.
  • the oxide particle part 220 may be layered (film
  • the oxide particle portion 220 has a maximum width of 0.5 ⁇ m to 20 ⁇ m, for example, in the case of particles and particle aggregates.
  • the layer thickness is, for example, 0.1 ⁇ m to 10 ⁇ m.
  • the oxide constituting the oxide particle portion 220 is a single oxide in which only one type of metal selected from the group consisting of Ti, Zr, Nb, Hf, Ta, and Ce is included in the single crystal. Therefore, the oxide 214 is distinguished from a zirconia-based composite oxide or a ceria-based composite oxide in which a plurality of types of metals are included in a single crystal.
  • the oxide particle part 220 is composed of at least one single oxide selected from the group consisting of TiO 2 , ZrO 2 , Nb 2 O 5 , HfO 2 , Ta 2 O 5 and CeO 2 .
  • the oxide particle part 220 may be a mixture in which a plurality of single oxides (for example, TiO 2 and ZrO 2, etc.) are mixed within the range of the oxide group.
  • the operating temperature of SOFC has often been 700 ° C or higher.
  • improvements in electrolyte materials and air electrode materials have progressed, and SOFCs that can operate at a low temperature of about 600 ° C. or lower are being used.
  • the temperature of the reformer 6 also decreases in the hot module 1 that performs the reforming reaction in the reformer 6 using the heat generated by the fuel cell 20.
  • a reformed gas having a high methane ratio may be generated due to thermal equilibrium.
  • the reformer 6 may cause the C2 or higher hydrocarbons to be supplied to the fuel cell 20 without being converted into C1 chemical species (C2 or higher hydrocarbon slips). Occurrence). Further, the fuel cell system 100 may be stopped due to various reasons such as a user instruction, a purpose of improving the energy saving effect, and a trouble of the device. In the system stop process and the subsequent restart process, the reformer 6 may not be sufficiently heated even with a conventional SOFC operating at a high temperature. Also in this case, the above-described methane concentration increase or a situation in which the reformed gas mixed with C2 or more hydrocarbons is supplied to the fuel cell 20 may occur.
  • the fuel cell 20 may be gradually cooled while continuing to supply the reformed gas to the fuel cell 20.
  • the reformed gas is supplied for the purpose of preventing air from flowing into the anode support 21 and the anode catalyst layer 23 and re-oxidation of the anode support 21.
  • the reformed gas is supplied to the fuel cell 20 for several hours even after the power generation of the fuel cell 20 is stopped.
  • the temperature of the fuel cell 20 decreases, the temperature of the reformer 6 also decreases. For this reason, there is a high possibility that high-concentration methane or unreformed C2 or higher hydrocarbon compound is supplied from the reformer 6 to the fuel cell 20.
  • the fuel cell system having a conventional anode support made of Ni cermet has various forms of carbon. Precipitation may occur in various places. Such carbon deposition is likely to occur, for example, in the manifold, the upstream portion of the anode support in the fuel gas flow direction, in the pores of the anode support, or in places where the potential changes due to the external current collecting structure in the hot module. .
  • fibrous carbon when reformed gas containing a large amount of C2 or more hydrocarbons and low S / C is supplied to the fuel cell, fibrous carbon often grows. This fibrous carbon may cause an electrical short circuit or clogging of the pores of the anode support (gas blockage), and the fuel cell may be irreversibly disabled. Further, when a high concentration of methane is included and a low S / C reformed gas is supplied, solid carbon is deposited. Then, granular carbon is deposited in the pores of the anode support 21 and this causes dimensional expansion of the anode support. When the anode support is expanded, there is a possibility that stress deformation and cracks may occur.
  • the anode support 21 has the oxide particle part 220 on the surface in contact with the reformed gas of the base part 210.
  • the oxide particle part 220 can suppress the above-described carbon deposition on the anode support 21.
  • Content of the oxide particle part 220 is 0.5 mass with respect to the total mass (For example, total mass of the base 210 and the oxide particle part 220) of the anode support body 21.
  • FIG. % Or more, preferably 1% by mass or more.
  • the weight ratio of the single oxide particles or aggregates in the anode support 21 can be inclined along the flow direction of the fuel gas.
  • the anode support 21 has a total weight ratio of particles and aggregates in at least a part of the upstream side in the fuel flow direction, and a total weight of particles and aggregates in the at least a part of the downstream side. Greater than percentage.
  • the total weight ratio is the total weight of the oxide particle part 220 with respect to the total weight of the base part 210 and the oxide particle part 220.
  • the upstream region is, for example, a region including the upstream end portion of the anode support 21 in the fuel gas flow direction
  • the downstream region is, for example, the downstream end portion of the anode support 21 in the fuel gas flow direction.
  • the total amount of the oxide particle portions 220 on the upstream side in the fuel flow direction is equal to the total amount of the oxide particle portions 220 on the downstream side in the fuel flow direction. It is preferable that there are more.
  • Examples of the method for forming the oxide particle part 220 include the following examples. That is, as a first forming method, in the manufacturing process of the base 210, a single oxide (hereinafter referred to as “ The anode support 21 having the base portion 210 and the oxide particle portion 220 can be formed by mixing and firing this composite composition in advance. Alternatively, as a second forming method, a composite composition including the nickel portion 212 and the oxide 214 is formed and fired to form the base 210, and then a carbon deposition inhibitor is attached to the obtained base 210. Thus, the oxide particle part 220 can be formed. According to the second method, the above-described concentration distribution control of the oxide particle part 220 in the anode support 21 can be realized more easily.
  • the oxide particle part 220 exists without changing to a constituent material of the base part 210 and a different substance by solid solution or solid phase reaction. Moreover, the state which exists as the independent particle
  • a chemical vapor deposition method (CVD method) or the like can be used as the vapor phase process.
  • CVD method chemical vapor deposition method
  • homogeneous precipitation method, hydrolysis method, precipitation method represented by citrate method, hydrothermal synthesis method, microemulsion method, solvent evaporation method, etc. can be used as the liquid phase process.
  • solid phase process a solid thermal decomposition method, a solid phase reaction method, a hydrothermal crystallization method, or the like can be used.
  • a suspension of fine particles of a single oxide is prepared as a carbon deposition inhibitor, and this suspension is sprayed on the base 210 or impregnated with the base 210 in the suspension, and then dried.
  • a method of immobilizing a carbon deposition inhibitor on the base 210 by treatment or baking treatment can be used.
  • a soluble salt of a single oxide for example, when the single oxide is CeO 2 , cerium nitrate or the like is dissolved in a solvent such as water, and this solution is sprayed on the base 210 or the base 210 is impregnated with this solution. Also good.
  • the anode support 21 to which the carbon deposition inhibitor is attached is heated and fired.
  • This heating and baking may be combined with a baking process performed at the time of forming the base 210, the temporary baking or the main baking, or the formation of the anode catalyst layer 23, the electrolyte layer 24, the cathode catalyst layer 25, and the like.
  • the firing temperature of the carbon deposition inhibitor varies depending on the type of carbon deposition inhibitor used and the amount of adhesion to the base 210, but is generally 300 ° C to 1600 ° C, preferably 350 ° C to 1200 ° C, more preferably 400 ° C. ° C to 1000 ° C.
  • the carbon precipitation inhibitor can be more reliably attached to the base portion 210, and nitrate such as cerium nitrate can be more reliably denitrated, so that the oxide particle portion 220 Formation can be made more reliable.
  • the firing time is usually 15 minutes to 48 hours, preferably 1 hour to 24 hours. By setting the firing time to 15 minutes or longer, the carbon deposition inhibitor can be fired more reliably. By setting the firing time to 48 hours or less, aggregation of the carbon deposition inhibitor can be avoided more reliably, and a decrease in industrial productivity can be suppressed.
  • the anode catalyst layer 23 is a composite composed of at least one of Ni metal and Ni oxide and at least one composite oxide selected from the group consisting of zirconia composite oxide, ceria composite oxide, and LSGM. Preferably there is. Specifically, the anode catalyst layer 23 is made of Ni / YSZ, Ni / ScSZ, Ni / SDC, Ni / YDC, Ni / LDC, Ni / GDC, Ni / LSGM (La—Sr—Ga—Mg composite oxide). Preferably, at least one cermet selected from the group consisting of: The layer thickness of the anode catalyst layer 23 is, for example, 0.1 ⁇ m to 50 ⁇ m.
  • the electrolyte layer 24 functions as an electrolyte that bridges electron conduction and ion conduction between electrodes, and also functions as a gas barrier layer for preventing leakage of fuel gas and air.
  • the electrolyte layer 24 preferably includes at least one composite oxide selected from the group consisting of zirconia composite oxide, ceria composite oxide, and LSGM. Specifically, a solid electrolyte selected from the group consisting of YSZ, ScSZ, SDC, YDC, LDC, GDC, and LSGM is preferably used for the electrolyte layer 24.
  • the layer thickness of the electrolyte layer 24 is, for example, 0.2 ⁇ m to 200 ⁇ m.
  • the cathode catalyst layer 25 can be formed using a conductive ceramic composed of a so-called ABO 3 type perovskite oxide.
  • the cathode catalyst layer 25 is required to have gas permeability. Therefore, the open porosity of the cathode catalyst layer 25 is preferably 20% or more, and more preferably 30% to 50%. Therefore, the cathode catalyst layer 25 preferably contains a composite oxide such as LSM (La Sr Mn), LSC (La Sr Co), or LSCF (La Sr Co Fe).
  • the thickness of the cathode catalyst layer 25 is, for example, 2 ⁇ m to 200 ⁇ m.
  • the cathode catalyst layer 25 has a function of electrically connecting to the current collector 30 or when the cathode catalyst layer 25 itself has a function of collecting current.
  • the operation of the fuel cell 20 at a temperature of about 600 ° C. or lower can be realized.
  • the anode catalyst layer 23, the electrolyte layer 24, and the cathode catalyst layer 25 are laminated on the anode support 21 in this order. Further, the interconnector 26 is sintered to the anode support 21. Thereby, the fuel cell 20 is formed.
  • the anode support 21 described above by sintering the composite composition to be the anode support 21 and simultaneously sintering the anode catalyst layer 23 and the electrolyte layer 24 to the composite composition, residual stress can be reduced.
  • a structure including the anode support 21, the anode catalyst layer 23, and the electrolyte layer 24 can be formed in a small amount.
  • the anode support 21 is an oxidation of a single metal selected from the group consisting of at least one of Ni metal and Ni oxide and Ti, Zr, Nb, Hf, Ta, and Ce. And at least one kind of product. More specifically, the base portion 210 includes a nickel portion 212 and is porous, and the oxide particle portion 220 is provided on at least a surface in contact with the fuel in the base portion 210. The content of the oxide is 0.5% by mass or more with respect to the total mass of the anode support. Thereby, carbon deposition in the anode support 21 can be suppressed.
  • the fuel cell system 100 includes an anode-supported fuel cell 20 and a reformer 6 that reforms the raw fuel using heat generated from the fuel cell 20.
  • methane and C2 or more hydrocarbons in the reformed gas are reduced as the operating temperature of the fuel cell 20 decreases.
  • carbon deposition tends to occur in the anode support 21.
  • the fuel cell system 100 according to the present embodiment includes the anode support 21 having the oxide particle part 220, such carbon deposition can be suppressed.
  • the raw fuel contains a hydrocarbon compound having 2 or more carbon atoms in an amount of 5 mol% or more based on the total molar amount of the raw fuel, the above-described carbon deposition is likely to occur, but the fuel cell system according to the present embodiment According to 100, even if the raw fuel contains 5 mol% or more of C2 or more hydrocarbons, it is possible to effectively suppress the occurrence of cracks in the anode support 21 due to carbon deposition.
  • carbon deposition can be suppressed by adding a small amount of a single oxide to the anode support 21. Therefore, carbon deposition can be suppressed without significantly changing the composition of the anode support from the conventional composition, that is, without sacrificing the conductivity and gas permeability of the anode support 21.
  • FIG. 3A is a horizontal cross-sectional view schematically showing a partial structure of a fuel cell stack provided in the fuel cell system according to the first modification.
  • the anode catalyst layer 23 has a substantially plate shape, and is laminated on one flat side surface of the anode support 21.
  • the electrolyte layer 24 is laminated on the anode catalyst layer 23 and the two curved side surfaces of the anode support 21. Both ends of the electrolyte layer 24 are joined to both ends of the interconnector 26.
  • An intermediate layer 27 is laminated on the surface of the electrolyte layer 24 opposite to the anode catalyst layer 23.
  • the anode catalyst layer 23 and the intermediate layer 27 face each other with the electrolyte layer 24 interposed therebetween.
  • the intermediate layer 27 is a layer for suppressing an interlayer reaction between the electrolyte layer 24 and the cathode catalyst layer 25.
  • the cathode catalyst layer 25 is laminated on the surface of the intermediate layer 27.
  • the current collecting member 30 is a substantially oval conductive member having a flat surface in contact with one interconnector 26 in two adjacent fuel cells 20 and a flat surface in contact with the cathode catalyst layer 25 on the other side. .
  • FIG. 3B is a horizontal sectional view schematically showing the structure of the fuel cell according to Modification 2.
  • the fuel cell 20 according to Modification 2 is a cylindrical fuel cell.
  • the fuel cell 20 has a cylindrical anode support 21.
  • the anode support 21 has a gas flow path 22 along its central axis.
  • On the peripheral surface of the anode support 21, an anode catalyst layer 23, an intermediate layer 27, an electrolyte layer 24, and a cathode catalyst layer 25 are laminated in this order.
  • the intermediate layer 27 is a layer for suppressing an interlayer reaction between the anode catalyst layer 23 and the electrolyte layer 24.
  • a current collecting cap (not shown) is fitted to the upper and lower ends of the cylinder of the fuel cell 20.
  • the current collecting cap is made of, for example, an alloy subjected to silver plating.
  • a current collecting film (not shown) is provided on the circumferential surface of the cylinder of the fuel cell 20.
  • the current collecting member 30 (see FIG. 2A) has one end electrically connected to the current collecting cap and the other end electrically connected to the current collecting film of the adjacent fuel cell 20.
  • NiO trade name NiO-FP, manufactured by Sumitomo Metal Mining Co., Ltd.
  • YSZ trade name TZ8YS, manufactured by Tosoh Corporation
  • Cross-linked polymethyl methacrylate fine particles manufactured by Sekisui Plastics Co., Ltd.
  • a pore former were mixed with the powder obtained after firing at a mass ratio of 30%, and the mixture was dry-pulverized. Thereafter, the mixture was molded by applying a hydrostatic pressure press of 100 MPa to obtain a pellet-shaped sample.
  • the obtained green compact pellet was fired at 1300 ° C. in the air for 4 hours to produce a NiO / YSZ pellet.
  • About 2 ⁇ 2 ⁇ 10 mm rectangular parallelepiped pellet pieces were cut out from this pellet.
  • the pellet piece was subjected to a reduction treatment at 800 ° C. for 5 hours in hydrogen to obtain a support sample made of Ni / YSZ.
  • This support sample was referred to as Comparative Example 1.
  • the porosity of the pellet pieces (NiO / YSZ) before the reduction treatment was about 17%, and the porosity of the support sample (Ni / YSZ) after the reduction treatment was about 35%.
  • Example 1 material obtained by adding TiO 2 of 0.5 wt% 0.5 Example 2 was obtained by adding 2 % by mass of ZrO 2 , Example 3 by adding 0.5% by mass of Nb 2 O 5, and Example 3 by adding 0.5% by mass of CeO 2. 4, 1 wt% CeO 2 was added as Example 5, 2 wt% CeO 2 was added as Example 6, and 5 wt% CeO 2 was added as Example 7. did. Further, Comparative Example 2 was obtained by adding 0.5% by mass of 8YSZ (8 mol% YSZ), and Comparative Example 3 was obtained by adding 0.5% by mass of 10 GDC (10 mol% GDC).
  • FIG. 4 is a schematic diagram of an expansion measuring device. As shown in FIG. 4, each support was set in an expansion measuring device so as to measure a change in length in the long side direction of the support sample.
  • each support sample was a dry 5% H 2 —N 2 atmosphere, and the temperature was raised at 5 ° C./min to about 800 ° C. (1073 K). After confirming that the length change due to the thermal expansion of the support sample converged and its shape was stabilized, supply of hydrocarbon fuel to each support sample was started and a hydrocarbon exposure treatment was performed. In the hydrocarbon exposure process, hydrocarbon fuel was supplied at a flow rate of 100 cc / min. The amount of water vapor in the hydrocarbon fuel was adjusted by bubbling temperature-controlled water or a saturated aqueous solution of lithium chloride (LiCl). As the hydrocarbon fuel, any of methane (CH 4 ), ethane (C 2 H 6 ), and propane (C 3 H 8 ) was used.
  • LiCl lithium chloride
  • ⁇ L is the amount of change in the length of the support sample
  • L 0 is the length of the support sample before the hydrocarbon exposure treatment.
  • FIG. 5 is a graph showing the relative carbon deposition amount in the support sample of each example and each comparative example.
  • the vertical axis in FIG. 5 indicates the relative carbon deposition amount (relativerelcarbon deposition).
  • “none” represents Comparative Example 1
  • “0.5% 8YSZ” represents Comparative Example 2
  • “0.5% 10 GDC” represents Comparative Example 3
  • “0.5% TiO 2” represents Example 1.
  • “0.5% ZrO2” is Example 2
  • “0.5% Nb2O3” is Example 3
  • 0.5% CeO2” is Example 4
  • “1% CeO2” is Example 5.
  • “2% CeO2” indicates Example 6, and “5% CeO2” indicates Example 7.
  • “CH4” represents methane
  • “C2H5” represents ethane
  • “C3H8” represents propane.
  • Example 4 Example 5 (1% CeO2), Example 6 (2% CeO2) and Example 7 are compared with Comparative Example 1. In (5% CeO2), a good carbon precipitation suppression effect was observed. Furthermore, it was confirmed that the carbon precipitation suppression effect is improved with an increase in the CeO 2 content.
  • the relative values of the linear expansion coefficients were calculated for the support samples of the examples and the comparative examples subjected to the above-described hydrocarbon exposure treatment.
  • the exposure time measurement was started at the timing when the linear expansion coefficient of the support sample started to change from the start of the hydrocarbon fuel supply.
  • the linear expansion coefficient when methane was supplied to the support sample of Comparative Example 1 was used as a reference value.
  • a linear expansion coefficient of 50% of the reference value was set as a threshold value, and a case where the relative linear expansion coefficient was less than the threshold value was evaluated as good.
  • FIG. 6 is a graph showing the relative linear expansion rates of the support samples of each example and each comparative example.
  • shaft of FIG. 6 shows a relative linear expansion coefficient (relative-extension).
  • Comparative Example 2 (0.5% 8YSZ) and Comparative Example 3 (0.5% 10GDC) do not show a good deformation suppressing effect.
  • Example 1 (0.5% TiO2), Example 2 (0.5% ZrO2), Example 3 (0.5% Nb2O5) and Example 4 (0.5% CeO2), A good deformation suppressing effect was observed.
  • Example 4 Example 5 (1% CeO2) and Example 6 (2% CeO2) than Comparative Example 1. A deformation suppressing effect was observed. Furthermore, it was confirmed that the deformation suppressing effect was improved with an increase in the CeO 2 content.
  • the anode gas As the anode gas, 5% C 3 H 8 /65% H 2 /20% H 2 O / 30% N 2 gas was used.
  • the anode gas used in this test is a gas simulating the anode gas used in an actual fuel cell system.
  • As the hydrocarbon species only C 3 H 8 was assumed, and CH 4 and CO 2 present in the actual fuel gas were replaced with 30% N 2 .
  • 5% C 3 H 8 in the anode gas was contained assuming a hydrocarbon slip from the reformer outlet in the actual fuel cell system.
  • the cathode gas was air.
  • the operating temperature of the fuel cell was 973K.
  • the utilization rate of the anode gas was 75%, and the utilization rate of the cathode gas was 40%.
  • the durability of the fuel cell was evaluated from the change in the output voltage of the fuel cell with the passage of the fuel cell drive time.
  • the output voltage at the initial driving stage of the fuel cell was used as a reference value.
  • the output voltage which decreased 10% from this reference value was set as a threshold value, and the case where the relative voltage exceeded the threshold value was evaluated as good.
  • the output voltage that is reduced by 50% from the reference value corresponds to the actual operation limit voltage of the fuel cell system.
  • FIG. 7 is a graph showing the relationship between the relative voltage of the fuel cell and the elapsed time.
  • the vertical axis in FIG. 7 indicates the relative voltage of the fuel cell (relative ⁇ cell voltage), and the horizontal axis indicates the elapsed time (time course).
  • the relative voltage decreases with the passage of time. After 175 hours, in Comparative Example 5, the relative voltage dropped below the threshold between about 250 hours and 300 hours.
  • Example 8 (0.5% TiO2) and Example 9 (0.5% CeO2)
  • the relative voltage does not drop below the threshold value even after 1000 hours have elapsed since the start of power generation. It was.
  • Comparative Example 4 and Comparative Example 5 the supply amount of the fuel gas to the fuel cell is decreased mainly due to the increase in the pressure loss of the fuel gas due to the carbon deposition on the anode support, thereby increasing the anode polarization and the output of the fuel cell. The voltage is thought to have dropped.
  • anode gas 2% C 3 H 8 /68% H 2 /20% H 2 O / 30% N 2 gas was used. The reason for setting this composition is the same as that of the anode gas at the time of voltage change evaluation described above.
  • the cathode gas was air.
  • the operating temperature of the fuel cell was 1023K.
  • the utilization rate of the anode gas was 70%, and the utilization rate of the cathode gas was 35%.
  • the durability of the fuel cell was evaluated from the number of cracks generated on the surface of the fuel cell as the fuel cell driving time passed. In this evaluation, five fuel cells were driven. Then, the driving was stopped every 50 hours, the number of cracks generated on the fuel cell surface was measured, and the number of cracks generated per fuel cell was calculated.
  • FIG. 8 is a graph showing the relationship between the number of cracks generated in the fuel cell and the elapsed time.
  • the vertical axis in FIG. 8 indicates the number of cracks per fuel cell (crack number per cell), and the horizontal axis indicates the elapsed time (time course).
  • the number of cracks increased with the passage of time.
  • Comparative Example 6 the number of cracks increased rapidly after 150 hours passed
  • Comparative Example 7 the number of cracks increased rapidly after 300 hours passed.
  • Example 10 (0.5% TiO 2) and Example 11 (0.5% CeO 2)
  • Example 10 almost no cracks were observed even after 1000 hours had elapsed since the start of power generation.
  • Comparative Example 6 and Comparative Example 7 it is considered that cracks occurred in the electrolyte layer and the like covering the surface of the fuel cell due to dimensional expansion of the anode support accompanying carbon deposition on the anode support.
  • the present invention can be used in an anode support for a solid oxide fuel cell, an anode supported solid oxide fuel cell, and a fuel cell system.

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

 An anode support (21) for a solid oxide fuel cell constituting an embodiment of the present invention contains metallic Ni and/or Ni oxide. The anode support has a porous base section, and a surface of the base section that comes into contact with fuel supplied at least to an anode catalyst layer (23) has particles, or an aggregate thereof, composed of at least one oxide of a single metal selected from the group consisting of Ti, Zr, Nb, Hf, Ta, and Ce. The oxide content in relation to the total mass of the anode support (21) is at least 0.5% by mass.

Description

固体酸化物形燃料電池用のアノード支持体、アノード支持型固体酸化物形燃料電池、及び燃料電池システムAnode support for solid oxide fuel cell, anode supported solid oxide fuel cell, and fuel cell system
 本発明は、固体酸化物形燃料電池用のアノード支持体、アノード支持型固体酸化物形燃料電池、及び燃料電池システムに関する。 The present invention relates to an anode support for a solid oxide fuel cell, an anode supported solid oxide fuel cell, and a fuel cell system.
 固体酸化物形燃料電池(SOFC)は、固体高分子形燃料電池(PEFC)に比べて一般に電力変換効率が高い。また、燃料として水素だけでなく、炭化水素やアルコール、ジメチルエーテル(DME)といった原燃料を改質して得られる改質ガスを利用することができる。さらに、原燃料の改質の際に副生する、一酸化炭素や未改質のメタン等も発電用の燃料として用いることができる。一般に、SOFCで発生する熱量や、発電に利用しない余剰ガスをセル上部で燃焼させて得られる熱などを利用して、改質のための熱を供給することで、1つの熱的閉鎖系において熱バランスを取れることが、SOFCが高効率であることの一因となっている。 Solid oxide fuel cells (SOFC) generally have higher power conversion efficiency than solid polymer fuel cells (PEFC). Further, not only hydrogen but also reformed gas obtained by reforming raw fuel such as hydrocarbon, alcohol and dimethyl ether (DME) can be used as the fuel. Furthermore, carbon monoxide, unreformed methane, etc. produced as a by-product during reforming of the raw fuel can also be used as a fuel for power generation. Generally, in one thermal closed system, heat for reforming is supplied by using the amount of heat generated in SOFC or heat obtained by burning surplus gas not used for power generation in the upper part of the cell. The ability to balance heat contributes to the high efficiency of SOFC.
 SOFCの動作温度は、従来700℃以上の高温である場合が多かった。これに対し、近年開発が進む低温(700℃未満)作動の電解質材料や空気極材料を用いることで、より低温での動作が可能となる。これにより、耐熱性の低い安価な材料を採用できるなど、SOFCの実用性を高めることができる。 The operating temperature of SOFC has often been 700 ° C or higher in the past. On the other hand, operation at a lower temperature is possible by using an electrolyte material or an air electrode material which is operated at a low temperature (below 700 ° C.), which has been developed in recent years. Thereby, the practicality of SOFC can be improved, for example, an inexpensive material with low heat resistance can be adopted.
 一方で、セルの動作温度が低下すれば、セルと熱的にバランスする改質器の温度も低下する。その結果、改質反応における熱平衡により、メタン割合の高い燃料ガスがセルに供給されることになる。また、熱量を調整した天然ガスやLPGなど、炭素数が2以上の炭化水素(C2以上炭化水素)を含む原燃料を用いる場合、改質器でC2以上炭化水素がC1化学種(炭素数1の炭化水素)に転化されずにセルに供給される、いわゆるC2以上炭化水素のスリップ発生の懸念が高まる。さらに、通常の動作温度(700℃以上)で動作するSOFCであっても、起動時や停止時には改質器が十分に加温されない場合がある。このため、燃料ガス中でのメタン濃度の増大に加え、C2以上炭化水素が混入した改質ガスがセルに供給される状況が発生し得る。 On the other hand, if the operating temperature of the cell decreases, the temperature of the reformer that is in thermal balance with the cell also decreases. As a result, fuel gas having a high methane ratio is supplied to the cell due to thermal equilibrium in the reforming reaction. In addition, when using raw fuel containing hydrocarbons having 2 or more carbon atoms (C2 or more hydrocarbons) such as natural gas or LPG with adjusted calorie, C2 or more hydrocarbons are converted to C1 species (carbon number 1) in the reformer. There is a growing concern about the occurrence of slippage of so-called C2 or higher hydrocarbons that are supplied to the cell without being converted into hydrocarbons. Furthermore, even with an SOFC that operates at a normal operating temperature (700 ° C. or higher), the reformer may not be sufficiently heated during startup or shutdown. For this reason, in addition to the increase in the methane concentration in the fuel gas, a situation may occur in which the reformed gas mixed with hydrocarbons of C2 or higher is supplied to the cell.
 ところで、アノード(燃料極)支持型のSOFCではアノード支持体として、高い導電性を有するニッケル(Ni)を含むサーメットが好ましく使用される。改質器から供給される改質ガスに高濃度のメタンやC2以上炭化水素が含まれる場合、メタンやC2以上炭化水素の大部分は、アノード支持体に含まれるNiの触媒作用により共存水蒸気と改質反応が進み、水素リッチなガスとなって発電用燃料として用いられる。しかしながら、一部のメタンやC2以上炭化水素は、アノード支持体において炭素として析出する場合がある。 Incidentally, in an anode (fuel electrode) -supported SOFC, a cermet containing nickel (Ni) having high conductivity is preferably used as an anode support. When the reformed gas supplied from the reformer contains high-concentration methane and C2 or higher hydrocarbons, most of the methane and C2 or higher hydrocarbons are combined with coexisting steam by the catalytic action of Ni contained in the anode support. As the reforming reaction proceeds, the hydrogen-rich gas is used as a fuel for power generation. However, some methane and C2 or higher hydrocarbons may precipitate as carbon on the anode support.
 特に、水蒸気分圧が低く炭化水素分圧の高い低S/C(スチーム/カーボン比)の条件下では、アノード支持体での炭素析出が起こりやすい。この炭素析出の反応としては、メタンの直接熱分解反応(下記式(1))や、水蒸気改質反応(下記式(2))又は水性移行反応(水性ガスシフト反応)(下記式(3))によって生成したCOの不均化反応(下記式(4))などが知られている。 Particularly, under the condition of low S / C (steam / carbon ratio) with a low water vapor partial pressure and a high hydrocarbon partial pressure, carbon deposition on the anode support is likely to occur. As the carbon deposition reaction, direct thermal decomposition reaction of methane (the following formula (1)), steam reforming reaction (the following formula (2)) or aqueous transfer reaction (water gas shift reaction) (the following formula (3)) The disproportionation reaction of CO produced by the above (formula (4) below) is known.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 アノード支持体で炭素析出が起こると、アノード支持体のガス供給孔が閉塞してアノード活性層への燃料ガスの供給が途絶え、セルが再酸化するリスクが生じる。また、アノード支持体で析出した炭素は、アノード支持体を膨張させる。その結果、アノード支持体の表面に設けられる電極や電解質層を破損させるおそれがある。また、炭素析出に伴うアノード支持体の膨張と、電解質層のクラック発生とは不可逆的な現象である。そのため、アノード支持体の膨張による電解質層のクラック発生が重篤になったものは、セルとして使用不能に陥ることがあった。したがって、アノード支持体での炭素析出を抑えることは極めて重要であった。そして、この炭素析出の抑制は、導電率や熱膨張係数など、既存の材料系の物性を大幅に変更することなく実現することが求められてきた(非特許文献1,2参照)。 When carbon deposition occurs on the anode support, the gas supply hole of the anode support is blocked, and the supply of fuel gas to the anode active layer is interrupted, resulting in a risk of reoxidation of the cell. Also, the carbon deposited on the anode support causes the anode support to expand. As a result, there is a risk of damaging the electrode and electrolyte layer provided on the surface of the anode support. Moreover, the expansion of the anode support accompanying the carbon deposition and the occurrence of cracks in the electrolyte layer are irreversible phenomena. For this reason, a case where cracking of the electrolyte layer due to the expansion of the anode support becomes serious may become unusable as a cell. Therefore, it was very important to suppress carbon deposition on the anode support. And suppression of this carbon precipitation has been calculated | required, without implement | achieving the physical property of the existing material system, such as an electrical conductivity and a thermal expansion coefficient, changing significantly (refer nonpatent literature 1, 2).
 上述した炭素析出を抑える手段に関しては、例えば、Ni/YSZサーメットに、プロトン伝導性を有する複合酸化物SrZr0.950.053-0δ(SZY)を添加した燃料極を用い、SZYの添加量を変化させて劣化耐性、電気化学特性、動作安定性等の点で添加量の最適化を図る研究例が知られている(非特許文献3参照)。 As for the means for suppressing the carbon deposition described above, for example, a fuel electrode in which a composite oxide SrZr 0.95 Y 0.05 O 3-0δ (SZY) having proton conductivity is added to Ni / YSZ cermet is used. There is known a research example in which the addition amount is changed to optimize the addition amount in terms of deterioration resistance, electrochemical characteristics, operational stability, and the like (see Non-Patent Document 3).
 固体酸化物形燃料電池用のアノード支持体における炭素析出の抑制については、抑制効果の向上という観点からは未だ検討の余地があった。 The suppression of carbon deposition in the anode support for a solid oxide fuel cell still has room for investigation from the viewpoint of improving the suppression effect.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、固体酸化物形燃料電池用のアノード支持体における炭素析出を抑制する技術の提供にある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a technique for suppressing carbon deposition in an anode support for a solid oxide fuel cell.
 本発明のある態様は、固体酸化物形燃料電池用のアノード支持体である。当該アノード支持体は、Ni金属及び酸化Niの少なくとも一方を含み、多孔質である基部を有するとともに、基部における、少なくともアノード触媒層に供給される燃料と接する面上に、Ti、Zr、Nb、Hf、Ta及びCeからなる群から選択される金属単独の酸化物1種以上で構成される粒子又は当該粒子の凝集体を有し、酸化物は、その含有量がアノード支持体の全質量に対して0.5質量%以上である。 One embodiment of the present invention is an anode support for a solid oxide fuel cell. The anode support includes at least one of Ni metal and Ni oxide, and has a porous base portion. On the surface of the base portion that contacts at least the fuel supplied to the anode catalyst layer, Ti, Zr, Nb, It has particles composed of one or more oxides of a single metal selected from the group consisting of Hf, Ta and Ce, or aggregates of the particles, and the content of the oxide is the total mass of the anode support. On the other hand, it is 0.5 mass% or more.
 本発明の他の態様は、アノード支持型固体酸化物形燃料電池である。当該アノード支持型固体酸化物形燃料電池は、上述した態様のアノード支持体と、アノード支持体の表面に設けられるアノード触媒層と、アノード触媒層のアノード支持体とは反対側の面に設けられる電解質層と、電解質層のアノード触媒層とは反対側の面に設けられるカソード触媒層と、を備える。 Another embodiment of the present invention is an anode-supported solid oxide fuel cell. The anode-supported solid oxide fuel cell is provided on the surface of the anode support of the aspect described above, the anode catalyst layer provided on the surface of the anode support, and the surface of the anode catalyst layer opposite to the anode support. An electrolyte layer; and a cathode catalyst layer provided on a surface of the electrolyte layer opposite to the anode catalyst layer.
 本発明のさらに他の態様は、燃料電池システムである。当該燃料電池システムは、上述した態様のアノード支持型固体酸化物形燃料電池と、アノード支持型固体酸化物形燃料電池から発生する熱を用いて原燃料を改質し、アノード支持型固体酸化物形燃料電池の発電に用いられる燃料を生成する改質器と、を備える。 Still another aspect of the present invention is a fuel cell system. The fuel cell system includes an anode-supported solid oxide fuel cell according to the above-described embodiment, and reforming raw fuel using heat generated from the anode-supported solid oxide fuel cell, and an anode-supported solid oxide. And a reformer that generates fuel used for power generation of the fuel cell.
 本発明によれば、固体酸化物形燃料電池用のアノード支持体における炭素析出を抑制する技術を提供することができる。 According to the present invention, it is possible to provide a technique for suppressing carbon deposition on an anode support for a solid oxide fuel cell.
図1(A)は、実施の形態に係る燃料電池システムの主要部の概略構造を示す斜視図である。図1(B)は、実施の形態に係る燃料電池システムの主要部の構造を模式的に示す鉛直断面図である。FIG. 1A is a perspective view showing a schematic structure of a main part of the fuel cell system according to the embodiment. FIG. 1B is a vertical cross-sectional view schematically showing the structure of the main part of the fuel cell system according to the embodiment. 図2(A)は、燃料電池スタックの構造を模式的に示す水平断面図である。図2(B)は、アノード支持体の一部を拡大して示す模式図である。FIG. 2A is a horizontal sectional view schematically showing the structure of the fuel cell stack. FIG. 2B is a schematic diagram showing an enlarged part of the anode support. 図3(A)は、変形例1に係る燃料電池システムが備える燃料電池スタックの部分構造を模式的に示す水平断面図である。図3(B)は、変形例2に係る燃料電池の構造を模式的に示す水平断面図である。FIG. 3A is a horizontal cross-sectional view schematically showing a partial structure of a fuel cell stack provided in the fuel cell system according to the first modification. FIG. 3B is a horizontal sectional view schematically showing the structure of the fuel cell according to Modification 2. 膨張測定装置の模式図である。It is a schematic diagram of an expansion measuring device. 各実施例及び各比較例の支持体サンプルにおける相対炭素析出量を示すグラフである。It is a graph which shows the relative carbon deposition amount in the support body sample of each Example and each comparative example. 各実施例及び各比較例の支持体サンプルにおける相対線形膨張率を示すグラフである。It is a graph which shows the relative linear expansion coefficient in the support body sample of each Example and each comparative example. 燃料電池の相対電圧と経過時間との関係を示すグラフである。It is a graph which shows the relationship between the relative voltage of a fuel cell, and elapsed time. 燃料電池に発生したクラックの数と経過時間との関係を示すグラフである。It is a graph which shows the relationship between the number of the cracks which generate | occur | produced in the fuel cell, and elapsed time.
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 まず、実施の形態を説明する前に、本発明者らが見出した知見を説明する。本発明者らは、従来用いられてきた一般的な支持体組成物であるNi/YSZ(Yttria-Stabilized Zilconia)やNi/GDC(Gadolinia Doped Ceria)に対して、第3成分として各種の酸化物を添加したアノード支持体サンプルを用いて、低S/C改質ガスを流通させて炭素析出試験を実施した。その結果、特定の酸化物は添加量が少量であっても著しく炭素析出を抑制することを見出し、本実施の形態に係るアノード支持体、燃料電池及び燃料電池システムに想到した。以下に、本実施の形態に係るアノード支持体、燃料電池及び燃料電池システムについて詳細に説明する。 First, the knowledge found by the present inventors will be described before the embodiment is described. The present inventors have used various oxides as the third component with respect to Ni / YSZ (Yttria-Stabilized Zilconia) and Ni / GDC (Gadolinia Doped Ceria), which are general support compositions conventionally used. A carbon deposition test was conducted using a sample of the anode support to which was added with a low S / C reformed gas. As a result, the inventors have found that a specific oxide significantly suppresses carbon deposition even when added in a small amount, and have arrived at the anode support, fuel cell, and fuel cell system according to the present embodiment. Hereinafter, the anode support, the fuel cell, and the fuel cell system according to the present embodiment will be described in detail.
 図1(A)は、実施の形態に係る燃料電池システムの主要部の概略構造を示す斜視図である。図1(B)は、実施の形態に係る燃料電池システムの主要部の構造を模式的に示す鉛直断面図である。図1(A)では、モジュールケース2の内部を透視した状態を示している。図1(B)は模式図であるため、各部の配置や設置数等は必ずしも図1(A)と一致しない。燃料電池システム100は、ホットモジュール1を備える。ホットモジュール1は、モジュールケース2と、モジュールケース2内に収容される燃料電池スタック10、水気化器50及び改質器6を有する。 FIG. 1A is a perspective view showing a schematic structure of a main part of a fuel cell system according to an embodiment. FIG. 1B is a vertical cross-sectional view schematically showing the structure of the main part of the fuel cell system according to the embodiment. FIG. 1A shows a state where the inside of the module case 2 is seen through. Since FIG. 1B is a schematic diagram, the arrangement of each part, the number of installations, and the like do not necessarily match those in FIG. The fuel cell system 100 includes a hot module 1. The hot module 1 includes a module case 2, a fuel cell stack 10 accommodated in the module case 2, a water vaporizer 50, and a reformer 6.
 モジュールケース2は、耐熱性金属で形成された略直方体形状の外枠体と、外枠体の内面に内張りされた断熱材とで構成される。モジュールケース2には、供給管3、供給管4及び供給管52が設けられる。供給管3は、ケース外部からケース内に原燃料と、ATR(自己熱改質反応)用空気を供給する管である。供給管4は、ケース外部からケース内にカソード用空気(酸素含有ガス)を供給する管である。供給管52は、ケース外部からケース内に水蒸気改質反応に用いられる改質用水を供給する管である。また、モジュールケース2には、排気口5が設けられる。原燃料としては、都市ガス、LPG、メタノール、ジメチルエーテル(DME)、灯油等が用いられる。 The module case 2 is composed of a substantially rectangular parallelepiped outer frame formed of a heat-resistant metal and a heat insulating material lined on the inner surface of the outer frame. The module case 2 is provided with a supply pipe 3, a supply pipe 4 and a supply pipe 52. The supply pipe 3 is a pipe for supplying raw fuel and ATR (autothermal reforming reaction) air into the case from the outside of the case. The supply pipe 4 is a pipe for supplying cathode air (oxygen-containing gas) from the outside of the case into the case. The supply pipe 52 is a pipe for supplying reforming water used for the steam reforming reaction from the outside of the case into the case. The module case 2 is provided with an exhaust port 5. As raw fuel, city gas, LPG, methanol, dimethyl ether (DME), kerosene and the like are used.
 水気化器50及び改質器6は、モジュールケース2内の上部であって、燃料電池スタック10の上方に配置される。水気化器50には供給管52が接続され、改質器6には供給管3が接続される。水気化器50は、供給管52から供給される改質用水を気化させる。気化された改質用水(水蒸気)は、改質器6に供給される。改質器6は、耐熱性金属で形成されたケースと、ケース内に収容され原燃料の改質に用いられる改質触媒とを有する。改質器6は、供給管3から供給されるATR用空気を用いる自己熱改質反応や、水気化器50から供給される水蒸気を用いる水蒸気改質反応により、供給管3から供給される原燃料を水素リッチな燃料ガス(改質ガス)に改質する。 The water vaporizer 50 and the reformer 6 are arranged in the upper part of the module case 2 and above the fuel cell stack 10. A supply pipe 52 is connected to the water vaporizer 50, and a supply pipe 3 is connected to the reformer 6. The water vaporizer 50 vaporizes the reforming water supplied from the supply pipe 52. Vaporized reforming water (steam) is supplied to the reformer 6. The reformer 6 includes a case formed of a heat-resistant metal and a reforming catalyst that is accommodated in the case and used for reforming raw fuel. The reformer 6 is a raw material supplied from the supply pipe 3 by a self-thermal reforming reaction using ATR air supplied from the supply pipe 3 or a steam reforming reaction using water vapor supplied from the water vaporizer 50. The fuel is reformed into a fuel gas rich in hydrogen (reformed gas).
 改質器6の改質ガス出口部6aには、改質ガス供給管7の一端が接続される。改質ガス供給管7の他端は、マニホルド8に接続される。マニホルド8は、後述するアノード触媒層23に供給される燃料の供給路である。マニホルド8は、燃料電池スタック10の下方に配置され、改質器6から供給される改質ガスを、燃料電池スタック10に含まれる複数の燃料電池20に分配する。燃料電池スタック10は、モジュールケース2内の下部であって、改質器6及び水気化器50の下方に配置され、マニホルド8上に固定される。 One end of the reformed gas supply pipe 7 is connected to the reformed gas outlet 6 a of the reformer 6. The other end of the reformed gas supply pipe 7 is connected to the manifold 8. The manifold 8 is a fuel supply path that is supplied to the anode catalyst layer 23 described later. The manifold 8 is disposed below the fuel cell stack 10 and distributes the reformed gas supplied from the reformer 6 to the plurality of fuel cells 20 included in the fuel cell stack 10. The fuel cell stack 10 is disposed in the lower part of the module case 2, below the reformer 6 and the water vaporizer 50, and fixed on the manifold 8.
 マニホルド8は、開口を有する箱状本体と、箱状本体の開口を塞ぐ上蓋とで構成される。上蓋は、例えば無機ガラス組成物等によって箱状本体に固定される。上蓋は、燃料電池スタック10の保持部材として機能する。上蓋には、各燃料電池20のアノード支持体21を固定するための複数の開孔が設けられており、各開孔に各アノード支持体21の下端部が挿入され、接着剤等の固定材により固定される。固定材として用いられる接着剤としては、シリカ-アルミナ系の無機接着剤が例示される。この場合、各アノード支持体21の下端部が、無機接着剤を介して上蓋の各開孔に保持された状態で、無機接着剤を焼成により固化することで、アノード支持体21を上蓋に固定することができる。また、アノード支持体21と上蓋とを固定する接着剤層がシール材で被覆される。これにより、アノード支持体21と上蓋の接合部がガスタイト(気密)にシールされる。 The manifold 8 includes a box-shaped main body having an opening and an upper lid that closes the opening of the box-shaped main body. The upper lid is fixed to the box-shaped main body by, for example, an inorganic glass composition. The upper lid functions as a holding member for the fuel cell stack 10. The upper lid is provided with a plurality of holes for fixing the anode support 21 of each fuel cell 20, and the lower end portion of each anode support 21 is inserted into each opening, and a fixing material such as an adhesive is provided. It is fixed by. Examples of the adhesive used as the fixing material include silica-alumina based inorganic adhesives. In this case, the anode support 21 is fixed to the upper lid by solidifying the inorganic adhesive by firing in a state where the lower end portion of each anode support 21 is held in each opening of the upper lid via the inorganic adhesive. can do. Further, an adhesive layer for fixing the anode support 21 and the upper lid is covered with a sealing material. Thereby, the junction part of the anode support body 21 and an upper cover is sealed gas tight (airtight).
 燃料電池スタック10は、複数の燃料電池20(セル)の組立体である。燃料電池20として、例えば円筒平板型の燃料電池が用いられる場合、複数(図1では簡略化のため5個を表示)の縦長の燃料電池20が水平方向に一列に配列される。また、隣接する燃料電池20の側面間には、集電部材30が介在する。そして、この一列の燃料電池20が平面上に複数配列されることで、多数の燃料電池20がマトリクス状に配列される(図2参照)。各列の最外側の集電部材30は、導電部材40に電気的に接続される。 The fuel cell stack 10 is an assembly of a plurality of fuel cells 20 (cells). When, for example, a cylindrical flat plate type fuel cell is used as the fuel cell 20, a plurality of (shown five for simplicity in FIG. 1) vertically long fuel cells 20 are arranged in a row in the horizontal direction. A current collecting member 30 is interposed between the side surfaces of the adjacent fuel cells 20. A plurality of fuel cells 20 in a row are arranged on a plane, so that a large number of fuel cells 20 are arranged in a matrix (see FIG. 2). The outermost current collecting member 30 in each row is electrically connected to the conductive member 40.
 燃料電池20はそれぞれの内部に、燃料電池20の下端から上端にかけて延在する複数のガス流路22が設けられる。各ガス流路22は、その下端部がマニホルド8と連通する。ガス流路22の上端部は、改質器6及び水気化器50と燃料電池スタック10とで挟まれる空間に開放される。当該空間は、ガス流路22の上端部から放出される燃料ガスの燃焼部を構成する。マニホルド8からガス流路22に流れ込む燃料ガスは、その大部分が燃料電池20に供給される。燃料電池20に供給されない余剰の燃料ガスは、ガス流路22の上端部から燃焼部に供給される。 Each of the fuel cells 20 is provided with a plurality of gas passages 22 extending from the lower end to the upper end of the fuel cell 20. Each gas flow path 22 communicates with the manifold 8 at its lower end. The upper end portion of the gas flow path 22 is opened to a space sandwiched between the reformer 6 and the water vaporizer 50 and the fuel cell stack 10. The space constitutes a combustion portion for fuel gas discharged from the upper end portion of the gas flow path 22. Most of the fuel gas flowing from the manifold 8 into the gas flow path 22 is supplied to the fuel cell 20. Excess fuel gas that is not supplied to the fuel cell 20 is supplied from the upper end of the gas flow path 22 to the combustion unit.
 続いて、燃料電池スタック10の構造についてより詳細に説明する。図2(A)は、燃料電池スタックの構造を模式的に示す水平断面図である。図2(A)に示すように、本実施の形態では、円筒平板型の燃料電池20を例示する。燃料電池20は、アノード支持型固体酸化物形燃料電池であり、アノード支持体21と、ガス流路22と、アノード触媒層23(燃料極層)と、電解質層24(固体酸化物電解質層)と、カソード触媒層25(空気極層)と、インターコネクタ26とを備える。 Subsequently, the structure of the fuel cell stack 10 will be described in more detail. FIG. 2A is a horizontal sectional view schematically showing the structure of the fuel cell stack. As shown in FIG. 2A, in this embodiment, a cylindrical flat plate fuel cell 20 is illustrated. The fuel cell 20 is an anode-supported solid oxide fuel cell, and includes an anode support 21, a gas flow path 22, an anode catalyst layer 23 (fuel electrode layer), and an electrolyte layer 24 (solid oxide electrolyte layer). A cathode catalyst layer 25 (air electrode layer), and an interconnector 26.
 アノード支持体21は、Ni金属及び酸化Niの少なくとも一方を含む多孔質体である。アノード支持体21は、扁平な長円形状の水平断面形状を有するとともに、鉛直方向(縦方向)に延びる(図1(B)参照)板状片である。アノード支持体21は、マニホルド8側に位置する下面と、改質器6側に位置する上面と、互いに対向する2つの平坦な側面(平坦側面)と、互いに対向する2つの半円筒面形状の側面(2つの平坦側面が並ぶ方向に対して直交する方向に並ぶ2つの湾曲側面)とを有する。 The anode support 21 is a porous body containing at least one of Ni metal and Ni oxide. The anode support 21 is a plate-shaped piece having a flat oval horizontal cross-sectional shape and extending in the vertical direction (vertical direction) (see FIG. 1B). The anode support 21 has a lower surface located on the manifold 8 side, an upper surface located on the reformer 6 side, two flat side surfaces (flat side surfaces) facing each other, and two semi-cylindrical surface shapes facing each other. And side surfaces (two curved side surfaces arranged in a direction orthogonal to the direction in which the two flat side surfaces are arranged).
 アノード支持体21は、その中心部に複数のガス流路22を有する。ガス流路22は、アノード支持体21の長手方向に沿って設けられる。ガス流路22の一端(下端)はアノード支持体21の下面に位置し、ガス流路22の他端(上端)はアノード支持体21の上面に位置する。本実施の形態では、各アノード支持体21に4本のガス流路22が設けられている。アノード支持体21は、マニホルド8に対して固定され、ガス流路22の一端がマニホルド8に連通される。改質器6で生成される改質ガスは、マニホルド8により各燃料電池20のガス流路22に分配され、ガス流路22の一端から他端側へ流れる。 The anode support 21 has a plurality of gas flow paths 22 at the center thereof. The gas flow path 22 is provided along the longitudinal direction of the anode support 21. One end (lower end) of the gas passage 22 is located on the lower surface of the anode support 21, and the other end (upper end) of the gas passage 22 is located on the upper surface of the anode support 21. In the present embodiment, four gas flow paths 22 are provided in each anode support 21. The anode support 21 is fixed to the manifold 8, and one end of the gas flow path 22 is communicated with the manifold 8. The reformed gas generated in the reformer 6 is distributed to the gas flow paths 22 of the fuel cells 20 by the manifold 8 and flows from one end of the gas flow paths 22 to the other end side.
 インターコネクタ26は、アノード支持体21の一方の平坦側面上(図2(A)中の第1列の燃料電池スタック10-1において左側の平坦側面上)に設けられる。インターコネクタ26は、各燃料電池20のアノードから集電するための導電部材である。インターコネクタ26は、例えば導電性セラミックで構成することができる。 The interconnector 26 is provided on one flat side surface of the anode support 21 (on the left flat side surface in the fuel cell stack 10-1 in the first row in FIG. 2A). The interconnector 26 is a conductive member for collecting current from the anode of each fuel cell 20. The interconnector 26 can be made of, for example, a conductive ceramic.
 アノード触媒層23は、アノード支持体21の表面に設けられる。本実施の形態では、アノード触媒層23は、少なくともアノード支持体21の他方の平坦側面上(図2(A)中の第1列の燃料電池スタック10-1において右側の平坦側面上)に積層される。 The anode catalyst layer 23 is provided on the surface of the anode support 21. In the present embodiment, the anode catalyst layer 23 is laminated at least on the other flat side surface of the anode support 21 (on the right flat side surface in the fuel cell stack 10-1 in the first row in FIG. 2A). Is done.
 電解質層24は、アノード触媒層23のアノード支持体21とは反対側の面に設けられる。本実施の形態では、電解質層24は、アノード触媒層23の表面全体を被覆している。カソード触媒層25は、電解質層24のアノード触媒層23とは反対側の面に設けられる。本実施の形態では、カソード触媒層25は、電解質層24の主表面上に積層される。したがって、アノード支持体21を挟んでインターコネクタ26とは反対側に配置される。すなわち、燃料電池20は、ガス流路22を有するアノード支持体21の一方の面に、アノード触媒層23、電解質層24及びカソード触媒層25がこの順に積層され、アノード支持体21の他方の面にインターコネクタ26が形成された構造を有する。アノード支持体21、アノード触媒層23、電解質層24及びカソード触媒層25の構成材料については後に詳細に説明する。 The electrolyte layer 24 is provided on the surface of the anode catalyst layer 23 opposite to the anode support 21. In the present embodiment, the electrolyte layer 24 covers the entire surface of the anode catalyst layer 23. The cathode catalyst layer 25 is provided on the surface of the electrolyte layer 24 opposite to the anode catalyst layer 23. In the present embodiment, the cathode catalyst layer 25 is laminated on the main surface of the electrolyte layer 24. Therefore, the anode support 21 is disposed on the side opposite to the interconnector 26. That is, in the fuel cell 20, the anode catalyst layer 23, the electrolyte layer 24, and the cathode catalyst layer 25 are laminated in this order on one surface of the anode support 21 having the gas flow path 22, and the other surface of the anode support 21. And an interconnector 26 is formed. The constituent materials of the anode support 21, the anode catalyst layer 23, the electrolyte layer 24, and the cathode catalyst layer 25 will be described in detail later.
 複数の燃料電池20は、隣り合う2つの燃料電池20における一方のカソード触媒層25と、他方のインターコネクタ26とが対向するようにして一列に並べられ、集電部材30を介して互いに接合される。すなわち、図2(A)に示すように、各燃料電池20の左側に位置するインターコネクタ26を、左隣の燃料電池20の右側に位置するカソード触媒層25と、集電部材30を介して接合する。これにより、一列に並ぶ複数の燃料電池20が直列に接続され、燃料電池スタック10が構成される。本実施の形態では、燃料電池スタック10は、第1列の燃料電池スタック10-1と、第2列の燃料電池スタック10-2とを含む。集電部材30は、弾性を有する金属又は合金から形成される所定形状の部材や、金属繊維又は合金繊維からなるフェルトに所定の表面処理を施した部材から構成することができる。 The plurality of fuel cells 20 are arranged in a row so that one cathode catalyst layer 25 and the other interconnector 26 in two adjacent fuel cells 20 face each other, and are joined to each other via a current collecting member 30. The That is, as shown in FIG. 2A, the interconnector 26 located on the left side of each fuel cell 20 is connected to the cathode catalyst layer 25 located on the right side of the left fuel cell 20 via the current collecting member 30. Join. As a result, a plurality of fuel cells 20 arranged in a row are connected in series to form the fuel cell stack 10. In the present embodiment, the fuel cell stack 10 includes a first row of fuel cell stacks 10-1 and a second row of fuel cell stacks 10-2. The current collecting member 30 can be composed of a member having a predetermined shape formed from a metal or alloy having elasticity, or a member obtained by performing a predetermined surface treatment on a felt made of metal fiber or alloy fiber.
 上述した構成を備えるホットモジュール1において、水素製造用の原燃料と、必要に応じてATR用空気が供給管3から改質器6に、改質用水が供給管52から水気化器50にそれぞれ供給される。改質器6は、水蒸気改質反応や自己熱改質反応により原燃料を改質して、燃料電池20の発電に用いられる水素リッチな改質ガスを生成する。生成された改質ガスは、改質ガス供給管7を介してマニホルド8に供給される。マニホルド8に供給された改質ガスは、各燃料電池20に分配され、各燃料電池20のガス流路22内を上昇する。この過程で、改質ガス中の水素は、アノード支持体21内を透過してアノード触媒層23に到達する。一方、カソード用空気が供給管4からモジュールケース2内に導入される。モジュールケース2内に導入されたカソード用空気は、各燃料電池20に供給され、カソード空気中の酸素がカソード触媒層25に到達する。 In the hot module 1 having the above-described configuration, raw fuel for hydrogen production and, if necessary, ATR air are supplied from the supply pipe 3 to the reformer 6, and reforming water is supplied from the supply pipe 52 to the water vaporizer 50. Supplied. The reformer 6 reforms the raw fuel by a steam reforming reaction or an autothermal reforming reaction to generate a hydrogen-rich reformed gas used for power generation of the fuel cell 20. The generated reformed gas is supplied to the manifold 8 through the reformed gas supply pipe 7. The reformed gas supplied to the manifold 8 is distributed to each fuel cell 20 and rises in the gas flow path 22 of each fuel cell 20. In this process, hydrogen in the reformed gas permeates through the anode support 21 and reaches the anode catalyst layer 23. On the other hand, cathode air is introduced into the module case 2 from the supply pipe 4. The cathode air introduced into the module case 2 is supplied to each fuel cell 20, and oxygen in the cathode air reaches the cathode catalyst layer 25.
 そして、各燃料電池20の外周側に位置するカソード触媒層25において、下記式(5)で表される電極反応が生起される。カソード触媒層25で生成されたO2-は、電解質層24を透過してアノード触媒層23に到達する。また、燃料電池20の中心側に位置するアノード触媒層23において、下記式(6)で表される電極反応が生起される。これにより、燃料電池20において発電が行われる。
 1/2O+2e→O2-       (5)
 O2-+H→HO+2e       (6)
In the cathode catalyst layer 25 located on the outer peripheral side of each fuel cell 20, an electrode reaction represented by the following formula (5) occurs. O 2− produced in the cathode catalyst layer 25 permeates the electrolyte layer 24 and reaches the anode catalyst layer 23. Further, an electrode reaction represented by the following formula (6) occurs in the anode catalyst layer 23 located on the center side of the fuel cell 20. Thereby, power generation is performed in the fuel cell 20.
1 / 2O 2 + 2e → O 2− (5)
O 2− + H 2 → H 2 O + 2e (6)
 ガス流路22を流通する改質ガスのうち、電極反応に使用されなかった余剰の改質ガスは、アノード支持体21の上端からモジュールケース2内に放出される。この改質ガスは、改質器6及び水気化器50と燃料電池スタック10との間に位置する燃焼部において燃焼される。モジュールケース2内には所定の着火手段(図示せず)が設けられており、改質ガスが燃焼部に放出され始めると着火手段が作動して、改質ガスの燃焼が開始される。また、モジュールケース2内に導入されたカソード用空気のうち、電極反応に使用されなかった余剰の空気が改質ガスの燃焼に利用される。モジュールケース2内は、各燃料電池20の発電により発生する熱、及び余剰改質ガスの燃焼により発生する熱により、例えば600℃~1000℃程度の高温になる。水気化器50及び改質器6は、燃料電池20から発生する熱及び改質ガスの燃焼により発生する熱を用いて、改質用水の気化及び改質反応を実施する。モジュールケース2内での改質ガスの燃焼によって生成された排気ガスは、排気口5からモジュールケース2外に排出される。 Of the reformed gas flowing through the gas flow path 22, surplus reformed gas that has not been used for the electrode reaction is released into the module case 2 from the upper end of the anode support 21. This reformed gas is burned in the combustion section located between the reformer 6 and the water vaporizer 50 and the fuel cell stack 10. Predetermined ignition means (not shown) is provided in the module case 2, and when the reformed gas starts to be released to the combustion section, the ignition means is activated and combustion of the reformed gas is started. Of the cathode air introduced into the module case 2, surplus air that has not been used for the electrode reaction is used for combustion of the reformed gas. The inside of the module case 2 becomes a high temperature of, for example, about 600 ° C. to 1000 ° C. due to heat generated by the power generation of each fuel cell 20 and heat generated by combustion of the surplus reformed gas. The water vaporizer 50 and the reformer 6 perform the vaporization and reforming reaction of the reforming water using the heat generated from the fuel cell 20 and the heat generated by the combustion of the reformed gas. The exhaust gas generated by the combustion of the reformed gas in the module case 2 is discharged out of the module case 2 through the exhaust port 5.
 続いて、燃料電池20を構成する各部の組成について詳細に説明する。図2(B)は、アノード支持体の一部を拡大して示す模式図である。アノード支持体21は、燃料をガス流路22からアノード触媒層23まで透過させるためにガス透過性を有することが要求される。また、アノード支持体21は、アノード触媒層23で生成される電子をインターコネクタ26に伝達させるために導電性を有することが要求される。 Subsequently, the composition of each part constituting the fuel cell 20 will be described in detail. FIG. 2B is a schematic diagram showing an enlarged part of the anode support. The anode support 21 is required to have gas permeability in order to permeate fuel from the gas flow path 22 to the anode catalyst layer 23. Further, the anode support 21 is required to have conductivity in order to transmit electrons generated in the anode catalyst layer 23 to the interconnector 26.
 そこで、本実施の形態に係るアノード支持体21は、多孔質である基部210を有する。基部210を多孔質とすることで、ガス流路22からアノード触媒層23へ改質ガスを透過させることができる。また、基部210は、Ni金属及び酸化Niの少なくとも一方を含む。基部210に含まれるNiは、アノード支持体21や燃料電池20の製造時、燃料電池システム100の駆動前等は酸化Niの状態をとり、燃料電池システム100の駆動中は還元されてNi金属の状態をとり得る。図2(B)では、Ni金属及び酸化Niを区別せずに、ニッケル部212として図示している。基部210がニッケル部212を有することで、アノード支持体21に導電性を付与することができる。 Therefore, the anode support 21 according to the present embodiment has a base 210 that is porous. By making the base 210 porous, the reformed gas can be transmitted from the gas flow path 22 to the anode catalyst layer 23. Moreover, the base 210 contains at least one of Ni metal and Ni oxide. Ni contained in the base 210 takes the state of Ni oxide during the manufacture of the anode support 21 and the fuel cell 20 and before the fuel cell system 100 is driven, and is reduced during the driving of the fuel cell system 100 to form Ni metal. It can take a state. In FIG. 2B, Ni metal and Ni oxide are not distinguished from each other and are illustrated as a nickel portion 212. Since the base 210 has the nickel portion 212, conductivity can be imparted to the anode support 21.
 基部210は、Ni金属及び酸化Niの少なくとも一方(すなわちニッケル部212)と、Y、ジルコニア系複合酸化物及びセリア系複合酸化物からなる群から選択される少なくとも1つの酸化物214との複合体であることが好ましい。すなわち、基部210は、Ni金属及び/又は酸化Niと多孔質の導電性セラミックとで構成されるサーメットであることが好ましい。ジルコニア系複合酸化物としては、YSZ、ScSZ(Scandia Stabilized Zirconia)等が例示される。セリア系複合酸化物としては、SDC(Samaria-Doped Ceria)、YDC(Yttria-Doped Ceria)、LDC(La2O3-doped Ceria)、GDC(Gadolinia-doped Ceria)等が例示される。 The base 210 includes at least one of Ni metal and Ni oxide (that is, the nickel portion 212), and at least one oxide 214 selected from the group consisting of Y 2 O 3 , a zirconia-based composite oxide, and a ceria-based composite oxide. It is preferable that the composite is That is, the base 210 is preferably a cermet composed of Ni metal and / or Ni oxide and a porous conductive ceramic. Examples of the zirconia-based composite oxide include YSZ, ScSZ (Scandia Stabilized Zirconia) and the like. Examples of the ceria-based composite oxide include SDC (Samaria-Doped Ceria), YDC (Yttria-Doped Ceria), LDC (La 2 O 3 -doped Ceria), GDC (Gadolinia-doped Ceria), and the like.
 アノード支持体21は、好ましくは20%以上、より好ましくは25%~50%の開気孔率を有する。また、アノード支持体21は、好ましくは100S/cm以上、より好ましくは200S/cm以上の導電率を有する。これらの要件を満たすために、基部210は、アノード支持体21の全質量(例えば、基部210と後述する酸化物粒子部220の合計質量)に対して酸化Ni換算で、好ましくは30質量%以上、より好ましくは30質量%~90質量%、さらに好ましくは40質量%~80質量%のNi原子を含有する。基部210におけるNi原子の含有量を、酸化Ni換算で30質量%以上とすることで、アノード支持体21に所望の導電率をより確実に付与することができる。また、基部210におけるNi原子の含有量を、酸化Ni換算で90質量%以下とすることで、アノード支持体21に所望の開気孔率をより確実に付与することができる。アノード支持体21の寸法は、高さ(上端部から下端部までの長さ)が例えば7cm~20cmである。 The anode support 21 preferably has an open porosity of 20% or more, more preferably 25% to 50%. The anode support 21 preferably has a conductivity of 100 S / cm or higher, more preferably 200 S / cm or higher. In order to satisfy these requirements, the base 210 is preferably 30% by mass or more in terms of Ni oxide with respect to the total mass of the anode support 21 (for example, the total mass of the base 210 and the oxide particle part 220 described later). More preferably, it contains 30 mass% to 90 mass%, more preferably 40 mass% to 80 mass% of Ni atoms. By setting the content of Ni atoms in the base 210 to 30% by mass or more in terms of Ni oxide, desired conductivity can be more reliably imparted to the anode support 21. Moreover, a desired open porosity can be more reliably imparted to the anode support 21 by setting the content of Ni atoms in the base 210 to 90 mass% or less in terms of Ni oxide. The dimension of the anode support 21 is 7 cm to 20 cm in height (length from the upper end to the lower end), for example.
 基部210の製造方法としては、酸化ニッケルと酸化物214とを含む複合体組成物を押し出し成形等の手段により支持体形状に加工し、適宜焼成処理を施すことで、所定の寸法及び気孔率を有するサーメットを形成する方法が、好ましい例として挙げられる。サーメットは、最終的に全てのセル構成層が形成された後に、燃料電池として使用される前に還元処理が施される。この還元処理は通常、水素ガス、あるいは窒素で希釈した水素ガス等の還元ガス気流下で、燃料電池20又は燃料電池スタック10を所定温度まで加熱することで実施される。この還元処理により、基部210に含まれる酸化ニッケルのほぼ全てがNi金属に還元される。 As a manufacturing method of the base 210, a composite composition containing nickel oxide and oxide 214 is processed into a support shape by means of extrusion molding or the like, and subjected to appropriate firing treatment to obtain predetermined dimensions and porosity. A preferred example is a method of forming a cermet having the same. The cermet is subjected to a reduction treatment before it is used as a fuel cell after all cell constituent layers are finally formed. This reduction treatment is usually performed by heating the fuel cell 20 or the fuel cell stack 10 to a predetermined temperature in a reducing gas stream such as hydrogen gas or hydrogen gas diluted with nitrogen. By this reduction treatment, almost all of the nickel oxide contained in the base portion 210 is reduced to Ni metal.
 また、アノード支持体21は、基部210における、少なくともアノード触媒層23に供給される燃料と接する面上に、チタン(Ti)、ジルコニウム(Zr)、ニオブ(Nb)、ハフニウム(Hf)、タンタル(Ta)及びセリウム(Ce)からなる群から選択される金属単独の酸化物1種以上で構成される粒子又は当該粒子の凝集体を有する。これらの金属単独の酸化物は、少なくとも、基部210の燃料と接する面(基部210の外観上の表面だけでなく、内部の細孔の表面も含まれる)上に、基部210を構成するニッケル部212及び酸化物214とは区別される粒子(一次粒子)として存在するか、あるいはこの粒子が凝集してなる凝集体(二次粒子)として存在する。 In addition, the anode support 21 has titanium (Ti), zirconium (Zr), niobium (Nb), hafnium (Hf), tantalum (on the surface in contact with the fuel supplied to the anode catalyst layer 23 at least in the base 210. A particle composed of one or more oxides of a single metal selected from the group consisting of Ta) and cerium (Ce) or an aggregate of the particles. The oxide of these metals alone is at least the nickel portion constituting the base 210 on the surface of the base 210 that contacts the fuel (including the surface of the base 210 as well as the surface of the internal pores). It exists as particles (primary particles) that are distinguished from 212 and oxide 214, or exists as aggregates (secondary particles) formed by aggregation of these particles.
 すなわち、これらの金属単独の酸化物は、基部210上で単独の化合物ドメインとして存在する。図2(B)では、粒子及び凝集体を区別せずに、酸化物粒子部220として図示している。酸化物粒子部220が凝集体で構成される場合、酸化物粒子部220は層状(膜状)であってもよい。酸化物粒子部220の寸法は、その最大幅が粒子及び粒子凝集体それぞれの場合で例えば0.5μm~20μmである。また、凝集体が層状である場合、その層厚は例えば0.1μm~10μmである。 That is, these metal single oxides exist as single compound domains on the base 210. In FIG. 2B, the oxide particles 220 are illustrated without distinction between particles and aggregates. When the oxide particle part 220 is comprised with an aggregate, the oxide particle part 220 may be layered (film | membrane form). The oxide particle portion 220 has a maximum width of 0.5 μm to 20 μm, for example, in the case of particles and particle aggregates. In addition, when the agglomerate is layered, the layer thickness is, for example, 0.1 μm to 10 μm.
 酸化物粒子部220を構成する酸化物は、Ti、Zr、Nb、Hf、Ta及びCeからなる群から選択される金属が単結晶中に1種類のみ含まれる単独酸化物である。したがって、単結晶中に複数種の金属が含まれる、酸化物214のジルコニア系複合酸化物やセリア系複合酸化物とは区別される。例えば、酸化物粒子部220は、TiO、ZrO、Nb、HfO、Ta及びCeOからなる群から選択される少なくとも1つの単独酸化物で構成される。なお、酸化物粒子部220は、上記酸化物群の範囲内で単独酸化物が複数種(例えば、TiOとZrOなど)混合されてなる混合物であってもよい。 The oxide constituting the oxide particle portion 220 is a single oxide in which only one type of metal selected from the group consisting of Ti, Zr, Nb, Hf, Ta, and Ce is included in the single crystal. Therefore, the oxide 214 is distinguished from a zirconia-based composite oxide or a ceria-based composite oxide in which a plurality of types of metals are included in a single crystal. For example, the oxide particle part 220 is composed of at least one single oxide selected from the group consisting of TiO 2 , ZrO 2 , Nb 2 O 5 , HfO 2 , Ta 2 O 5 and CeO 2 . The oxide particle part 220 may be a mixture in which a plurality of single oxides (for example, TiO 2 and ZrO 2, etc.) are mixed within the range of the oxide group.
 従来、SOFCの動作温度は700℃以上の高温である場合が多かった。これに対し近年、電解質材料や空気極材料の改良が進み、600℃程度、あるいはそれを下回る低温で動作可能なSOFCが用いられるようになりつつある。しかしながら、燃料電池20の動作温度が低下すると、燃料電池20の発熱を利用して改質器6での改質反応を行うホットモジュール1では改質器6の温度も低下することになる。この場合、熱平衡によりメタン割合の高い改質ガスが生成されてしまうおそれがある。 Conventionally, the operating temperature of SOFC has often been 700 ° C or higher. In contrast, in recent years, improvements in electrolyte materials and air electrode materials have progressed, and SOFCs that can operate at a low temperature of about 600 ° C. or lower are being used. However, when the operating temperature of the fuel cell 20 decreases, the temperature of the reformer 6 also decreases in the hot module 1 that performs the reforming reaction in the reformer 6 using the heat generated by the fuel cell 20. In this case, a reformed gas having a high methane ratio may be generated due to thermal equilibrium.
 また、C2以上炭化水素を含む原燃料が用いられる場合、改質器6でC2以上炭化水素がC1化学種に転化されずに燃料電池20に供給されるおそれがある(C2以上炭化水素のスリップ発生)。さらに、燃料電池システム100は、ユーザの指示、省エネルギー効果の向上目的、機器のトラブル等の様々な事由により、停止させられることがある。システムの停止工程、及びその後の再起動工程では、従来の高温で動作するSOFCであっても、改質器6が十分に加温されない場合がある。この場合も、上述したメタン濃度増大や、C2以上炭化水素が混入した改質ガスが燃料電池20に供給される状況が生じ得る。 Further, when a raw fuel containing C2 or higher hydrocarbons is used, the reformer 6 may cause the C2 or higher hydrocarbons to be supplied to the fuel cell 20 without being converted into C1 chemical species (C2 or higher hydrocarbon slips). Occurrence). Further, the fuel cell system 100 may be stopped due to various reasons such as a user instruction, a purpose of improving the energy saving effect, and a trouble of the device. In the system stop process and the subsequent restart process, the reformer 6 may not be sufficiently heated even with a conventional SOFC operating at a high temperature. Also in this case, the above-described methane concentration increase or a situation in which the reformed gas mixed with C2 or more hydrocarbons is supplied to the fuel cell 20 may occur.
 とりわけ、システムの停止工程では、燃料電池20の発電を停止させた後、燃料電池20へ改質ガスを供給し続けながら燃料電池20を徐々に冷却することがある。この改質ガスの供給は、アノード支持体21及びアノード触媒層23へ空気が流入し、アノード支持体21が再酸化することを防止する目的で行われる。この場合、燃料電池20の発電の停止後も、数時間にわたって燃料電池20へ改質ガスが供給されることになる。一方、燃料電池20の温度低下に伴って改質器6の温度も低下していく。そのため、改質器6から燃料電池20へ、高濃度のメタンや未改質のC2以上炭化水素化合物が供給されるおそれが高まる。 In particular, in the system stop process, after the power generation of the fuel cell 20 is stopped, the fuel cell 20 may be gradually cooled while continuing to supply the reformed gas to the fuel cell 20. The reformed gas is supplied for the purpose of preventing air from flowing into the anode support 21 and the anode catalyst layer 23 and re-oxidation of the anode support 21. In this case, the reformed gas is supplied to the fuel cell 20 for several hours even after the power generation of the fuel cell 20 is stopped. On the other hand, as the temperature of the fuel cell 20 decreases, the temperature of the reformer 6 also decreases. For this reason, there is a high possibility that high-concentration methane or unreformed C2 or higher hydrocarbon compound is supplied from the reformer 6 to the fuel cell 20.
 高濃度のメタンや、C2以上炭化水素化合物が燃料電池20へ供給された場合、Niサーメットからなる(すなわち基部210のみからなる)従来のアノード支持体を有する燃料電池システムでは、様々な形態の炭素析出が各所に生じるおそれがあった。このような炭素析出は、例えばマニホルド、アノード支持体の燃料ガス流れ方向上流部、アノード支持体の細孔内等、あるいはホットモジュールにおける外部の集電構造等により電位が変化する箇所などに生じやすい。 When a high concentration of methane or C2 or higher hydrocarbon compound is supplied to the fuel cell 20, the fuel cell system having a conventional anode support made of Ni cermet (that is, only the base 210) has various forms of carbon. Precipitation may occur in various places. Such carbon deposition is likely to occur, for example, in the manifold, the upstream portion of the anode support in the fuel gas flow direction, in the pores of the anode support, or in places where the potential changes due to the external current collecting structure in the hot module. .
 例えば、C2以上炭化水素を多く含み、低S/Cの改質ガスが燃料電池に供給されると、繊維状の炭素が成長することが多い。この繊維状の炭素は、電気的短絡やアノード支持体の細孔の詰まり(ガス閉塞)などの原因となり、燃料電池が不可逆的に使用不能となるおそれがあった。また、高濃度のメタンを多く含み、低S/Cの改質ガスが供給されると、固体状の炭素が析出する。そして、アノード支持体21の細孔内等に粒状の炭素が析出し、これがアノード支持体の寸法膨張をもたらす。アノード支持体が膨張すると、応力変形やクラックが発生するおそれがあった。また、アノード支持体とマニホルドとの接合部を被覆するシール材に応力変形が生じ、クラックや剥離に至るおそれがあった。特に、原燃料が、炭素数2以上の炭化水素化合物を原燃料の総モル量に対して5モル%以上含有する場合には、上述した炭素析出が生じやすい傾向にある。 For example, when reformed gas containing a large amount of C2 or more hydrocarbons and low S / C is supplied to the fuel cell, fibrous carbon often grows. This fibrous carbon may cause an electrical short circuit or clogging of the pores of the anode support (gas blockage), and the fuel cell may be irreversibly disabled. Further, when a high concentration of methane is included and a low S / C reformed gas is supplied, solid carbon is deposited. Then, granular carbon is deposited in the pores of the anode support 21 and this causes dimensional expansion of the anode support. When the anode support is expanded, there is a possibility that stress deformation and cracks may occur. In addition, stress deformation occurs in the sealing material covering the joint between the anode support and the manifold, which may lead to cracking or peeling. In particular, when the raw fuel contains a hydrocarbon compound having 2 or more carbon atoms in an amount of 5 mol% or more based on the total molar amount of the raw fuel, the above-described carbon deposition tends to occur.
 これに対し、本実施の形態に係るアノード支持体21は、基部210の改質ガスと接する表面に酸化物粒子部220を有する。この酸化物粒子部220は、アノード支持体21における上述した炭素析出を抑制することができる。 On the other hand, the anode support 21 according to the present embodiment has the oxide particle part 220 on the surface in contact with the reformed gas of the base part 210. The oxide particle part 220 can suppress the above-described carbon deposition on the anode support 21.
 酸化物粒子部220(粒子又は凝集体を構成する酸化物)の含有量は、アノード支持体21の全質量(例えば、基部210と酸化物粒子部220の合計質量)に対して0.5質量%以上であり、好ましくは1質量%以上である。酸化物粒子部220の含有量をアノード支持体21の全質量に対して0.5質量%以上とすることで、アノード支持体21における炭素析出をより確実に抑制することができる。 Content of the oxide particle part 220 (oxide which comprises particle | grains or an aggregate) is 0.5 mass with respect to the total mass (For example, total mass of the base 210 and the oxide particle part 220) of the anode support body 21. FIG. % Or more, preferably 1% by mass or more. By setting the content of the oxide particle part 220 to 0.5 mass% or more with respect to the total mass of the anode support 21, carbon deposition on the anode support 21 can be more reliably suppressed.
 また、アノード支持体21における単独酸化物の粒子又は凝集体の重量割合には、燃料ガスの流れ方向に沿って傾斜をつけることができる。例えば、アノード支持体21は、燃料の流れ方向に沿って上流側の少なくとも一部の領域における粒子及び凝集体の合計重量割合が、下流側の少なくとも一部の領域における粒子及び凝集体の合計重量割合よりも大きい。合計重量割合とは、基部210及び酸化物粒子部220の総重量に対する酸化物粒子部220の合計重量である。また、上流側の領域は、例えばアノード支持体21の燃料ガス流れ方向上流側の端部を含む領域であり、下流側の領域は、例えばアノード支持体21の燃料ガス流れ方向下流側の端部を含む領域である。アノード支持体21における粒子及び凝集体の重量割合に傾斜をつける場合、燃料の流れ方向の上流側における酸化物粒子部220の総量が、燃料の流れ方向の下流側における酸化物粒子部220の総量よりも多いことが好ましい。アノード支持体21の上流側領域における酸化物粒子部220の添加率を下流側領域よりも高くすることで、より効率よくアノード支持体21の変形や膨張を抑制することができる。 Further, the weight ratio of the single oxide particles or aggregates in the anode support 21 can be inclined along the flow direction of the fuel gas. For example, the anode support 21 has a total weight ratio of particles and aggregates in at least a part of the upstream side in the fuel flow direction, and a total weight of particles and aggregates in the at least a part of the downstream side. Greater than percentage. The total weight ratio is the total weight of the oxide particle part 220 with respect to the total weight of the base part 210 and the oxide particle part 220. The upstream region is, for example, a region including the upstream end portion of the anode support 21 in the fuel gas flow direction, and the downstream region is, for example, the downstream end portion of the anode support 21 in the fuel gas flow direction. It is an area including When the weight ratio of the particles and aggregates in the anode support 21 is inclined, the total amount of the oxide particle portions 220 on the upstream side in the fuel flow direction is equal to the total amount of the oxide particle portions 220 on the downstream side in the fuel flow direction. It is preferable that there are more. By making the addition rate of the oxide particle part 220 in the upstream region of the anode support 21 higher than that in the downstream region, deformation and expansion of the anode support 21 can be suppressed more efficiently.
 酸化物粒子部220の形成方法としては、例えば以下の例を挙げることができる。すなわち、第1の形成方法として、基部210の製造工程において、ニッケル部212と酸化物214とを含む複合体組成物に、予め酸化物粒子部220を構成する単独酸化物(以下では適宜、「炭素析出抑制剤」という)を混合しておき、この複合体組成物を成形、焼成することで、基部210と酸化物粒子部220とを有するアノード支持体21を形成することができる。あるいは、第2の形成方法として、ニッケル部212と酸化物214とを含む複合体組成物を成形、焼成して基部210を形成した後、得られた基部210に炭素析出抑制剤を付着させることで、酸化物粒子部220を形成することができる。第2の方法によれば、アノード支持体21における上述した酸化物粒子部220の濃度分布制御を、より簡単に実現することができる。いずれの方法においても、酸化物粒子部220は、基部210の構成材料と、固溶あるいは固相反応によって異なる物質に変化することなく存在する。また、サーメットである基部210の表面に、基部210とは異なる単独の粒子あるいは凝集体として存在する状態を形成することができる。 Examples of the method for forming the oxide particle part 220 include the following examples. That is, as a first forming method, in the manufacturing process of the base 210, a single oxide (hereinafter referred to as “ The anode support 21 having the base portion 210 and the oxide particle portion 220 can be formed by mixing and firing this composite composition in advance. Alternatively, as a second forming method, a composite composition including the nickel portion 212 and the oxide 214 is formed and fired to form the base 210, and then a carbon deposition inhibitor is attached to the obtained base 210. Thus, the oxide particle part 220 can be formed. According to the second method, the above-described concentration distribution control of the oxide particle part 220 in the anode support 21 can be realized more easily. In any method, the oxide particle part 220 exists without changing to a constituent material of the base part 210 and a different substance by solid solution or solid phase reaction. Moreover, the state which exists as the independent particle | grains or aggregate different from the base 210 on the surface of the base 210 which is a cermet can be formed.
 第2の形成方法では、気相プロセスとしては化学気相析出法(CVD法)等を用いることができる。また、液相プロセスとしては共沈法、均一沈殿法、加水分解法、クエン酸塩法に代表される沈殿法のほか、水熱合成法、マイクロエマルジョン法、溶媒蒸発法等を用いることができる。また、固相プロセスとしては固体熱分解法、固相反応法、水熱結晶化法等を用いることができる。例えば、第2の形成方法では、炭素析出抑制剤として単独酸化物の微粒子の懸濁液を用意し、この懸濁液を基部210に噴霧あるいは懸濁液に基部210を含浸させた後、乾燥処理や焼成処理により基部210に炭素析出抑制剤を固定化する方法を用いることができる。あるいは、単独酸化物の可溶性塩、例えば単独酸化物がCeOである場合は硝酸セリウム等を水等の溶媒に溶解させ、この溶液を基部210に噴霧、あるいはこの溶液に基部210を含浸させてもよい。この場合、基部210に付着させた可溶性塩から酸化物粒子部220を形成するため、炭素析出抑制剤を付着させたアノード支持体21を加熱焼成する。この加熱焼成は、基部210を形成する際の仮焼成や本焼成、あるいはアノード触媒層23、電解質層24、カソード触媒層25等の形成時に行われる焼き付け工程と兼ねられてもよい。 In the second forming method, a chemical vapor deposition method (CVD method) or the like can be used as the vapor phase process. In addition to coprecipitation method, homogeneous precipitation method, hydrolysis method, precipitation method represented by citrate method, hydrothermal synthesis method, microemulsion method, solvent evaporation method, etc. can be used as the liquid phase process. . As the solid phase process, a solid thermal decomposition method, a solid phase reaction method, a hydrothermal crystallization method, or the like can be used. For example, in the second forming method, a suspension of fine particles of a single oxide is prepared as a carbon deposition inhibitor, and this suspension is sprayed on the base 210 or impregnated with the base 210 in the suspension, and then dried. A method of immobilizing a carbon deposition inhibitor on the base 210 by treatment or baking treatment can be used. Alternatively, a soluble salt of a single oxide, for example, when the single oxide is CeO 2 , cerium nitrate or the like is dissolved in a solvent such as water, and this solution is sprayed on the base 210 or the base 210 is impregnated with this solution. Also good. In this case, in order to form the oxide particle part 220 from the soluble salt attached to the base part 210, the anode support 21 to which the carbon deposition inhibitor is attached is heated and fired. This heating and baking may be combined with a baking process performed at the time of forming the base 210, the temporary baking or the main baking, or the formation of the anode catalyst layer 23, the electrolyte layer 24, the cathode catalyst layer 25, and the like.
 炭素析出抑制剤の焼成温度は、用いられる炭素析出抑制剤の種類や基部210への付着量等に応じて異なるが、一般に300℃~1600℃、好ましくは350℃~1200℃、より好ましくは400℃~1000℃である。焼成温度を300℃以上とすることで、基部210に対して炭素析出抑制剤をより確実に付着させることができ、また硝酸セリウム等の硝酸塩をより確実に脱硝させて、酸化物粒子部220の形成をより確実なものとすることができる。また、焼成温度を1600℃以下とすることで、炭素析出抑制剤の分解や凝集が起こることをより確実に回避することができる。焼成時間は、通常15分~48時間、好ましくは1時間~24時間である。焼成時間を15分以上とすることで、炭素析出抑制剤をより確実に焼成することができる。焼成時間を48時間以下とすることで、炭素析出抑制剤の凝集をより確実に回避することができ、また工業的な生産性の低下を抑制することができる。 The firing temperature of the carbon deposition inhibitor varies depending on the type of carbon deposition inhibitor used and the amount of adhesion to the base 210, but is generally 300 ° C to 1600 ° C, preferably 350 ° C to 1200 ° C, more preferably 400 ° C. ° C to 1000 ° C. By setting the firing temperature to 300 ° C. or higher, the carbon precipitation inhibitor can be more reliably attached to the base portion 210, and nitrate such as cerium nitrate can be more reliably denitrated, so that the oxide particle portion 220 Formation can be made more reliable. Moreover, it can avoid more reliably that decomposition | disassembly and aggregation of a carbon precipitation inhibitor occur by making baking temperature into 1600 degrees C or less. The firing time is usually 15 minutes to 48 hours, preferably 1 hour to 24 hours. By setting the firing time to 15 minutes or longer, the carbon deposition inhibitor can be fired more reliably. By setting the firing time to 48 hours or less, aggregation of the carbon deposition inhibitor can be avoided more reliably, and a decrease in industrial productivity can be suppressed.
 アノード触媒層23は、Ni金属及び酸化Niの少なくとも一方と、ジルコニア系複合酸化物、セリア系複合酸化物及びLSGMからなる群から選択される少なくとも1つの複合酸化物とで構成される複合体であることが好ましい。具体的には、アノード触媒層23は、Ni/YSZ、Ni/ScSZ、Ni/SDC、Ni/YDC、Ni/LDC、Ni/GDC、Ni/LSGM(La-Sr-Ga-Mg複合酸化物)からなる群から選択される少なくとも1つのサーメットであることが好ましい。アノード触媒層23の層厚は、例えば0.1μm~50μmである。 The anode catalyst layer 23 is a composite composed of at least one of Ni metal and Ni oxide and at least one composite oxide selected from the group consisting of zirconia composite oxide, ceria composite oxide, and LSGM. Preferably there is. Specifically, the anode catalyst layer 23 is made of Ni / YSZ, Ni / ScSZ, Ni / SDC, Ni / YDC, Ni / LDC, Ni / GDC, Ni / LSGM (La—Sr—Ga—Mg composite oxide). Preferably, at least one cermet selected from the group consisting of: The layer thickness of the anode catalyst layer 23 is, for example, 0.1 μm to 50 μm.
 電解質層24は、電極間の電子伝導やイオン伝導の橋渡しをする電解質として機能するとともに、燃料ガス及び空気のリークを防止するためのガス遮断層としても機能する。電解質層24は、ジルコニア系複合酸化物、セリア系複合酸化物及びLSGMからなる群から選択される少なくとも1つの複合酸化物を含むことが好ましい。具体的には、電解質層24には、YSZ、ScSZ、SDC、YDC、LDC、GDC、LSGMからなる群から選択される固体電解質が好ましく用いられる。電解質層24の層厚は、例えば0.2μm~200μmである。 The electrolyte layer 24 functions as an electrolyte that bridges electron conduction and ion conduction between electrodes, and also functions as a gas barrier layer for preventing leakage of fuel gas and air. The electrolyte layer 24 preferably includes at least one composite oxide selected from the group consisting of zirconia composite oxide, ceria composite oxide, and LSGM. Specifically, a solid electrolyte selected from the group consisting of YSZ, ScSZ, SDC, YDC, LDC, GDC, and LSGM is preferably used for the electrolyte layer 24. The layer thickness of the electrolyte layer 24 is, for example, 0.2 μm to 200 μm.
 カソード触媒層25は、いわゆるABO型のペロブスカイト型酸化物で構成される導電性セラミックを用いて形成することができる。カソード触媒層25は、ガス透過性を有することが求められる。そのため、カソード触媒層25の開気孔率は、好ましくは20%以上であり、より好ましくは30%~50%である。したがって、カソード触媒層25は、LSM(La Sr Mn)、LSC(La Sr Co)、LSCF(La Sr Co Fe)等の複合酸化物を含むことが好ましい。カソード触媒層25の層厚は、例えば2μm~200μmである。ただし、カソード触媒層25が集電部材30への電気的接続機能を有する場合、あるいはカソード触媒層25自体が集電機能を有する場合などは、この限りでない。上述したアノード触媒層23、電解質層24及び/又はカソード触媒層25の材料によって、600℃程度あるいはそれを下回る温度での燃料電池20の動作が実現され得る。 The cathode catalyst layer 25 can be formed using a conductive ceramic composed of a so-called ABO 3 type perovskite oxide. The cathode catalyst layer 25 is required to have gas permeability. Therefore, the open porosity of the cathode catalyst layer 25 is preferably 20% or more, and more preferably 30% to 50%. Therefore, the cathode catalyst layer 25 preferably contains a composite oxide such as LSM (La Sr Mn), LSC (La Sr Co), or LSCF (La Sr Co Fe). The thickness of the cathode catalyst layer 25 is, for example, 2 μm to 200 μm. However, this does not apply when the cathode catalyst layer 25 has a function of electrically connecting to the current collector 30 or when the cathode catalyst layer 25 itself has a function of collecting current. Depending on the materials of the anode catalyst layer 23, the electrolyte layer 24, and / or the cathode catalyst layer 25 described above, the operation of the fuel cell 20 at a temperature of about 600 ° C. or lower can be realized.
 アノード触媒層23、電解質層24及びカソード触媒層25は、アノード支持体21に対してこの順に積層される。また、インターコネクタ26がアノード支持体21に焼結される。これにより、燃料電池20が形成される。なお、上述したアノード支持体21の形成過程で、アノード支持体21となる複合体組成物の焼成と同時にアノード触媒層23や電解質層24を複合体組成物に焼結させることで、残留応力の少ない状態でアノード支持体21、アノード触媒層23及び電解質層24からなる構造体を形成することができる。 The anode catalyst layer 23, the electrolyte layer 24, and the cathode catalyst layer 25 are laminated on the anode support 21 in this order. Further, the interconnector 26 is sintered to the anode support 21. Thereby, the fuel cell 20 is formed. In the process of forming the anode support 21 described above, by sintering the composite composition to be the anode support 21 and simultaneously sintering the anode catalyst layer 23 and the electrolyte layer 24 to the composite composition, residual stress can be reduced. A structure including the anode support 21, the anode catalyst layer 23, and the electrolyte layer 24 can be formed in a small amount.
 以上説明したように、本実施の形態に係るアノード支持体21は、Ni金属及び酸化Niの少なくとも一方と、Ti、Zr、Nb、Hf、Ta及びCeからなる群から選択される金属単独の酸化物の少なくとも1種と、を含有する。より具体的には、ニッケル部212を含み多孔質である基部210を有するとともに、基部210における少なくとも燃料と接する面上に、酸化物粒子部220を有する。そして、酸化物は、その含有量がアノード支持体の全質量に対して0.5質量%以上である。これにより、アノード支持体21における炭素析出を抑制することができる。 As described above, the anode support 21 according to the present embodiment is an oxidation of a single metal selected from the group consisting of at least one of Ni metal and Ni oxide and Ti, Zr, Nb, Hf, Ta, and Ce. And at least one kind of product. More specifically, the base portion 210 includes a nickel portion 212 and is porous, and the oxide particle portion 220 is provided on at least a surface in contact with the fuel in the base portion 210. The content of the oxide is 0.5% by mass or more with respect to the total mass of the anode support. Thereby, carbon deposition in the anode support 21 can be suppressed.
 また、本実施の形態に係る燃料電池システム100は、アノード支持型の燃料電池20と、燃料電池20から発生する熱を用いて原燃料を改質する改質器6とを備える。このように、燃料電池20と改質器6との間に熱の授受がある燃料電池システム100では、燃料電池20の動作温度の低下に伴って改質ガス中のメタンやC2以上炭化水素の濃度が増大すると、アノード支持体21において炭素析出が生じやすくなる。これに対し、本実施の形態に係る燃料電池システム100は、酸化物粒子部220を有するアノード支持体21を備えるため、このような炭素析出を抑制することができる。また、原燃料が炭素数2以上の炭化水素化合物を原燃料の総モル量に対して5モル%以上含有する場合、特に上述した炭素析出が起こりやすいが、本実施の形態に係る燃料電池システム100によれば、原燃料がC2以上炭化水素を5モル%以上含有する場合であっても、炭素析出に起因するアノード支持体21のクラック発生等を効果的に抑制することができる。 The fuel cell system 100 according to the present embodiment includes an anode-supported fuel cell 20 and a reformer 6 that reforms the raw fuel using heat generated from the fuel cell 20. As described above, in the fuel cell system 100 in which heat is transferred between the fuel cell 20 and the reformer 6, methane and C2 or more hydrocarbons in the reformed gas are reduced as the operating temperature of the fuel cell 20 decreases. As the concentration increases, carbon deposition tends to occur in the anode support 21. On the other hand, since the fuel cell system 100 according to the present embodiment includes the anode support 21 having the oxide particle part 220, such carbon deposition can be suppressed. In addition, when the raw fuel contains a hydrocarbon compound having 2 or more carbon atoms in an amount of 5 mol% or more based on the total molar amount of the raw fuel, the above-described carbon deposition is likely to occur, but the fuel cell system according to the present embodiment According to 100, even if the raw fuel contains 5 mol% or more of C2 or more hydrocarbons, it is possible to effectively suppress the occurrence of cracks in the anode support 21 due to carbon deposition.
 そのため、燃料電池システム100の起動工程や停止工程での温度管理を簡略化することができる。また、燃料電池20の動作温度の低減と、燃料電池20ひいては燃料電池システム100の長寿命化との両立を図ることができる。さらに、本実施の形態によれば、アノード支持体21への単独酸化物の少量添加によって炭素析出の抑制を図ることができる。そのため、アノード支持体の組成を、従来組成から大幅に変更することなく、すなわちアノード支持体21の導電性やガス透過性等を犠牲にすることなく、炭素析出を抑制することができる。 Therefore, temperature management in the start-up process and the stop process of the fuel cell system 100 can be simplified. In addition, it is possible to achieve both reduction of the operating temperature of the fuel cell 20 and extension of the life of the fuel cell 20 and thus the fuel cell system 100. Furthermore, according to the present embodiment, carbon deposition can be suppressed by adding a small amount of a single oxide to the anode support 21. Therefore, carbon deposition can be suppressed without significantly changing the composition of the anode support from the conventional composition, that is, without sacrificing the conductivity and gas permeability of the anode support 21.
 本発明は、上述した実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which such modifications are added Can also be included in the scope of the present invention.
 図3(A)は、変形例1に係る燃料電池システムが備える燃料電池スタックの部分構造を模式的に示す水平断面図である。図3(A)に示すように、変形例1では、アノード触媒層23が略板状であり、アノード支持体21の一方の平坦側面上に積層される。電解質層24は、アノード触媒層23と、アノード支持体21の2つの湾曲側面上に積層される。電解質層24の両端は、インターコネクタ26の両端に接合される。電解質層24のアノード触媒層23とは反対側の面上には、中間層27が積層される。したがって、アノード触媒層23と中間層27とは、電解質層24を挟んで対向する。中間層27は、電解質層24とカソード触媒層25との間の層間反応を抑制するための層である。カソード触媒層25は、中間層27の面上に積層される。集電部材30は、隣接する2つの燃料電池20における一方側のインターコネクタ26と接する平坦面と、他方側のカソード触媒層25と接する平坦面とを有する、略長円形状の導電部材である。 FIG. 3A is a horizontal cross-sectional view schematically showing a partial structure of a fuel cell stack provided in the fuel cell system according to the first modification. As shown in FIG. 3A, in Modification 1, the anode catalyst layer 23 has a substantially plate shape, and is laminated on one flat side surface of the anode support 21. The electrolyte layer 24 is laminated on the anode catalyst layer 23 and the two curved side surfaces of the anode support 21. Both ends of the electrolyte layer 24 are joined to both ends of the interconnector 26. An intermediate layer 27 is laminated on the surface of the electrolyte layer 24 opposite to the anode catalyst layer 23. Therefore, the anode catalyst layer 23 and the intermediate layer 27 face each other with the electrolyte layer 24 interposed therebetween. The intermediate layer 27 is a layer for suppressing an interlayer reaction between the electrolyte layer 24 and the cathode catalyst layer 25. The cathode catalyst layer 25 is laminated on the surface of the intermediate layer 27. The current collecting member 30 is a substantially oval conductive member having a flat surface in contact with one interconnector 26 in two adjacent fuel cells 20 and a flat surface in contact with the cathode catalyst layer 25 on the other side. .
 図3(B)は、変形例2に係る燃料電池の構造を模式的に示す水平断面図である。変形例2に係る燃料電池20は、円筒型燃料電池である。燃料電池20は、円筒形状のアノード支持体21を有する。アノード支持体21は、その中心軸に沿ってガス流路22を有する。アノード支持体21の周面には、アノード触媒層23、中間層27、電解質層24及びカソード触媒層25がこの順に積層される。中間層27は、アノード触媒層23と電解質層24との間の層間反応を抑制するための層である。燃料電池20の円筒の上端部及び下端部には、図示しない集電キャップが嵌合する。集電キャップは、例えば、銀めっき処理が施された合金からなる。燃料電池20の円筒の周面には、図示しない集電膜が設けられる。集電部材30(図2(A)参照)は、一端が集電キャップに電気的に接続され、他端が隣接する燃料電池20の集電膜に電気的に接続される。 FIG. 3B is a horizontal sectional view schematically showing the structure of the fuel cell according to Modification 2. The fuel cell 20 according to Modification 2 is a cylindrical fuel cell. The fuel cell 20 has a cylindrical anode support 21. The anode support 21 has a gas flow path 22 along its central axis. On the peripheral surface of the anode support 21, an anode catalyst layer 23, an intermediate layer 27, an electrolyte layer 24, and a cathode catalyst layer 25 are laminated in this order. The intermediate layer 27 is a layer for suppressing an interlayer reaction between the anode catalyst layer 23 and the electrolyte layer 24. A current collecting cap (not shown) is fitted to the upper and lower ends of the cylinder of the fuel cell 20. The current collecting cap is made of, for example, an alloy subjected to silver plating. A current collecting film (not shown) is provided on the circumferential surface of the cylinder of the fuel cell 20. The current collecting member 30 (see FIG. 2A) has one end electrically connected to the current collecting cap and the other end electrically connected to the current collecting film of the adjacent fuel cell 20.
 以下に実施例を挙げて本発明の効果をさらに具体的に説明するが、本発明は下記の実施例に限定されるものではない。 The effects of the present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the following examples.
 <支持体サンプルの作製>
 NiO(商品名NiO-FP、住友金属鉱山株式会社製)とYSZ(商品名TZ8YS、東ソー株式会社製)とを体積比40:60で湿式混合し、乾燥させた。その後、温度873Kで1時間焼成した。焼成後に得られた粉体に、造孔材として架橋ポリメタクリル酸メチル微粒子(積水化成品工業株式会社製、)を質量比30%で混合し、混合物を乾式粉砕した。その後、混合物に100MPaの静水圧プレスを施して成型し、ペレット状の試料を得た。得られた圧粉体ペレットを、大気中1300℃で4時間焼成し、NiO/YSZペレットを作製した。このペレットから約2×2×10mmの直方体形状のペレット片を切り出した。そして、ペレット片に水素中800℃で5時間の還元処理を施して、Ni/YSZからなる支持体サンプルを得た。この支持体サンプルを比較例1とした。還元処理前のペレット片(NiO/YSZ)の空孔度は約17%であり、還元処理後の支持体サンプル(Ni/YSZ)の空孔度は約35%であった。
<Preparation of support sample>
NiO (trade name NiO-FP, manufactured by Sumitomo Metal Mining Co., Ltd.) and YSZ (trade name TZ8YS, manufactured by Tosoh Corporation) were wet-mixed at a volume ratio of 40:60 and dried. Thereafter, it was fired at a temperature of 873 K for 1 hour. Cross-linked polymethyl methacrylate fine particles (manufactured by Sekisui Plastics Co., Ltd.) as a pore former were mixed with the powder obtained after firing at a mass ratio of 30%, and the mixture was dry-pulverized. Thereafter, the mixture was molded by applying a hydrostatic pressure press of 100 MPa to obtain a pellet-shaped sample. The obtained green compact pellet was fired at 1300 ° C. in the air for 4 hours to produce a NiO / YSZ pellet. About 2 × 2 × 10 mm rectangular parallelepiped pellet pieces were cut out from this pellet. The pellet piece was subjected to a reduction treatment at 800 ° C. for 5 hours in hydrogen to obtain a support sample made of Ni / YSZ. This support sample was referred to as Comparative Example 1. The porosity of the pellet pieces (NiO / YSZ) before the reduction treatment was about 17%, and the porosity of the support sample (Ni / YSZ) after the reduction treatment was about 35%.
 また、上述した支持体サンプル作製におけるNiOとYSZの混合時に、作製される支持体サンプルの全質量に対して、0.5質量%のTiOを添加したものを実施例1とし、0.5質量%のZrOを添加したものを実施例2とし、0.5質量%のNbを添加したものを実施例3とし、0.5質量%のCeOを添加したものを実施例4とし、1質量%のCeOを添加したものを実施例5とし、2質量%のCeOを添加したものを実施例6とし、5質量%のCeOを添加したものを実施例7とした。さらに、0.5質量%の8YSZ(8mol%YSZ)を添加したものを比較例2とし、0.5質量%の10GDC(10mol%GDC)を添加したものを比較例3とした。 Moreover, during the mixing of the NiO and YSZ in the support body samples prepared as described above, based on the total weight of the support sample being manufactured, the Example 1 material obtained by adding TiO 2 of 0.5 wt%, 0.5 Example 2 was obtained by adding 2 % by mass of ZrO 2 , Example 3 by adding 0.5% by mass of Nb 2 O 5, and Example 3 by adding 0.5% by mass of CeO 2. 4, 1 wt% CeO 2 was added as Example 5, 2 wt% CeO 2 was added as Example 6, and 5 wt% CeO 2 was added as Example 7. did. Further, Comparative Example 2 was obtained by adding 0.5% by mass of 8YSZ (8 mol% YSZ), and Comparative Example 3 was obtained by adding 0.5% by mass of 10 GDC (10 mol% GDC).
 <炭化水素曝露処理、及び炭素析出による変形の測定方法>
 膨張測定装置(Dilatometer、Netzsch社製)を用いて、炭素析出による各実施例及び各比較例に係る支持体サンプルの変形評価を実施した。まず膨張測定装置中で、各実施例及び各比較例の支持体サンプルに炭化水素の曝露処理を施した。図4は、膨張測定装置の模式図である。図4に示すように、支持体サンプルの長辺方向における長さ変化を測定するように、各支持体を膨張測定装置にセットした。
<Measurement of deformation due to hydrocarbon exposure treatment and carbon deposition>
Deformation evaluation of the support sample according to each example and each comparative example by carbon deposition was performed using an expansion measurement device (Dilameter, manufactured by Netzsch). First, in the expansion measurement device, the support samples of each example and each comparative example were subjected to a hydrocarbon exposure treatment. FIG. 4 is a schematic diagram of an expansion measuring device. As shown in FIG. 4, each support was set in an expansion measuring device so as to measure a change in length in the long side direction of the support sample.
 各支持体サンプルの雰囲気を乾燥5%H-N雰囲気とし、5℃/分で昇温して約800℃(1073K)とした。支持体サンプルの熱膨張による長さ変化が収束してその形状が安定したことを確認した後、各支持体サンプルへの炭化水素燃料の供給を開始して炭化水素曝露処理を実施した。炭化水素曝露処理において、炭化水素燃料は100cc/分の流速で供給した。炭化水素燃料の水蒸気量は、温度制御された水又は塩化リチウム(LiCl)飽和水溶液をバブリングすることで調整した。炭化水素燃料としては、メタン(CH)、エタン(C)及びプロパン(C)のいずれかを用いた。 The atmosphere of each support sample was a dry 5% H 2 —N 2 atmosphere, and the temperature was raised at 5 ° C./min to about 800 ° C. (1073 K). After confirming that the length change due to the thermal expansion of the support sample converged and its shape was stabilized, supply of hydrocarbon fuel to each support sample was started and a hydrocarbon exposure treatment was performed. In the hydrocarbon exposure process, hydrocarbon fuel was supplied at a flow rate of 100 cc / min. The amount of water vapor in the hydrocarbon fuel was adjusted by bubbling temperature-controlled water or a saturated aqueous solution of lithium chloride (LiCl). As the hydrocarbon fuel, any of methane (CH 4 ), ethane (C 2 H 6 ), and propane (C 3 H 8 ) was used.
 そして、各実施例及び各比較例の支持体サンプルについて、炭化水素曝露処理中の長さの変化を膨張測定装置で測定し、線膨張率(ΔL/L)(%)を算出した。ΔLは、支持体サンプルの長さの変化量であり、Lは、炭化水素曝露処理前の支持体サンプルの長さである。所定時間の炭化水素曝露処理が終了した後、乾燥Nを支持体サンプルに供給して炭化水素燃料をパージした。そして、5℃/分で降温して、支持体サンプルを膨張測定装置から取り出した。また、試験後の支持体サンプルに対して、SEM(Scanning Electron Microscope)、EDX(Energy Dispersive X-ray spectrometry)による微細構造観察及び元素分析と、X線回折装置によるNi/YSZ及び析出炭素の相同定を実施した。その結果、支持体サンプルに炭素が析出されていることが確認された。 Then, the support samples of Examples and Comparative Examples, a change in the length of the hydrocarbon exposure treatment was measured with expansion measurement device to calculate the linear expansion rate (ΔL / L 0) (% ). ΔL is the amount of change in the length of the support sample, and L 0 is the length of the support sample before the hydrocarbon exposure treatment. After the predetermined time hydrocarbon exposure treatment was completed, dry N 2 was supplied to the support sample to purge the hydrocarbon fuel. Then, the temperature was lowered at 5 ° C./min, and the support sample was taken out from the expansion measuring device. In addition, the microscopic structure observation and elemental analysis by SEM (Scanning Electron Microscope) and EDX (Energy Dispersive X-ray spectrometry) and the homology of Ni / YSZ and precipitated carbon by X-ray diffractometer are applied to the support sample after the test. Was carried out. As a result, it was confirmed that carbon was deposited on the support sample.
 <炭素析出抑制の評価>
 上述した炭化水素曝露処理を施した各実施例及び各比較例の支持体サンプルについて、燃焼赤外線吸収法により炭素析出量の相対値を算出した。炭化水素曝露測定条件は、温度1073K、炭化水素燃料の流速100cc/分、S/C=0.1、曝露1時間とした。曝露時間の計測は、炭化水素燃料の供給開始から支持体サンプルの線膨張率が変化し始めたタイミング(線膨張率の伸び率が立ち上がるタイミング)で開始した。本評価では、比較例1の支持体サンプルにメタンを供給した場合の炭素析出量を基準値とした。また、この基準値の50%の炭素析出量をしきい値に設定し、相対炭素析出量がしきい値未満である場合を良好と評価した。
<Evaluation of carbon deposition suppression>
About the support body sample of each Example and each comparative example which performed the hydrocarbon exposure process mentioned above, the relative value of the carbon deposition amount was computed by the combustion infrared absorption method. The hydrocarbon exposure measurement conditions were a temperature of 1073 K, a hydrocarbon fuel flow rate of 100 cc / min, S / C = 0.1, and an exposure time of 1 hour. The exposure time measurement was started at the timing when the linear expansion coefficient of the support sample started to change from the start of the supply of the hydrocarbon fuel (the timing at which the linear expansion coefficient elongation rate rose). In this evaluation, the carbon deposition amount when methane was supplied to the support sample of Comparative Example 1 was used as a reference value. Further, a carbon deposition amount of 50% of the reference value was set as a threshold value, and a case where the relative carbon deposition amount was less than the threshold value was evaluated as good.
 結果を図5に示す。図5は、各実施例及び各比較例の支持体サンプルにおける相対炭素析出量を示すグラフである。図5の縦軸は、相対炭素析出量(relative carbon deposition)を示す。図5において、「none」は比較例1を、「0.5% 8YSZ」は比較例2を、「0.5% 10GDC」は比較例3を、「0.5% TiO2」は実施例1を、「0.5% ZrO2」は実施例2を、「0.5% Nb2O3」は実施例3を、「0.5% CeO2」は実施例4を、「1% CeO2」は実施例5を、「2% CeO2」は実施例6を、「5% CeO2」は実施例7をそれぞれ示す。また、「CH4」はメタン、「C2H5」はエタン、「C3H8」はプロパンを示す。 The results are shown in FIG. FIG. 5 is a graph showing the relative carbon deposition amount in the support sample of each example and each comparative example. The vertical axis in FIG. 5 indicates the relative carbon deposition amount (relativerelcarbon deposition). In FIG. 5, “none” represents Comparative Example 1, “0.5% 8YSZ” represents Comparative Example 2, “0.5% 10 GDC” represents Comparative Example 3, and “0.5% TiO 2” represents Example 1. “0.5% ZrO2” is Example 2, “0.5% Nb2O3” is Example 3, “0.5% CeO2” is Example 4, and “1% CeO2” is Example 5. “2% CeO2” indicates Example 6, and “5% CeO2” indicates Example 7. “CH4” represents methane, “C2H5” represents ethane, and “C3H8” represents propane.
 図5に示すように、比較例1(none)の支持体サンプルでは、炭素水素燃料の炭素数が大きくなるほど相対炭素析出量の上昇が見られた。また、供給燃料がメタンで共通する各支持体サンプルの結果を比較すると、比較例2(0.5%8YSZ)、比較例3(0.5%10GDC)では良好な炭素析出抑制効果が見られなかったのに対し、実施例1(0.5%TiO2)、実施例2(0.5%ZrO2)、実施例3(0.5%Nb2O5)及び実施例4(0.5%CeO2)では、良好な炭素析出抑制効果が見られた。また供給燃料がプロパンで共通する各支持体サンプルの結果を比較すると、比較例1に対して、実施例4、実施例5(1% CeO2)、実施例6(2%CeO2)及び実施例7(5%CeO2)では、良好な炭素析出抑制効果が見られた。さらに、CeOの含有量の増大とともに炭素析出抑制効果が向上することが確認された。 As shown in FIG. 5, in the support sample of Comparative Example 1 (none), the relative carbon deposition amount increased as the carbon number of the carbon-hydrogen fuel increased. In addition, when the results of the respective support samples in which the supplied fuel is methane are compared, in Comparative Example 2 (0.5% 8YSZ) and Comparative Example 3 (0.5% 10GDC), a good carbon precipitation suppression effect is seen. In contrast to Example 1 (0.5% TiO2), Example 2 (0.5% ZrO2), Example 3 (0.5% Nb2O5) and Example 4 (0.5% CeO2). Good carbon precipitation suppression effect was observed. Further, when the results of the respective support samples in which the supplied fuel is propane are compared, Example 4, Example 5 (1% CeO2), Example 6 (2% CeO2) and Example 7 are compared with Comparative Example 1. In (5% CeO2), a good carbon precipitation suppression effect was observed. Furthermore, it was confirmed that the carbon precipitation suppression effect is improved with an increase in the CeO 2 content.
 <支持体サンプル変形の評価>
 上述した炭化水素曝露処理を施した各実施例及び各比較例の支持体サンプルについて、線膨張率の相対値を算出した。炭化水素曝露測定条件は、温度1073K、炭化水素燃料の流速100cc/分、S/C=0.1、曝露1時間とした。曝露時間の計測は、炭化水素燃料の供給開始から支持体サンプルの線膨張率が変化し始めたタイミングで開始した。本評価では、比較例1の支持体サンプルにメタンを供給した場合の線膨張率を基準値とした。また、この基準値の50%の線膨張率をしきい値に設定し、相対線膨張率がしきい値未満である場合を良好と評価した。
<Evaluation of deformation of support sample>
The relative values of the linear expansion coefficients were calculated for the support samples of the examples and the comparative examples subjected to the above-described hydrocarbon exposure treatment. The hydrocarbon exposure measurement conditions were a temperature of 1073 K, a hydrocarbon fuel flow rate of 100 cc / min, S / C = 0.1, and an exposure time of 1 hour. The exposure time measurement was started at the timing when the linear expansion coefficient of the support sample started to change from the start of the hydrocarbon fuel supply. In this evaluation, the linear expansion coefficient when methane was supplied to the support sample of Comparative Example 1 was used as a reference value. Further, a linear expansion coefficient of 50% of the reference value was set as a threshold value, and a case where the relative linear expansion coefficient was less than the threshold value was evaluated as good.
 結果を図6に示す。図6は、各実施例及び各比較例の支持体サンプルにおける相対線形膨張率を示すグラフである。図6の縦軸は、相対線形膨張率(relative extension)を示す。図6において、「none」、「0.5% 8YSZ」、「0.5% 10GDC」、「0.5% TiO2」、「0.5% ZrO2」、「0.5% Nb2O3」、「0.5% CeO2」、「1% CeO2」、「2% CeO2」、「CH4」、「C2H5」及び「C3H8」は図5と同様の意味である。 The results are shown in FIG. FIG. 6 is a graph showing the relative linear expansion rates of the support samples of each example and each comparative example. The vertical axis | shaft of FIG. 6 shows a relative linear expansion coefficient (relative-extension). In FIG. 6, “none”, “0.5% 8YSZ”, “0.5% 10GDC”, “0.5% TiO2”, “0.5% ZrO2”, “0.5% Nb2O3”, “0” .5% CeO2, “1% CeO2,” “2% CeO2,” “CH4,” “C2H5,” and “C3H8” have the same meaning as in FIG.
 図6に示すように、比較例1(none)の支持体サンプルでは、炭素水素燃料の炭素数が大きくなるほど相対線膨張率の上昇が見られた。また、供給燃料がメタンで共通する各支持体サンプルの結果を比較すると、比較例2(0.5%8YSZ)、比較例3(0.5%10GDC)では良好な変形抑制効果が見られなかったのに対し、実施例1(0.5%TiO2)、実施例2(0.5%ZrO2)、実施例3(0.5%Nb2O5)及び実施例4(0.5%CeO2)では、良好な変形抑制効果が見られた。また供給燃料がプロパンで共通する各支持体サンプルの結果を比較すると、比較例1に対して、実施例4、実施例5(1% CeO2)及び実施例6(2%CeO2)では、良好な変形抑制効果が見られた。さらに、CeOの含有量の増大とともに変形抑制効果が向上することが確認された。 As shown in FIG. 6, in the support sample of Comparative Example 1 (none), the relative linear expansion coefficient increased as the carbon number of the carbon-hydrogen fuel increased. Further, when comparing the results of the respective support samples in which the supplied fuel is methane in common, Comparative Example 2 (0.5% 8YSZ) and Comparative Example 3 (0.5% 10GDC) do not show a good deformation suppressing effect. In contrast, in Example 1 (0.5% TiO2), Example 2 (0.5% ZrO2), Example 3 (0.5% Nb2O5) and Example 4 (0.5% CeO2), A good deformation suppressing effect was observed. Further, when the results of the respective support samples in which the supplied fuel is propane are compared, it is better in Example 4, Example 5 (1% CeO2) and Example 6 (2% CeO2) than Comparative Example 1. A deformation suppressing effect was observed. Furthermore, it was confirmed that the deformation suppressing effect was improved with an increase in the CeO 2 content.
 <燃料電池の耐久性の評価:電圧変化>
 上述した変形例2で示した円筒型燃料電池を用いて、燃料電池の耐久性試験を実施した。本試験では、アノード支持体として、酸化Ni換算で50質量%のNiを含むNi/YSZに0.5質量%のTiOを添加した実施例8の支持体、同様に0.5質量%のCeOを添加した実施例9の支持体、何も添加しなかった比較例4の支持体、0.5質量%のYSZを添加した比較例5の支持体を用いた。アノード触媒層には、Ni/YSZを用いた。電解質層には、LSGMを用いた。カソード触媒層には、LSCFを用いた。アノードガスには、5%C/65%H/20%HO/30%Nガスを用いた。本試験に用いたアノードガスは、実際の燃料電池システムに用いられるアノードガスを模擬したガスである。炭化水素種としてはCのみを想定し、実際の燃料ガス中に存在するCHやCOは30%Nに置き換えた。また、アノードガス中の5%Cは、実際の燃料電池システムにおける改質器出口からの炭化水素スリップを想定して含有させた。カソードガスは空気とした。燃料電池の動作温度を973Kとした。アノードガスの利用率は75%、カソードガスの利用率は40%であった。
<Evaluation of fuel cell durability: Voltage change>
Using the cylindrical fuel cell shown in Modification 2 described above, a durability test of the fuel cell was performed. In this test, as the anode support, the support of Example 8 in which 0.5% by mass of TiO 2 was added to Ni / YSZ containing 50% by mass of Ni in terms of oxidized Ni, similarly 0.5% by mass. The support of Example 9 to which CeO 2 was added, the support of Comparative Example 4 to which nothing was added, and the support of Comparative Example 5 to which 0.5% by mass of YSZ was added were used. Ni / YSZ was used for the anode catalyst layer. LSGM was used for the electrolyte layer. LSCF was used for the cathode catalyst layer. As the anode gas, 5% C 3 H 8 /65% H 2 /20% H 2 O / 30% N 2 gas was used. The anode gas used in this test is a gas simulating the anode gas used in an actual fuel cell system. As the hydrocarbon species, only C 3 H 8 was assumed, and CH 4 and CO 2 present in the actual fuel gas were replaced with 30% N 2 . Further, 5% C 3 H 8 in the anode gas was contained assuming a hydrocarbon slip from the reformer outlet in the actual fuel cell system. The cathode gas was air. The operating temperature of the fuel cell was 973K. The utilization rate of the anode gas was 75%, and the utilization rate of the cathode gas was 40%.
 そして、燃料電池の駆動時間の経過にともなう燃料電池の出力電圧の変化から、燃料電池の耐久性を評価した。本評価では、燃料電池の駆動初期における出力電圧を基準値とした。また、この基準値から10%低下した出力電圧をしきい値に設定し、相対電圧がしきい値を上回る場合を良好と評価した。また、基準値から50%低下した出力電圧は、実際の燃料電池システムの運転限界電圧に相当する。 And, the durability of the fuel cell was evaluated from the change in the output voltage of the fuel cell with the passage of the fuel cell drive time. In this evaluation, the output voltage at the initial driving stage of the fuel cell was used as a reference value. Moreover, the output voltage which decreased 10% from this reference value was set as a threshold value, and the case where the relative voltage exceeded the threshold value was evaluated as good. Further, the output voltage that is reduced by 50% from the reference value corresponds to the actual operation limit voltage of the fuel cell system.
 結果を図7に示す。図7は、燃料電池の相対電圧と経過時間との関係を示すグラフである。図7の縦軸は燃料電池の相対電圧(relative cell voltage)を示し、横軸は経過時間(time course)[時間]を示す。図7に示すように、比較例4(none)及び比較例5(0.5%YSZ)のアノード支持体では、時間の経過とともに相対電圧が低下していき、比較例4では発電開始からおよそ175時間後に、比較例5ではおよそ250時間から300時間の間に、相対電圧がしきい値以下まで低下した。これに対し、実施例8(0.5%TiO2)及び実施例9(0.5%CeO2)では、発電開始から1000時間が経過しても相対電圧がしきい値以下まで低下することがなかった。比較例4及び比較例5では、主としてアノード支持体での炭素析出による燃料ガスの圧損増大により、燃料電池への燃料ガスの供給量が低下し、これによりアノード分極が増大して燃料電池の出力電圧が低下したと考えられる。また、比較例4及び比較例5では、炭素析出量の増加によるガス閉塞に加え、析出炭素による短絡や、燃料ガスの供給が途絶えた燃料電池でのアノード支持体の再酸化などによっても、出力電圧の低下が起こったと考えられる。 Results are shown in FIG. FIG. 7 is a graph showing the relationship between the relative voltage of the fuel cell and the elapsed time. The vertical axis in FIG. 7 indicates the relative voltage of the fuel cell (relative の cell voltage), and the horizontal axis indicates the elapsed time (time course). As shown in FIG. 7, in the anode supports of Comparative Example 4 (none) and Comparative Example 5 (0.5% YSZ), the relative voltage decreases with the passage of time. After 175 hours, in Comparative Example 5, the relative voltage dropped below the threshold between about 250 hours and 300 hours. On the other hand, in Example 8 (0.5% TiO2) and Example 9 (0.5% CeO2), the relative voltage does not drop below the threshold value even after 1000 hours have elapsed since the start of power generation. It was. In Comparative Example 4 and Comparative Example 5, the supply amount of the fuel gas to the fuel cell is decreased mainly due to the increase in the pressure loss of the fuel gas due to the carbon deposition on the anode support, thereby increasing the anode polarization and the output of the fuel cell. The voltage is thought to have dropped. Further, in Comparative Example 4 and Comparative Example 5, in addition to gas blockage due to an increase in the amount of carbon deposition, output is also caused by a short circuit due to precipitated carbon, reoxidation of the anode support in a fuel cell in which the supply of fuel gas is interrupted, etc. It is thought that a voltage drop occurred.
 <燃料電池の耐久性の評価:クラック発生>
 上述した実施の形態で示した円筒平板型燃料電池を用いて、燃料電池の耐久性試験を実施した。本試験では、アノード支持体として、酸化Ni換算で60質量%のNiを含むNi/Yに0.5質量%のTiOを添加した実施例10の支持体、同様に0.5質量%のCeOを添加した実施例11の支持体、何も添加しなかった比較例6の支持体、0.5質量%のYSZを添加した比較例7の支持体を用いた。アノード触媒層には、Ni/YSZを用いた。電解質層には、YSZを用いた。カソード触媒層には、LSCFを用いた。アノードガスには、2%C/68%H/20%HO/30%Nガスを用いた。この組成に設定した理由は、上述の電圧変化評価時のアノードガスと同様である。カソードガスは空気とした。燃料電池の動作温度を1023Kとした。アノードガスの利用率は70%、カソードガスの利用率は35%であった。
<Evaluation of fuel cell durability: Cracking>
A durability test of the fuel cell was performed using the cylindrical flat plate fuel cell shown in the above-described embodiment. In this test, as the anode support, the support of Example 10 in which 0.5% by mass of TiO 2 was added to Ni / Y 2 O 3 containing 60% by mass of Ni in terms of oxidized Ni, similarly 0.5 The support of Example 11 to which mass% CeO 2 was added, the support of Comparative Example 6 to which nothing was added, and the support of Comparative Example 7 to which 0.5 mass% of YSZ was added were used. Ni / YSZ was used for the anode catalyst layer. YSZ was used for the electrolyte layer. LSCF was used for the cathode catalyst layer. As the anode gas, 2% C 3 H 8 /68% H 2 /20% H 2 O / 30% N 2 gas was used. The reason for setting this composition is the same as that of the anode gas at the time of voltage change evaluation described above. The cathode gas was air. The operating temperature of the fuel cell was 1023K. The utilization rate of the anode gas was 70%, and the utilization rate of the cathode gas was 35%.
 そして、燃料電池の駆動時間の経過とともに燃料電池表面に発生したクラックの数から、燃料電池の耐久性を評価した。本評価では、5個の燃料電池を駆動させた。そして、50時間毎に駆動を停止させて、燃料電池表面に発生したクラック数を計測し、燃料電池1個当たりに発生したクラック数を算出した。 Then, the durability of the fuel cell was evaluated from the number of cracks generated on the surface of the fuel cell as the fuel cell driving time passed. In this evaluation, five fuel cells were driven. Then, the driving was stopped every 50 hours, the number of cracks generated on the fuel cell surface was measured, and the number of cracks generated per fuel cell was calculated.
 結果を図8に示す。図8は、燃料電池に発生したクラックの数と経過時間との関係を示すグラフである。図8の縦軸は燃料電池1個当たりのクラック数(crack number per cell)を示し、横軸は経過時間(time course)[時間]を示す。図8に示すように、比較例6(none)及び比較例7(0.5%YSZ)のアノード支持体を使用した燃料電池では、時間の経過とともにクラック数が増加した。特に、比較例6では150時間を経過してからクラック数が急激に増加し、比較例7では300時間を経過してからクラック数が急激に増加した。これに対し、実施例10(0.5%TiO2)及び実施例11(0.5%CeO2)では、発電開始から1000時間が経過してもクラックの発生がほとんど見られなかった。比較例6及び比較例7では、アノード支持体での炭素析出に伴うアノード支持体の寸法膨張によって、燃料電池の表面を覆う電解質層等にクラックが発生したと考えられる。 The results are shown in FIG. FIG. 8 is a graph showing the relationship between the number of cracks generated in the fuel cell and the elapsed time. The vertical axis in FIG. 8 indicates the number of cracks per fuel cell (crack number per cell), and the horizontal axis indicates the elapsed time (time course). As shown in FIG. 8, in the fuel cells using the anode supports of Comparative Example 6 (none) and Comparative Example 7 (0.5% YSZ), the number of cracks increased with the passage of time. In particular, in Comparative Example 6, the number of cracks increased rapidly after 150 hours passed, and in Comparative Example 7, the number of cracks increased rapidly after 300 hours passed. In contrast, in Example 10 (0.5% TiO 2) and Example 11 (0.5% CeO 2), almost no cracks were observed even after 1000 hours had elapsed since the start of power generation. In Comparative Example 6 and Comparative Example 7, it is considered that cracks occurred in the electrolyte layer and the like covering the surface of the fuel cell due to dimensional expansion of the anode support accompanying carbon deposition on the anode support.
 6 改質器、 20 燃料電池、 21 アノード支持体、 23 アノード触媒層、 24 電解質層、 25 カソード触媒層、 100 燃料電池システム、 210 基部、 220 酸化物粒子部。 6 reformer, 20 fuel cell, 21 anode support, 23 anode catalyst layer, 24 electrolyte layer, 25 cathode catalyst layer, 100 fuel cell system, 210 base, 220 oxide particle part.
 本発明は、固体酸化物形燃料電池用のアノード支持体、アノード支持型固体酸化物形燃料電池、及び燃料電池システムに利用することができる。 The present invention can be used in an anode support for a solid oxide fuel cell, an anode supported solid oxide fuel cell, and a fuel cell system.

Claims (10)

  1.  Ni金属及び酸化Niの少なくとも一方を含み、多孔質である基部を有するとともに、
     前記基部における、少なくともアノード触媒層に供給される燃料と接する面上に、Ti、Zr、Nb、Hf、Ta及びCeからなる群から選択される金属単独の酸化物1種以上で構成される粒子又は当該粒子の凝集体を有し、
     前記酸化物は、その含有量がアノード支持体の全質量に対して0.5質量%以上であることを特徴とする固体酸化物形燃料電池用のアノード支持体。
    Including at least one of Ni metal and Ni oxide and having a base that is porous;
    Particles composed of at least one oxide of a metal selected from the group consisting of Ti, Zr, Nb, Hf, Ta and Ce on at least the surface in contact with the fuel supplied to the anode catalyst layer in the base Or an aggregate of the particles,
    The anode support for a solid oxide fuel cell, wherein the content of the oxide is 0.5% by mass or more based on the total mass of the anode support.
  2.  前記基部は、前記Ni金属及び前記酸化Niの少なくとも一方と、Y、ジルコニア系複合酸化物及びセリア系複合酸化物からなる群から選択される少なくとも1つの酸化物との複合体である請求項1に記載の固体酸化物形燃料電池用のアノード支持体。 The base is a composite of at least one of the Ni metal and the Ni oxide and at least one oxide selected from the group consisting of Y 2 O 3 , a zirconia-based composite oxide, and a ceria-based composite oxide. The anode support for a solid oxide fuel cell according to claim 1.
  3.  前記基部は、アノード支持体の全質量に対して酸化Ni換算で30質量%以上のNi原子を含有する請求項1又は2に記載の固体酸化物形燃料電池用のアノード支持体。 The anode support for a solid oxide fuel cell according to claim 1 or 2, wherein the base contains 30 mass% or more of Ni atoms in terms of Ni oxide with respect to the total mass of the anode support.
  4.  請求項1乃至3のいずれか1項に記載の固体酸化物形燃料電池用のアノード支持体と、
     前記アノード支持体の表面に設けられるアノード触媒層と、
     前記アノード触媒層の前記アノード支持体とは反対側の面に設けられる電解質層と、
     前記電解質層の前記アノード触媒層とは反対側の面に設けられるカソード触媒層と、
    を備えることを特徴とするアノード支持型固体酸化物形燃料電池。
    An anode support for a solid oxide fuel cell according to any one of claims 1 to 3,
    An anode catalyst layer provided on the surface of the anode support;
    An electrolyte layer provided on a surface of the anode catalyst layer opposite to the anode support;
    A cathode catalyst layer provided on a surface of the electrolyte layer opposite to the anode catalyst layer;
    An anode-supported solid oxide fuel cell comprising:
  5.  前記アノード支持体は、前記アノード触媒層に供給される燃料の供給路に対して固定され、
     前記アノード支持体は、燃料の流れ方向に沿って上流側の少なくとも一部の領域が、下流側の少なくとも一部の領域よりも前記粒子及び前記凝集体の合計重量割合が大きい請求項4に記載のアノード支持型固体酸化物形燃料電池。
    The anode support is fixed to a fuel supply path to be supplied to the anode catalyst layer;
    5. The anode support according to claim 4, wherein a total weight ratio of the particles and the aggregate is larger in at least a part of the upstream side in the fuel flow direction than in at least a part of the downstream side. An anode-supported solid oxide fuel cell.
  6.  前記電解質層は、ジルコニア系複合酸化物、セリア系複合酸化物及びLSGMからなる群から選択される少なくとも1つの複合酸化物を含む請求項4又は5に記載のアノード支持型固体酸化物形燃料電池。 6. The anode-supported solid oxide fuel cell according to claim 4, wherein the electrolyte layer includes at least one composite oxide selected from the group consisting of a zirconia-based composite oxide, a ceria-based composite oxide, and LSGM. .
  7.  前記アノード触媒層は、Ni金属及び酸化Niの少なくとも一方と、ジルコニア系複合酸化物、セリア系複合酸化物及びLSGMからなる群から選択される少なくとも1つの複合酸化物とで構成される複合体である請求項4乃至6のいずれか1項に記載のアノード支持型固体酸化物形燃料電池。 The anode catalyst layer is a composite composed of at least one of Ni metal and Ni oxide and at least one composite oxide selected from the group consisting of zirconia composite oxide, ceria composite oxide, and LSGM. The anode-supported solid oxide fuel cell according to any one of claims 4 to 6.
  8.  請求項4乃至7のいずれか1項に記載のアノード支持型固体酸化物形燃料電池と、
     前記アノード支持型固体酸化物形燃料電池から発生する熱を用いて原燃料を改質し、前記アノード支持型固体酸化物形燃料電池の発電に用いられる燃料を生成する改質器と、を備えることを特徴とする燃料電池システム。
    An anode-supported solid oxide fuel cell according to any one of claims 4 to 7,
    A reformer that reforms raw fuel using heat generated from the anode-supported solid oxide fuel cell and generates fuel used for power generation of the anode-supported solid oxide fuel cell. A fuel cell system.
  9.  前記原燃料は、炭素数2以上の炭化水素化合物を原燃料の総モル量に対して5モル%以上含有する請求項8に記載の燃料電池システム。 The fuel cell system according to claim 8, wherein the raw fuel contains a hydrocarbon compound having 2 or more carbon atoms in an amount of 5 mol% or more based on the total molar amount of the raw fuel.
  10.  Ni金属及び酸化Niの少なくとも一方と、
     Ti、Zr、Nb、Hf、Ta及びCeからなる群から選択される金属単独の酸化物の少なくとも1種と、を含有し、
     前記酸化物は、その含有量がアノード支持体の全質量に対して0.5質量%以上であることを特徴とする固体酸化物形燃料電池用のアノード支持体。
    At least one of Ni metal and Ni oxide;
    Containing at least one oxide of a metal alone selected from the group consisting of Ti, Zr, Nb, Hf, Ta and Ce,
    The anode support for a solid oxide fuel cell, wherein the content of the oxide is 0.5% by mass or more based on the total mass of the anode support.
PCT/JP2014/002720 2013-06-25 2014-05-23 Anode support for solid oxide fuel cell, anode-supported solid oxide fuel cell, and fuel cell system WO2014207993A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013133080A JP2015008088A (en) 2013-06-25 2013-06-25 Anode support for solid oxide fuel cell, anode-support type solid oxide fuel cell, and fuel cell system
JP2013-133080 2013-06-25

Publications (1)

Publication Number Publication Date
WO2014207993A1 true WO2014207993A1 (en) 2014-12-31

Family

ID=52141369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002720 WO2014207993A1 (en) 2013-06-25 2014-05-23 Anode support for solid oxide fuel cell, anode-supported solid oxide fuel cell, and fuel cell system

Country Status (2)

Country Link
JP (1) JP2015008088A (en)
WO (1) WO2014207993A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033822A1 (en) * 2015-08-22 2017-03-02 京セラ株式会社 Cell, cell stack device, module, and module accommodation device
JP6931627B2 (en) * 2018-06-21 2021-09-08 東京瓦斯株式会社 Fuel cell system and heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106192A (en) * 1998-07-27 2000-04-11 Mitsubishi Heavy Ind Ltd Substrate tube for fuel cell and its material
JP2003142130A (en) * 2001-11-01 2003-05-16 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte type fuel cell
JP2005347120A (en) * 2004-06-03 2005-12-15 Osaka Gas Co Ltd Fuel cell power generation system
JP2006179356A (en) * 2004-12-22 2006-07-06 Tokyo Gas Co Ltd Solid oxide fuel battery of banded type, and its formation method
JP2012054224A (en) * 2010-09-02 2012-03-15 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell
JP2012178257A (en) * 2011-02-25 2012-09-13 Kyocera Corp Porous conductive substrate for fuel cell, and solid oxide fuel cell
JP2013114979A (en) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106192A (en) * 1998-07-27 2000-04-11 Mitsubishi Heavy Ind Ltd Substrate tube for fuel cell and its material
JP2003142130A (en) * 2001-11-01 2003-05-16 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte type fuel cell
JP2005347120A (en) * 2004-06-03 2005-12-15 Osaka Gas Co Ltd Fuel cell power generation system
JP2006179356A (en) * 2004-12-22 2006-07-06 Tokyo Gas Co Ltd Solid oxide fuel battery of banded type, and its formation method
JP2012054224A (en) * 2010-09-02 2012-03-15 Samsung Electro-Mechanics Co Ltd Solid oxide fuel cell
JP2012178257A (en) * 2011-02-25 2012-09-13 Kyocera Corp Porous conductive substrate for fuel cell, and solid oxide fuel cell
JP2013114979A (en) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd Solid oxide fuel cell

Also Published As

Publication number Publication date
JP2015008088A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP7105972B2 (en) Electrochemical device, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method for manufacturing electrochemical device
JP5767297B2 (en) Stack structure for stacked solid oxide fuel cell, stacked solid oxide fuel cell, and manufacturing method thereof
US7740772B2 (en) Ceramic anodes and method of producing the same
US11670779B2 (en) Metal support for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, solid oxide electrolytic cell, and method for manufacturing metal support
US20210119239A1 (en) Metal Support for Electrochemical Element, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System, Solid Oxide Fuel Cell, Solid Oxide Electrolytic Cell, and Method for Manufacturing Metal Support
US20230392249A1 (en) Manufacturing Method for Alloy Material, Alloy Material, Electrochemical Element, Electrochemical Module, Electrochemical Device, Energy System and Solid Oxide Fuel Cell
JP7202061B2 (en) Electrochemical elements, electrochemical modules, electrochemical devices, energy systems, and solid oxide fuel cells
US20130224627A1 (en) Scandium-doped bzcy electrolytes
Lenser et al. Solid oxide fuel and electrolysis cells
JP5528132B2 (en) Method for producing electrode for solid oxide fuel cell and solid oxide fuel cell produced by the method
JP2008108647A (en) Reformer-integrated fuel cell
WO2014207993A1 (en) Anode support for solid oxide fuel cell, anode-supported solid oxide fuel cell, and fuel cell system
Othman High performance micro-tubular solid oxide fuel cell
JP7202060B2 (en) Electrochemical elements, electrochemical modules, electrochemical devices, energy systems, and solid oxide fuel cells
JP6385086B2 (en) Method for evaluating solid oxide fuel cell and solid oxide fuel cell system
JP6320238B2 (en) Single cell for fuel cell, fuel cell, and method for manufacturing single cell for fuel cell
JP2016189289A (en) Solid oxide type fuel cell
Mohanty et al. Perovskites for fuel cell applications
US11749824B2 (en) Metal plate, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method for manufacturing metal plate
JP7145844B2 (en) ELECTROCHEMICAL DEVICE, ELECTROCHEMICAL MODULE, SOLID OXIDE FUEL CELL, AND MANUFACTURING METHOD
McIntosh Advanced Anodes for Solid Oxide Fuel Cells
KR101940712B1 (en) Solid oxide fuel cell and method for manufacturing the same
Mather et al. Solid oxide fuel cells: state of the art, nanomaterials, and advanced architectures
JP2023148146A (en) Method for manufacturing metal support type electrochemical element, metal support type electrochemical element, solid oxide fuel cell, solid oxide electrolytic cell, electrochemical module, electrochemical device, and energy system
JP2015191852A (en) Method for controlling solid oxide fuel battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818158

Country of ref document: EP

Kind code of ref document: A1