JPH07226229A - Heat insulation container for high temperature battery - Google Patents

Heat insulation container for high temperature battery

Info

Publication number
JPH07226229A
JPH07226229A JP1475094A JP1475094A JPH07226229A JP H07226229 A JPH07226229 A JP H07226229A JP 1475094 A JP1475094 A JP 1475094A JP 1475094 A JP1475094 A JP 1475094A JP H07226229 A JPH07226229 A JP H07226229A
Authority
JP
Japan
Prior art keywords
heat
heat insulation
high temperature
container
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1475094A
Other languages
Japanese (ja)
Inventor
Tadao Yamaji
忠雄 山路
Hiroshi Yamazaki
洋 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1475094A priority Critical patent/JPH07226229A/en
Publication of JPH07226229A publication Critical patent/JPH07226229A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To radiate the excess heat without generating heat shock and uneven temperature caused by sharp internal temperature change when a high temperature battery housed in a heat insulation container generates heat by charge/ discharge, and cover energy for radiation by the exhaust heat energy radiated from the wall of the heat insulation container. CONSTITUTION:When a high temperature battery 2 generates heat, a heat insulation panel 5 is raised by a cylinder device 7, and heat insulation thickness in a ceiling of a vacuum, heat insulating wall 3 is decreased to decrease the heat insulation capability of a heat insulation container 1 and to accelerate heat radiation. The operation of the cylinder device 7 is covered with energy utilizing the exhaust heat obtained when heat radiated from a heat insulation wall is converted into electricity with a thermal power generating element 8 attached to the vacuum, heat insulation wall 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温電池を保温するため
の保温容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat retaining container for keeping a high temperature battery warm.

【0002】[0002]

【従来の技術】高温電池といわれる高温型の蓄電池(二
次電池)は、ナトリウム−硫黄電池、ナトリウム−塩化
金属電池、リチウム−硫化金属電池の3種類がある。こ
れらは、いずれも室温では動作せず、動作温度が高温で
あるため「高温電池」と言われる。これら高温電池の動
作温度は、以下に示す通りである。
2. Description of the Related Art There are three types of high temperature type storage batteries (secondary batteries) called high temperature batteries: sodium-sulfur batteries, sodium-metal chloride batteries and lithium-metal sulfide batteries. None of these operate at room temperature and the operating temperature is high, so they are called "high temperature batteries". The operating temperatures of these high temperature batteries are as follows.

【0003】 ナトリウム−硫黄電池 300〜 350℃ ナトリウム−塩化鉄電池,ナトリウム−塩化ニッケル電池 250℃以上 リチウム−二硫化鉄電池 400〜 450℃ これらの高温電池は、高いエネルギー密度で電気を貯蔵
して利用(充電および放電)できるため、電気自動車用
の電源や、変電所・需要家用の電力貯蔵用電池として有
望視され、開発されつつある。
Sodium-sulfur battery 300 to 350 ° C. Sodium-iron chloride battery, sodium-nickel chloride battery 250 ° C. or higher Lithium-iron disulfide battery 400 to 450 ° C. These high temperature batteries store electricity at high energy density. Since it can be used (charged and discharged), it is promising and being developed as a power source for electric vehicles and a battery for power storage for substations and consumers.

【0004】しかし、高温で動作するため、動作温度に
加熱して、保温しなければならず、断熱が不可欠であ
る。加熱は、電気ヒータなどを利用し、保温は断熱を施
した保温容器を採用し、温度調節によって一定温度に保
つようにしている。
However, since it operates at a high temperature, it must be heated to the operating temperature and kept warm, and heat insulation is essential. An electric heater or the like is used for heating, and a heat insulating container is used for heat insulation, and the temperature is controlled to maintain a constant temperature.

【0005】断熱材として、一般に市販されている、グ
ラスウールやロックウール、珪酸カルシウムなどは、熱
伝導率が0.03〜0.07W/mK程度で、保温のた
めの熱エネルギーを、ごくわずかに押さえるために、1
00〜250mm程度の断熱厚さが必要となる。
As the heat insulating material, glass wool, rock wool, calcium silicate, etc., which are generally commercially available, have a thermal conductivity of about 0.03 to 0.07 W / mK, and the heat energy for heat retention is very small. To hold down 1
Adiabatic thickness of about 00 to 250 mm is required.

【0006】このように、熱ロスをおさえないと、電池
に蓄えた電気エネルギーが有効に活用できない。その理
由は、断熱性能が低下すると、保温のための熱エネルギ
ーを多く必要とし、システムのエネルギー貯蔵の効率が
悪くなる。また、熱伝導率の小さな断熱材で断熱しない
と、熱ロスを小さくするための断熱厚さが増加し、断熱
容器の嵩や重量が増して、電池システムのエネルギー密
度を低下させる。
As described above, the electric energy stored in the battery cannot be effectively utilized unless the heat loss is suppressed. The reason for this is that if the heat insulation performance deteriorates, a large amount of heat energy is required for heat retention, and the energy storage efficiency of the system becomes poor. Further, unless heat insulation is performed with a small heat conductivity, the heat insulation thickness for reducing heat loss increases, the volume and weight of the heat insulation container increase, and the energy density of the battery system decreases.

【0007】エネルギー密度は、システムの単位体積当
たり、単位重量当たりに蓄えられるエネルギーの量のこ
とである。エネルギー密度が大きいほど、コンパクトに
電気を貯めることができる優れた電池といえる。このた
めに、断熱材に真空断熱材が採用されている。真空断熱
では、熱伝導率が0.004〜0.01W/mKと、上
記のグラスウールなどの断熱材の1/5〜1/10程度
の性能を有している。このため、同じ断熱性能の断熱を
する場合、その断熱厚さを1/5〜1/10とすること
ができる。
Energy density refers to the amount of energy stored per unit volume of the system per unit weight. It can be said that the higher the energy density, the better the battery that can store electricity in a compact manner. For this reason, a vacuum heat insulating material is used as the heat insulating material. The vacuum heat insulation has a thermal conductivity of 0.004 to 0.01 W / mK, which is about 1/5 to 1/10 of that of the above-described heat insulating material such as glass wool. Therefore, when performing heat insulation with the same heat insulation performance, the heat insulation thickness can be set to 1/5 to 1/10.

【0008】[0008]

【発明が解決しようとする課題】一般に、動作中の電池
は、電気化学反応のために放電中に自己発熱がある。ま
た、放電や充電中は、電池や接続用の結線の電気抵抗に
よって、(電流)2 ×(抵抗)に相当する電気的な発熱
(ジュール熱)がある。そこで、電池を収納する容器の
内部の温度の上昇がおこる。
Generally, a battery during operation has self-heating during discharge due to an electrochemical reaction. Further, during discharging or charging, there is electrical heat generation (Joule heat) corresponding to (current) 2 × (resistance) due to the electrical resistance of the battery and the connection wire for connection. Therefore, the temperature inside the container that stores the battery rises.

【0009】高温電池の場合、上記のように、断熱性能
を高めた容器を採用しているために、必要以上の発熱が
容器の内部で発生すると、温度上昇し、電池の動作温度
以上の温度となってしまう。そこで、この余剰の熱量
は、容器内部に外気を送給して冷却するなどして、温度
上昇の対策を施している。この余剰熱量の放散に、外気
を使用すると、急激な内部温度の変化による熱衝撃や、
温度の不均一の問題を生じる。また、この外気の送給
に、動力を必要とし、余剰の熱の有効利用ができない。
As described above, in the case of a high temperature battery, since a container having an improved heat insulating property is employed, if excessive heat is generated inside the container, the temperature rises, and the temperature is higher than the operating temperature of the battery. Will be. Therefore, the surplus amount of heat is taken as a measure against temperature rise by sending outside air into the container to cool it. If outside air is used to dissipate this excess heat, thermal shock due to sudden changes in internal temperature,
This creates the problem of temperature non-uniformity. In addition, power is required to send the outside air, and excess heat cannot be effectively used.

【0010】本発明は上記問題を解決するもので、急激
な内部温度の変化による熱衝撃や、温度の不均一を起す
ことなく余剰熱量の放散が可能であり、そのためのエネ
ルギーを保温容器の壁から放散する廃熱のエネルギーで
賄うようにした高温電池用保温容器を提供することを目
的とする。
The present invention solves the above-mentioned problems, and it is possible to dissipate excess heat without causing thermal shock due to a sudden change in internal temperature and non-uniformity of temperature, and energy for that purpose can be stored in the wall of the heat insulation container. An object of the present invention is to provide a heat insulation container for a high temperature battery, which is covered by the energy of waste heat radiated from the heat insulation container.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明の高温電池用保温容器は、高温電池といわれ
る高温型の二次電池を収納する真空断熱保温容器の真空
断熱壁の一部を、この部分の断熱厚さを変化させるため
の可動式の断熱パネルを付設した2層構造に構成し、さ
らに真空断熱壁を通して放散する熱を電気に変換して前
記断熱パネルを移動させるための電力に使用する熱電発
電素子を設けたものである。
In order to solve the above-mentioned problems, the heat insulating container for a high temperature battery of the present invention is one of the vacuum heat insulating walls of a vacuum heat insulating heat insulating container for accommodating a high temperature type secondary battery called a high temperature battery. In order to move the adiabatic panel by converting the heat dissipated through the vacuum adiabatic wall into electricity, the section is constructed to have a two-layer structure with a movable adiabatic panel for changing the adiabatic thickness of this section. The thermoelectric generation element used for the electric power of is provided.

【0012】[0012]

【作用】上記構成により、保温容器に収納した高温電池
の放電や充電による発熱があると、保温容器の断熱性能
を低下させるために、断熱パネルを移動させて保温容器
の断熱壁の厚さを減少させる。高温電池の発熱が終了
し、保温容器内部の温度を維持するため電気ヒータなど
で加熱して保温状態にするときは、断熱パネルを元に戻
し、保温容器の断熱壁を厚くして断熱性能を向上させ
る。この断熱パネルを移動させて断熱壁の厚さを可変す
るために、保温容器の断熱壁から放散する熱を熱電発電
素子を用いて電気に変換し、これを別の蓄電池に貯蔵し
ておいて断熱パネルを稼動するのに利用する。
With the above structure, when heat is generated by discharging or charging the high temperature battery housed in the heat insulation container, the heat insulation panel is moved to reduce the thickness of the heat insulation wall of the heat insulation container in order to reduce the heat insulation performance of the heat insulation container. Reduce. When heat generation of the high temperature battery is completed and the inside of the heat insulation container is heated by an electric heater to keep it warm, the heat insulation panel is replaced and the heat insulation wall of the heat insulation container is thickened to improve heat insulation performance. Improve. In order to move this heat insulation panel and change the thickness of the heat insulation wall, the heat radiated from the heat insulation wall of the heat insulation container is converted into electricity using a thermoelectric generator element and stored in another storage battery. Used to operate the insulation panel.

【0013】[0013]

【実施例】以下本発明の一実施例を図面に基づいて説明
する。図1は本発明の一実施例の高温電池用保温容器を
示す構成図である。図1において、1は内部に高温電池
2を収納する真空断熱保温容器であり、その外壁は二重
構造の真空断熱壁3に構成され、前方は開口されて蓋4
が設けられている。この真空断熱壁3の天井部は他の壁
部分より薄く構成されるとともに、その部分に薄くなっ
た厚さだけの真空断熱構造の可動式の断熱パネル5が付
設された2層構造に構成され、全体として他の壁部分と
同じ断熱厚さになっている。この断熱パネル5は一端が
枢支軸6を介して真空断熱壁3に枢着され、エアシリン
ダまたは油圧シリンダなどのシリンダ装置7により枢支
軸6を中心に回転され、持ち上げ可能に構成されてい
る。また真空断熱壁3の後壁にはゼーベック効果により
熱を電気に変換する熱電発電素子8が取り付けられてお
り、真空断熱壁3を通して放散される余剰熱を電気に変
換する。この電気は別蓄電池9に貯蔵され、シリンダ装
置7を稼動するのに利用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing a heat retaining container for a high temperature battery according to an embodiment of the present invention. In FIG. 1, reference numeral 1 is a vacuum heat insulation and heat insulation container for accommodating a high temperature battery 2 therein, the outer wall of which is configured as a vacuum heat insulation wall 3 having a double structure, and the front is opened to cover a lid 4.
Is provided. The ceiling portion of the vacuum heat insulating wall 3 is made thinner than the other wall portions, and a movable heat insulating panel 5 of a vacuum heat insulating structure having a reduced thickness is attached to that portion so as to have a two-layer structure. , As a whole, it has the same insulation thickness as other wall parts. One end of this heat insulating panel 5 is pivotally attached to the vacuum heat insulating wall 3 via a pivot shaft 6, and is rotated about the pivot shaft 6 by a cylinder device 7 such as an air cylinder or a hydraulic cylinder so that it can be lifted. There is. Further, a thermoelectric power generating element 8 for converting heat into electricity by the Seebeck effect is attached to the rear wall of the vacuum heat insulating wall 3, and converts excess heat dissipated through the vacuum heat insulating wall 3 into electricity. This electricity is stored in the separate storage battery 9 and is used to operate the cylinder device 7.

【0014】上記構成において、真空断熱保温容器1の
大きさは横1000×高さ600×奥行き1800mm
で、真空断熱壁3の断熱厚さを40mmとし、天井部で
は真空断熱壁3の断熱厚さを20mm、断熱パネル5の
断熱厚さを20mmとし、真空断熱壁3および断熱パネ
ル5の内部の真空層には繊維糸の充填材が充填され、真
空断熱保温容器1の断熱性能は、真空状10pa(0.
1torr)以下の状態で熱伝導率が0.007W/m
K(平均温度185℃)であり、保温容器1の平均の熱
貫流率は0.3W/m2 Kである。この保温容器1の中
にナトリウム−硫黄電池からなる850kgの高温電池
2が収納され、保温容器1の内部温度は電気ヒータなど
の加熱により動作温度の350℃に保持されている。
In the above structure, the vacuum heat insulation container 1 has a size of width 1000 x height 600 x depth 1800 mm.
Then, the heat insulating thickness of the vacuum heat insulating wall 3 is 40 mm, the heat insulating thickness of the vacuum heat insulating wall 3 is 20 mm, and the heat insulating thickness of the heat insulating panel 5 is 20 mm at the ceiling portion. The vacuum layer is filled with a fiber yarn filler, and the heat insulation performance of the vacuum heat insulation and heat insulation container 1 is 10 pa (0.
Thermal conductivity of 0.007 W / m under 1 torr)
K (average temperature 185 ° C.), and the average heat transmission coefficient of the heat insulating container 1 is 0.3 W / m 2 K. An 850 kg high-temperature battery 2 made of a sodium-sulfur battery is housed in the heat insulation container 1, and the internal temperature of the heat insulation container 1 is maintained at an operating temperature of 350 ° C. by heating with an electric heater or the like.

【0015】この高温電池2は充電・放電によって4×
104 KJの発熱を行うため、保温容器1の真空断熱壁
3から余剰熱を放散させる必要がある。このため、熱電
発電素子5により変換された電気を蓄電池9に貯蔵して
おき、これを利用してシリンダ装置7を稼動し、断熱パ
ネル5を持ち上げて保温容器1の内部の熱の放散を促進
する。これによって、約90Wの熱の放散が促進され
る。したがって、断熱パネル5の持ち上げ前は、保温容
器全体での放散熱量が470Wであったものを天井部の
断熱パネル5の持ち上げにより560Wの放散熱量とす
ることができる。
This high temperature battery 2 is 4 × by charging / discharging.
In order to generate heat of 10 4 KJ, it is necessary to dissipate excess heat from the vacuum heat insulating wall 3 of the heat insulating container 1. For this reason, the electricity converted by the thermoelectric power generation element 5 is stored in the storage battery 9, and the cylinder device 7 is operated by using this, and the heat insulation panel 5 is lifted to promote the dissipation of heat inside the heat insulating container 1. To do. This promotes the dissipation of about 90 W of heat. Therefore, before the heat insulating panel 5 is lifted, the amount of heat dissipated in the entire heat insulating container was 470 W, but the heat dissipating amount of 560 W can be made by lifting the heat insulating panel 5 at the ceiling.

【0016】熱電発電はBi−Te系熱電発電素子で熱
電変換効率は0.4%であるから、熱電発電素子を保温
容器の真空断熱壁後壁に取り付けると、時間当たり1W
の発電が可能となる。
Since thermoelectric power generation is a Bi-Te system thermoelectric power generation element and the thermoelectric conversion efficiency is 0.4%, if the thermoelectric power generation element is attached to the rear wall of the vacuum heat insulation wall of the heat insulation container, 1 W per hour is obtained.
It becomes possible to generate electricity.

【0017】したがって、発電時間を24時間として、
24whの電力量を貯蔵できることになる。この電力量
を使用し、天井部の断熱パネルを例えば1日に1度持ち
上げた後、数時間放置してからこれを下に降ろすように
動作させることが可能である。
Therefore, the power generation time is set to 24 hours,
It will be possible to store an electric energy of 24 wh. By using this amount of electric power, it is possible to operate, for example, to lift the heat insulation panel on the ceiling once a day and then leave it for several hours before lowering it.

【0018】[0018]

【発明の効果】以上のように本発明によれば、真空断熱
壁の断熱性能を2層構造の断熱パネルの移動により可変
としたので、熱衝撃などの起らない、円滑安定な余剰熱
の放散が可能である。しかも断熱パネルの移動は、保温
容器からの放散熱を熱電発電素子で発電し、この電力を
利用して行うので断熱パネル移動のためのエネルギーを
廃熱のエネルギーで賄うことができ、効率のよい保温容
器を提供することができる。
As described above, according to the present invention, since the heat insulating performance of the vacuum heat insulating wall is made variable by the movement of the heat insulating panel having the two-layer structure, smooth and stable excess heat that does not cause thermal shock is generated. Can be dissipated. Moreover, since the heat dissipated heat from the heat insulation container is generated by the thermoelectric generator and this electric power is used to move the heat insulation panel, the energy for moving the heat insulation panel can be covered by the waste heat energy, which is efficient. A heat insulating container can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の高温電池用保温容器を示す
構成図である。
FIG. 1 is a configuration diagram showing a heat retaining container for a high temperature battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空断熱保温容器 2 高温電池 3 真空断熱壁 5 断熱パネル 7 シリンダ装置 8 熱電発電素子 9 蓄電池 1 Vacuum Insulation Insulation Container 2 High Temperature Battery 3 Vacuum Insulation Wall 5 Insulation Panel 7 Cylinder Device 8 Thermoelectric Generator 9 Storage Battery

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温電池を収納する真空断熱保温容器の
真空断熱壁の一部を、この部分の断熱厚さを変化させる
ための可動式の断熱パネルを付設した2層構造に構成
し、さらに真空断熱壁を通して放熱する熱を電気に変換
して前記断熱パネルを移動させるための電力に使用する
熱電発電素子を設けたことを特徴とする高温電池用保温
容器。
1. A part of a vacuum heat insulating wall of a vacuum heat insulating and heat retaining container for housing a high temperature battery is constructed to have a two-layer structure provided with a movable heat insulating panel for changing a heat insulating thickness of this part, and further. A heat insulation container for a high temperature battery, comprising a thermoelectric power generation element for converting heat radiated through a vacuum heat insulation wall into electricity and using it as electric power for moving the heat insulation panel.
JP1475094A 1994-02-09 1994-02-09 Heat insulation container for high temperature battery Pending JPH07226229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1475094A JPH07226229A (en) 1994-02-09 1994-02-09 Heat insulation container for high temperature battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1475094A JPH07226229A (en) 1994-02-09 1994-02-09 Heat insulation container for high temperature battery

Publications (1)

Publication Number Publication Date
JPH07226229A true JPH07226229A (en) 1995-08-22

Family

ID=11869796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1475094A Pending JPH07226229A (en) 1994-02-09 1994-02-09 Heat insulation container for high temperature battery

Country Status (1)

Country Link
JP (1) JPH07226229A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076546A1 (en) 2011-11-25 2013-05-30 Toyota Jidosha Kabushiki Kaisha Power storage device and battery temperature regulating method
JP2013113408A (en) * 2011-11-30 2013-06-10 Toyo Tire & Rubber Co Ltd Heat control device and heat control method
JP2013175390A (en) * 2012-02-27 2013-09-05 Toshiba Corp Battery pack, secondary battery device, and electric vehicle
KR20140087283A (en) * 2012-12-28 2014-07-09 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery module
CN107221725A (en) * 2017-05-27 2017-09-29 东风商用车有限公司 A kind of thermal insulation layer packaged type power battery box of electric vehicle
JP2017228544A (en) * 2017-09-27 2017-12-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Battery preheating method, device, and equipment
CN111129644A (en) * 2018-10-31 2020-05-08 上海申龙客车有限公司 Cabin door for power battery cabin
US10734691B2 (en) 2014-12-30 2020-08-04 SZ DJI Technology Co., Ltd. Battery preheating methods, devices, and apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076546A1 (en) 2011-11-25 2013-05-30 Toyota Jidosha Kabushiki Kaisha Power storage device and battery temperature regulating method
US9385405B2 (en) 2011-11-25 2016-07-05 Toyota Jidosha Kabushiki Kaisha Power storage device and battery temperature regulating method
JP2013113408A (en) * 2011-11-30 2013-06-10 Toyo Tire & Rubber Co Ltd Heat control device and heat control method
JP2013175390A (en) * 2012-02-27 2013-09-05 Toshiba Corp Battery pack, secondary battery device, and electric vehicle
KR20140087283A (en) * 2012-12-28 2014-07-09 재단법인 포항산업과학연구원 Sodium-sulfur rechargeable battery module
US10734691B2 (en) 2014-12-30 2020-08-04 SZ DJI Technology Co., Ltd. Battery preheating methods, devices, and apparatus
CN107221725A (en) * 2017-05-27 2017-09-29 东风商用车有限公司 A kind of thermal insulation layer packaged type power battery box of electric vehicle
CN107221725B (en) * 2017-05-27 2023-10-10 东风商用车有限公司 Power battery box of electric automobile with movable heat insulation layer
JP2017228544A (en) * 2017-09-27 2017-12-28 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Battery preheating method, device, and equipment
CN111129644A (en) * 2018-10-31 2020-05-08 上海申龙客车有限公司 Cabin door for power battery cabin

Similar Documents

Publication Publication Date Title
Ye et al. Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA)
TWI220418B (en) A very low emission hybrid electric vehicle incorporating an integrated propulsion system including a hydrogen powered internal combustion engine and a high power NI-MH battery pack
US11677100B2 (en) Electrochemical energy storage devices
EP3063825A1 (en) Thermal management of liquid metal batteries
JP5244206B2 (en) Energy storage device for automobile
JP5497042B2 (en) Photovoltaic system with integrated photovoltaic panel and battery
JP2010259238A (en) Regenerative power managing system
CN110936836B (en) Mobilizable car container that charges
JPH07226229A (en) Heat insulation container for high temperature battery
JPH10144361A (en) Battery system and transportation machine provided with the same
JPH07226230A (en) Heat insulation container for high temperature battery
KR101435608B1 (en) Energy Storage Device That Contains A Heat Transfer Oil
US8033351B2 (en) Thermo-electric, rechargeable vehicle powering system
CN213988982U (en) Heat dissipation laminate polymer battery group
JPH07226228A (en) Heat insulation container for high temperature battery
JPH11185800A (en) Operation method for high temperature sodium secondary battery
JP2010133661A (en) Air conditioning-power generating device
JPH09298070A (en) Module type secondary battery, and module type secondary battery unit
CN112687975A (en) Electronic equipment and heat dissipation method
NL2015268B1 (en) Solar power system
JP2000251931A (en) High temperature sodium secondary battery system and its operating method
CN213278213U (en) Constant temperature storage battery cabinet
JP2980840B2 (en) Operating method of battery system using sodium-sulfur battery
JP2004031096A (en) Fuel cell and electric equipment
Ginart et al. Thermoelectrical Management System for Stationary Outdoor Lithium-Ion Energy Storage