JP2000251931A - High temperature sodium secondary battery system and its operating method - Google Patents

High temperature sodium secondary battery system and its operating method

Info

Publication number
JP2000251931A
JP2000251931A JP5508499A JP5508499A JP2000251931A JP 2000251931 A JP2000251931 A JP 2000251931A JP 5508499 A JP5508499 A JP 5508499A JP 5508499 A JP5508499 A JP 5508499A JP 2000251931 A JP2000251931 A JP 2000251931A
Authority
JP
Japan
Prior art keywords
secondary battery
module
temperature sodium
sodium secondary
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5508499A
Other languages
Japanese (ja)
Inventor
Tadahiko Mitsuyoshi
忠彦 三吉
Koji Kusakabe
康次 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5508499A priority Critical patent/JP2000251931A/en
Publication of JP2000251931A publication Critical patent/JP2000251931A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a high temperature secondary battery system suitable for a power storage system used for load leveling and peak shifting purposes and also for unsteady operations such as for an emergency power supply, an uninterruptible power supply, a standby power supply and the like, and its operating method. SOLUTION: A storage container 3 constituting a part of plural temperature sodium secondary battery modules 1 and a storage container 3' constituting remaining modules have different heat insulation, and a part of the modules 1 and the remaining modules 1' are mutually connected through an AC/DC converter 6, 6'. Thereby, this system can be operated in complicated operating patterns as a dual purpose system for load leveling and peak shifting purposes, and also for unsteady operations such as operations for an emergency power supply, an uninterruptible power supply, a standby power supply and the like, while keeping the temperature range of the high temperature sodium secondary battery module, and load leveling for a power becomes possible by using it as a system for a load following operation, a dual purpose system for an emergency power supply or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力貯蔵用として
用いるに好適な高温ナトリウム二次電池システム及びそ
の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature sodium secondary battery system suitable for power storage and an operation method thereof.

【0002】[0002]

【従来の技術】高温ナトリウム二次電池は、負極にナト
リウム、正極に硫黄,セレン,テルル,金属ハロゲン化
物などを用い、その効率やエネルギー密度が大きいこと
から、電力貯蔵装置や電気自動車などへの利用が期待さ
れている。これらの二次電池は、その動作温度を約30
0℃に保つために断熱容器へ収納してモジュールを構成
し、このモジュール1個又は複数個を交直変換器と組み
合わせたシステムとして運転される。なお、このような
二次電池モジュールは通常、夜間の電力を蓄積して昼間
に放電するというサイクルで繰り返し運転されるため、
電池の動作時の発熱、特に放電時の発熱を考慮して収納
容器の断熱性能を設計し、1日1サイクルの運転で電池
の発熱量と収納容器からの放熱量をバランスさせる工夫
がなされている。これら従来技術としては、特開平9−2
19216 号公報あるいは特開平5− 121092 号公報等が知
られている。
2. Description of the Related Art High-temperature sodium secondary batteries use sodium for the negative electrode and sulfur, selenium, tellurium, metal halide, etc. for the positive electrode, and have high efficiency and energy density. Use is expected. These secondary batteries have an operating temperature of about 30
In order to maintain the temperature at 0 ° C., the module is housed in an insulated container to constitute a module, and one or more of the modules are operated as a system combined with an AC / DC converter. In addition, since such a secondary battery module is normally operated repeatedly in a cycle of storing power during the night and discharging during the day,
The heat insulation during the operation of the battery, especially during the discharge, is taken into consideration to design the heat insulation performance of the storage container, and a device is designed to balance the amount of heat generated by the battery and the amount of heat released from the storage container during one cycle of operation per day. I have. These prior arts include Japanese Patent Application Laid-Open No. 9-2
Japanese Patent Application Laid-Open No. 19216 and Japanese Patent Application Laid-Open No. 5-110992 are known.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、シ
ステムを一定の充放電出力で運転される負荷平準化運転
と負荷変動に対応した可変出力で運転されるピークシフ
ト運転との併用システムとして使用する場合、運転パタ
ーンによって、電池の放電出力が大きく異なるため、負
荷平準化運転時,ピークシフト運転時共に電池温度を所
定範囲内に納めるのは困難であった。また、このシステ
ムを非常用電源,無停電電源や予備力電源などの非定常
運転に利用する場合にはシステム全体の効率を高めるた
めには断熱容器の断熱性能をできるだけ大きくして、長
期保温時に必要なヒータエネルギーを少なくすることが
望ましいが、断熱性能が大きいと負荷平準化運転やピー
クシフト運転を繰り返した際の電池温度上昇を防ぐのが
難しく、システム効率向上と兼用システムとしての運転
を両立させることは困難であった。
In the above prior art, the system is used as a combined system of a load leveling operation operated at a constant charge / discharge output and a peak shift operation operated at a variable output corresponding to a load change. In this case, it is difficult to keep the battery temperature within a predetermined range both during the load leveling operation and during the peak shift operation because the discharge output of the battery greatly differs depending on the operation pattern. When this system is used for unsteady operation such as emergency power supply, uninterruptible power supply, or standby power supply, the insulation performance of the heat insulating container should be as large as possible in order to increase the efficiency of the entire system. It is desirable to reduce the required heater energy, but if the heat insulation performance is large, it is difficult to prevent the battery temperature from rising when the load leveling operation and peak shift operation are repeated, so both system efficiency can be improved and operation as a dual-purpose system can be achieved. It was difficult to do.

【0004】さらに、従来の電池システムでは、休日の
ように充放電しない場合や春秋のようにピークシフトの
回数が少なく待機日の多い場合、及び、非常用電源,無
停電電源や予備力電源用のように常時には運転しないで
高温で待機する用途に用いる場合には、断熱容器に設け
たヒータを待機時に運転して電池を所定温度に保温する
必要があり、このヒータによるエネルギーロスのために
システム全体の効率が低下するという問題点があった。
一方、待機時の放熱量を少なくしてエネルギーロスを抑
えると、運転時の発熱によって電池温度が許容範囲を超
え、容器腐食などの理由で電池寿命が低下するという問
題点があった。
Further, in the conventional battery system, charging / discharging is not performed as on holidays, peak shifts are small in number of times in spring and autumn, and standby days are long, and emergency power supplies, uninterruptible power supplies, and standby power supplies are used. When the battery is used for standby at a high temperature without operating at all times, it is necessary to operate the heater provided in the heat insulating container at the time of standby to keep the battery at a predetermined temperature. There is a problem that the efficiency of the entire system is reduced.
On the other hand, if the heat loss during standby is reduced to suppress the energy loss, there is a problem that the battery temperature exceeds the allowable range due to heat generated during operation, and the battery life is shortened due to corrosion of the container and the like.

【0005】本発明は上記問題点を解決するものであ
り、その目的とするところは、負荷平準化用と、ピーク
シフト用との兼用、あるいは負荷平準化用やピークシフ
ト用と、非常用電源,無停電電源や予備力電源用などの
非定常運転用の電力貯蔵装置を兼用する電力貯蔵システ
ムとして好適な高温ナトリウム二次電池システム及びそ
の運転方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to provide an emergency power supply for load leveling and peak shifting, or for load leveling and peak shifting. It is an object of the present invention to provide a high-temperature sodium secondary battery system suitable as a power storage system that also serves as a power storage device for an unsteady operation such as an uninterruptible power supply or a standby power supply, and an operation method thereof.

【0006】[0006]

【課題を解決するための手段】上記課題を達成するた
め、本発明の第一の高温ナトリウム二次電池システム
は、ナトリウム硫黄電池などの高温ナトリウム二次電池
を収納容器内へ収納したモジュールと交直変換器とをそ
れぞれ複数個組み合わせた高温ナトリウム二次電池シス
テムであって、前記複数個のモジュールの一部のモジュ
ールを構成する収納容器が残りのモジュールを構成する
収納容器とは異なった断熱性能を有し、且つ、前記一部
のモジュールと残りのモジュールとがそれぞれ交直変換
器を介して接続されていることを特徴としている。ここ
で、前記収納容器が少なくとも2重の隔壁を持った真空
断熱容器から成り、前記一部のモジュールを構成する真
空断熱容器と前記残りのモジュールを構成する真空断熱
容器とは隔壁内の真空度が異なることが望ましい。ある
いは、前記収納容器が側壁,上壁又は/及び下壁から構
成され、前記一部のモジュールの上壁又は/及び下壁の
断熱性能が前記残りのモジュールの上壁又は/及び下壁
の断熱性能とは異なることが好ましい。
In order to achieve the above object, a first high-temperature sodium secondary battery system according to the present invention comprises a high-temperature sodium secondary battery such as a sodium-sulfur battery and a module accommodating a high-temperature sodium secondary battery. A high temperature sodium secondary battery system in which a plurality of converters are combined with each other, wherein a storage container forming a part of the plurality of modules has a different heat insulating performance from a storage container forming the remaining modules. And a part of the module and the remaining modules are connected via an AC / DC converter. Here, the storage container is formed of a vacuum insulated container having at least two partitions, and the vacuum insulated container forming the part of the modules and the vacuum insulated container forming the remaining modules are defined by the degree of vacuum in the partition. Are desirably different. Alternatively, the storage container is constituted by a side wall, an upper wall, and / or a lower wall, and the heat insulating performance of the upper wall and / or the lower wall of the some modules is insulated by the upper wall and / or the lower wall of the remaining modules. Preferably, it differs from performance.

【0007】また、本発明の第一の高温ナトリウム二次
電池システムの運転方法は、前記一部のモジュールの運
転パターンが前記残りのモジュールの運転パターンとは
異なることを特徴としている。具体的には、前記一部の
モジュールを構成する収納容器の断熱性能を前記残りの
モジュールを構成する収納容器の断熱性能より小さく
し、前記一部のモジュールをピークシフトの目的に使用
するか、あるいは、前記一部のモジュールの収納容器の
断熱性能を残りのモジュールの収納容器の断熱性能より
大きくし、前記一部のモジュールを非常用電源,無停電
電源あるいは予備力電源などの非定常運転の目的に用い
ることが好ましい。
[0007] The first method for operating a high-temperature sodium secondary battery system of the present invention is characterized in that the operation pattern of some of the modules is different from that of the remaining modules. Specifically, the heat insulation performance of the storage container forming the part of the module is made smaller than the heat insulation performance of the storage container forming the remaining module, or the part of the module is used for the purpose of peak shift, Alternatively, the heat insulation performance of the storage containers of some of the modules is made larger than the heat insulation performance of the storage containers of the other modules, and the some modules are operated in an unsteady operation such as an emergency power supply, an uninterruptible power supply, or a standby power supply. It is preferably used for the purpose.

【0008】さらに、本発明の第二の高温ナトリウム二
次電池システムは、ナトリウム硫黄電池などの高温ナト
リウム二次電池から成るモジュールと、高温ナトリウム
二次電池以外の二次電池から成るモジュールとがそれぞ
れ交直変換器を介して接続されていることを特徴として
いる。ここで、前記高温ナトリウム二次電池以外の二次
電池が鉛二次電池,リチウム二次電池,ニッケル水素二
次電池又はニッケルカドミウム二次電池であることが望
ましい。また、本発明の第二の高温ナトリウム二次電池
システムの運転方法は、前記高温ナトリウム二次電池か
ら成るモジュールの運転パターンが前記高温ナトリウム
二次電池以外の二次電池から成るモジュールの運転パタ
ーンとは異なることを特徴としており、具体的には、前
記高温ナトリウム二次電池以外の二次電池から成るモジ
ュールを非常用電源,無停電電源あるいは予備力電源な
どの非定常運転の目的に用いることが好ましい。
Further, the second high-temperature sodium secondary battery system of the present invention comprises a module comprising a high-temperature sodium secondary battery such as a sodium-sulfur battery and a module comprising a secondary battery other than the high-temperature sodium secondary battery. It is characterized in that it is connected via an AC / DC converter. Here, it is preferable that the secondary battery other than the high-temperature sodium secondary battery is a lead secondary battery, a lithium secondary battery, a nickel hydride secondary battery, or a nickel cadmium secondary battery. Further, the operation method of the second high-temperature sodium secondary battery system according to the present invention, wherein the operation pattern of the module comprising the high-temperature sodium secondary battery is the same as the operation pattern of the module comprising a secondary battery other than the high-temperature sodium secondary battery. Is specifically characterized in that a module comprising a secondary battery other than the high-temperature sodium secondary battery is used for an unsteady operation such as an emergency power supply, an uninterruptible power supply, or a standby power supply. preferable.

【0009】[0009]

【発明の実施の形態】本発明の第一の高温ナトリウム二
次電池システムにおいては、システムを構成する複数個
のモジュールの内の一部のモジュールと残りのモジュー
ルとで断熱性能の異なった収納容器を用い、前記一部の
モジュールと残りのモジュールのそれぞれに交直変換器
を取り付けて、交直変換器を介してモジュール同士を接
続しているため、前記一部のモジュールと残りのモジュ
ールとを互いに異なった運転パターンで運転でき、か
つ、それぞれの運転パターンに適した断熱性能を持たせ
ることができる。この結果、負荷平準化用とピークシフ
ト用の電力貯蔵装置との兼用、あるいは負荷平準化用や
ピークシフト用と非常用電源,無停電電源や予備力電源
用などの非定常運転用の電力貯蔵装置との兼用システム
のような複雑な運転パターンの場合にも、前記一部のモ
ジュールと残りのモジュールの運転パターン及び断熱性
能を適切に選ぶことにより、電池温度範囲を適切に保ち
ながら、目的の運転パターンを達成できる。具体的に
は、負荷平準化用とピークシフト用との兼用システムの
場合、前記一部のモジュールの断熱性能を比較的小さく
して、負荷変動に対応したピークシフト運転を行い、残
りのモジュールの断熱性能を比較的大きくして、約8時
間放電、約8〜10時間充電のほぼ一定出力の負荷平準
化運転を行えばよい。ピークシフト運転の場合、負荷平
準化運転に比べて放電時間が短い反面放電出力のピーク
が高くなるのが一般的であり、放電量の積算量(平均放
電出力×時間)は同じでも電池からの発熱量は負荷平準
化運転の場合よりも大きくなるが、このようにモジュー
ルの断熱性能に違いを持たせることにより、前記一部の
モジュール、残りのモジュール共に電池温度を適正範囲
内に保って運転することができる。一方、負荷平準化用
と非常用電源,無停電電源や予備力電源用などの非定常
運転用との兼用システムの場合、前記一部のモジュール
の断熱性能を比較的大きくして非定常運転を行い、残り
のモジュールの断熱性能を比較的小さくして、負荷平準
化運転を行えばよい。非常用電源,無停電電源や予備力
電源用などの非定常運転の場合、一度放電してから次に
放電するまでの充電期間や休止期間が負荷平準化運転に
比べて一般に長くとれるため、放電時間の最後に許容最
高温度を超えない様に熱設計し、モジュールの断熱性能
を大きくしてゆっくり温度低下させれば良い。こうする
ことにより、休止時に電池温度を適切な温度に保つため
のヒータ入力が少なくでき、システム全体の効率が高く
できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the first high-temperature sodium secondary battery system of the present invention, a storage container in which a part of a plurality of modules constituting the system and a remaining module have different heat insulation performance. The AC / DC converter is attached to each of the partial module and the remaining module, and the modules are connected to each other via the AC / DC converter. Therefore, the partial module and the remaining module are different from each other. It is possible to operate in accordance with the different operation patterns, and to have heat insulation performance suitable for each operation pattern. As a result, the power storage device for load leveling and peak shift is also used, or the power storage for non-stationary operation such as load leveling, peak shift and emergency power, uninterruptible power and standby power is used. Even in the case of a complicated operation pattern such as a dual-purpose system with the device, by appropriately selecting the operation patterns and the heat insulation performance of the above-mentioned some modules and the remaining modules, while maintaining the battery temperature range appropriately, Driving patterns can be achieved. Specifically, in the case of a dual-purpose system for load leveling and peak shift, the heat insulation performance of some of the modules is made relatively small, and a peak shift operation corresponding to a load change is performed. It is sufficient to perform the load leveling operation with a substantially constant output of approximately 8 hours of discharge and approximately 8 to 10 hours of charge with relatively large adiabatic performance. In the case of the peak shift operation, the discharge time is generally shorter than that of the load leveling operation, but the peak of the discharge output is generally higher. Even if the integrated amount of the discharge amount (average discharge output × time) is the same, the output from the battery is the same. Although the calorific value is larger than in the load leveling operation, the difference in the heat insulation performance of the modules as described above allows the above-mentioned some modules and the remaining modules to operate while keeping the battery temperature within an appropriate range. can do. On the other hand, in the case of a dual-purpose system for load leveling and for non-stationary operation such as for emergency power supply, uninterruptible power supply or standby power supply, the insulation performance of some of the modules is relatively large to perform non-stationary operation. Then, the heat insulation performance of the remaining modules may be made relatively small, and the load leveling operation may be performed. In the case of unsteady operation such as for emergency power supply, uninterruptible power supply, or standby power supply, the charging period and the rest period from one discharge to the next discharge can be generally longer than those of load leveling operation. At the end of the time, the thermal design should be such that the maximum allowable temperature is not exceeded, and the heat insulation performance of the module should be increased to lower the temperature slowly. By doing so, it is possible to reduce the heater input for maintaining the battery temperature at an appropriate temperature during a halt, thereby increasing the efficiency of the entire system.

【0010】本発明の第一の高温ナトリウム二次電池シ
ステムにおいて、モジュールを構成する収納容器として
少なくとも2重の隔壁を持った真空断熱容器を用い、前
記一部のモジュールの隔壁内の真空度が残りのモジュー
ルの真空度とは異なる方法を採用すれば、同じ構造の真
空断熱容器を用いて異なった断熱性能を持たせることが
でき、真空断熱容器の製造が簡単になるという利点があ
る。また、前記収納容器が側壁,上壁又は/及び下壁か
ら構成され、前記一部のモジュールの上壁又は/及び下
壁の断熱性能が前記残りのモジュールの上壁又は/及び
下壁の断熱性能とは異なる方法を用いて、前記一部のモ
ジュール又は/及び残りのモジュールを構成する収納容
器の上面又は/及び下面から主に放熱されるように熱設
計すれば、モジュール内の平面方向に配置した複数個の
電池間に温度差が付きにくいという利点を生ずる。並列
電池間に温度差が付くと、電池の特性に差異を生じて内
部循環電流が流れ、これがモジュールの容量変動を起こ
す可能性があるが、収納容器側面の断熱性能を高く保つ
ことにより、この問題を避けることができる。
In the first high-temperature sodium secondary battery system of the present invention, a vacuum insulated container having at least a double partition is used as a storage container constituting a module, and the degree of vacuum in the partition of some of the modules is reduced. If a method different from the degree of vacuum of the remaining modules is adopted, different heat insulating performances can be provided using the vacuum heat insulating container having the same structure, and there is an advantage that the manufacture of the vacuum heat insulating container is simplified. Further, the storage container is constituted by a side wall, an upper wall and / or a lower wall, and the heat insulation performance of the upper wall and / or the lower wall of the part of the module is insulated by the upper wall and / or the lower wall of the remaining module. Using a method different from the performance, if the thermal design is performed so that heat is mainly radiated from the upper surface and / or the lower surface of the storage container that constitutes the part of the modules and / or the remaining modules, There is an advantage that a temperature difference is hardly generated between the plurality of batteries arranged. If a temperature difference occurs between the parallel batteries, a difference occurs in the characteristics of the batteries and an internal circulating current flows, which may cause a change in the capacity of the module. You can avoid problems.

【0011】(実施例2)本発明の第二の高温ナトリウ
ム二次電池システムにおいては、ナトリウム硫黄電池な
どの高温ナトリウム二次電池から成るモジュールと、高
温ナトリウム二次電池以外の二次電池から成るモジュー
ルとがそれぞれ交直変換器を介して接続されており、前
者のモジュールと後者のモジュールとを互いに異なった
運転パターンで運転することにより、負荷平準化用とピ
ークシフト用との兼用、あるいは負荷平準化用やピーク
シフト用と非常用電源,無停電電源や予備力電源などの
非定常運転用との兼用システムとしての使用が可能であ
り、複雑な運転パターンの運転が容易に達成できる。ま
た、高温ナトリウム二次電池以外の二次電池として鉛二
次電池,リチウム二次電池,ニッケル水素二次電池又は
ニッケルカドミウム二次電池を使用し、これらの電池か
ら構成されるモジュールを非常用電源,無停電電源,予
備力電源などのような非定常運転に用いればよい。鉛二
次電池,リチウム二次電池,ニッケル水素二次電池又は
ニッケルカドミウム二次電池は室温動作できるために電
池を保温するための断熱容器やヒータが必要なく、シス
テム構成が簡単になるという利点がある。但し、これら
の電池は高温ナトリウム二次電池に比べて繰り返し運転
に対する寿命が比較的短いため、日単位での繰り返し運
転が要求される負荷平準化やピークシフト運転のために
は、高温ナトリウム二次電池モジュールを用いることが
望ましい。
Embodiment 2 In a second high-temperature sodium secondary battery system of the present invention, a module including a high-temperature sodium secondary battery such as a sodium-sulfur battery and a secondary battery other than the high-temperature sodium secondary battery are provided. Each of the modules is connected via an AC / DC converter, and the former module and the latter module are operated in different operation patterns from each other, so that they can be used for load leveling and peak shift, or for load leveling. It can be used as a combined system for non-steady-state operation such as power supply for emergency shift, peak shift, and emergency power supply, uninterruptible power supply, and standby power supply, and can easily achieve operation of a complicated operation pattern. In addition, as a secondary battery other than the high-temperature sodium secondary battery, a lead secondary battery, a lithium secondary battery, a nickel hydride secondary battery, or a nickel cadmium secondary battery is used, and a module composed of these batteries is used as an emergency power supply. , An uninterruptible power supply, a reserve power supply, etc. Lead rechargeable batteries, lithium rechargeable batteries, nickel-metal hydride rechargeable batteries, or nickel cadmium rechargeable batteries have the advantage of being able to operate at room temperature, eliminating the need for a heat insulating container or heater to keep the batteries warm and simplifying the system configuration. is there. However, these batteries have a relatively short life for repeated operation compared to high-temperature sodium secondary batteries. Therefore, high-temperature sodium secondary batteries are required for load leveling and peak shift operation that require repeated operation on a daily basis. It is desirable to use a battery module.

【0012】以下、本発明を図面によって説明する。Hereinafter, the present invention will be described with reference to the drawings.

【0013】図1は本発明の高温ナトリウム二次電池シ
ステムの構成例を示している。図において、1,1′は
高温ナトリウム二次電池を収納したモジュールであっ
て、平面方向に複数個配列された高温ナトリウム二次電
池2,2′、複数個の高温ナトリウム二次電池を収納し
た収納容器3,3′および収納容器の内部に設けたヒー
タ4,4′より構成されている。また、5,5′は電気
配線で、高温ナトリウム二次電池モジュール1,1′は
これらの電気配線によって、交直変換器6,6′及び絶
縁トランス7,7′を介して系統配線8と接続されてい
る。さらに、9は交直変換器の運転を制御する制御装置
である。この図に見られるように、収納容器3と3′と
は収納容器の上下壁の厚さが異なり、その結果として断
熱性能が異なっている。なお、図示されていないが、収
納容器3,3′として同じ構造の真空断熱容器を用い、
3と3′とでその真空度を違えて、断熱性能が異なるよ
うにしてもよい。この構造で、高温ナトリウム二次電池
モジュール1と1′の運転パターン違えて運転すること
により、電池温度範囲を適切に保ちながら、負荷平準化
用とピークシフト用との兼用、あるいは負荷平準化用や
ピークシフト用と非常用電源,無停電電源や予備力電源
用などの非定常運転用との兼用システムのような複雑な
パターンでの運転が可能となる。
FIG. 1 shows a configuration example of a high-temperature sodium secondary battery system of the present invention. In the figure, reference numerals 1, 1 'denote modules accommodating a high-temperature sodium secondary battery, which accommodate a plurality of high-temperature sodium secondary batteries 2, 2' arranged in a plane direction and a plurality of high-temperature sodium secondary batteries. It comprises storage containers 3 and 3 'and heaters 4 and 4' provided inside the storage containers. Reference numerals 5 and 5 'denote electric wirings, and the high-temperature sodium secondary battery modules 1 and 1' are connected to the system wiring 8 via the AC / DC converters 6 and 6 'and the insulating transformers 7 and 7' by these electric wirings. Have been. Further, 9 is a control device for controlling the operation of the AC / DC converter. As can be seen from this figure, the thicknesses of the upper and lower walls of the storage containers 3 and 3 'are different from each other, and as a result, the heat insulation performance is different. Although not shown, a vacuum insulated container having the same structure is used as the storage containers 3 and 3 '.
The degree of vacuum may be different between 3 and 3 'so that the heat insulation performance is different. With this structure, by operating the high temperature sodium secondary battery modules 1 and 1 'with different operation patterns, the battery temperature level can be appropriately maintained, and the load leveling and peak shift can be combined, or the load leveling can be performed. This makes it possible to operate in a complex pattern, such as a system that is used for non-steady-state operation such as power supply for peak shift and emergency power supply, uninterruptible power supply, and reserve power supply.

【0014】また、図示されていないが、図1の高温ナ
トリウム二次電池モジュール1又は1′の代わりに、ど
ちらか一方を鉛二次電池,リチウム二次電池,ニッケル
水素二次電池又はニッケルカドミウム二次電池のような
高温ナトリウム二次電池以外の二次電池モジュールとす
ることも出来る。この場合には、高温ナトリウム二次電
池以外の二次電池モジュールでは断熱容器やヒータは不
要である。
Although not shown, either the high-temperature sodium secondary battery module 1 or 1 'of FIG. 1 is replaced with a lead secondary battery, a lithium secondary battery, a nickel hydride secondary battery or a nickel cadmium battery. A secondary battery module other than a high-temperature sodium secondary battery such as a secondary battery can also be used. In this case, a secondary battery module other than the high-temperature sodium secondary battery does not require a heat insulating container or a heater.

【0015】図2は本発明の高温ナトリウム二次電池シ
ステムの運転方法の例を示しており、図の縦軸は系統配
線で消費される電力、横軸は時刻で、a,a′はそれぞ
れの二次電池モジュールの放電パターン、b,b′はこ
れらのモジュールの充電パターンを表している。例えば
図1の高温ナトリウム二次電池システムにおいて、断熱
性能の比較的小さいモジュール1を比較的放電出力が大
きくて放電時間の短い放電パターンa及び充電パターン
bで運転し、断熱性能の比較的大きいモジュール1′を
比較的放電出力が小さくて放電時間の長い放電パターン
a′及び充電パターンb′で運転すれば良い。放電時の
電池発熱は主に電池内部抵抗による熱ロスによって決ま
り、電池内部抵抗をR、放電電流をIとすると、熱ロス
W′は(1)式となる。
FIG. 2 shows an example of an operation method of the high-temperature sodium secondary battery system of the present invention. The vertical axis of the figure is the power consumed by the system wiring, the horizontal axis is the time, and a and a 'are respectively. The discharge patterns b and b 'of the secondary battery modules indicate charge patterns of these modules. For example, in the high-temperature sodium secondary battery system of FIG. 1, a module 1 having a relatively small heat insulation performance is operated in a discharge pattern a and a charge pattern b having a relatively large discharge output and a short discharge time, and has a relatively large heat insulation performance. 1 'may be operated with a discharge pattern a' and a charge pattern b 'having a relatively small discharge output and a long discharge time. The heat generated by the battery at the time of discharging is mainly determined by the heat loss due to the internal resistance of the battery. If the internal resistance of the battery is R and the discharge current is I, the heat loss W 'is given by the following equation (1).

【0016】 W′=I2R …(1) 一方、電池の起電力をEとすると、放電出力Wは(2)式
となる。
W ′ = I 2 R (1) On the other hand, assuming that the electromotive force of the battery is E, the discharge output W is expressed by equation (2).

【0017】 W=(E−IR)×I …(2) したがって、放電量の積算量(平均放電出力×放電時
間)が同じであっても、aのように放電出力が大きいと
放電時の発熱がa′より大きくなる。この場合、モジュ
ールの断熱性能の小さいモジュール1をパターンa,b
のようなピークシフト運転し、断熱性能の大きいモジュ
ール1′をパターンa′,b′のような負荷平準化運転
することにより、それぞれのモジュールの電池温度を適
正範囲に保ちながら、図2のように、全体として高温ナ
トリウム二次電池システムを負荷変動に追随して運転す
ることが出来る。
W = (E−IR) × I (2) Therefore, even if the integrated amount of discharge amount (average discharge output × discharge time) is the same, if the discharge output is large as in a, the discharge time Heat generation becomes larger than a '. In this case, the module 1 having a small heat insulation performance of the module is replaced with the patterns a and b.
By performing the peak shift operation as shown in FIG. 2 and performing the load leveling operation as shown in patterns a 'and b' of the module 1 'having a large adiabatic performance, the battery temperature of each module is maintained in an appropriate range as shown in FIG. In addition, the high-temperature sodium secondary battery system can be operated as a whole following load fluctuations.

【0018】また、図3は本発明の高温ナトリウム二次
電池システムの運転方法の他の例を示しており、図の縦
軸はそれぞれのモジュールの放電電力,充電電力、横軸
は時刻で、c,c′はそれぞれのモジュールの放電パタ
ーンを、d,d′は充電パターンを表している。この場
合、図1のように断熱性能の小さいモジュール1をパタ
ーンc,dで運転して、放電時の電池発熱で上昇した電
池温度が充電時間や待機時間中に冷却されて、翌日の放
電開始時までに元の温度へ戻るように設計し、一方、断
熱性能の大きいモジュール1′を非常用電源,無停電電
源や予備力電源用などの非定常運転パターンc′,d′
で運転すればよい。非定常運転の場合、一度放電してか
ら次に放電するまでの充電期間や休止期間が一般に長く
とれるため、放電時間の最後に許容最高温度を超えない
様に熱設計し、モジュールの断熱性能を大きくしてゆっ
くり温度低下させることにより、休止時に電池温度を適
切な温度に保つためのヒータ入力が少なくでき、システ
ム全体の効率が高くできる。なお、この場合、図1のモ
ジュール1′の代わりに、鉛二次電池,リチウム二次電
池,ニッケル水素二次電池又はニッケルカドミウム二次
電池のような高温ナトリウム二次電池以外の二次電池モ
ジュールを用いても良い。
FIG. 3 shows another example of the operation method of the high-temperature sodium secondary battery system of the present invention. The vertical axis of the figure shows the discharge power and charge power of each module, and the horizontal axis shows the time. c and c 'represent discharge patterns of the respective modules, and d and d' represent charge patterns. In this case, as shown in FIG. 1, the module 1 having a small heat insulating performance is operated in the patterns c and d, and the battery temperature that has risen due to the battery heat generated at the time of discharging is cooled during the charging time or the standby time, and the discharging of the next day is started. It is designed to return to the original temperature by the time, while the module 1 'having a large heat insulating performance is used for unsteady operation patterns c' and d 'for emergency power supply, uninterruptible power supply and standby power supply.
I just need to drive. In the case of unsteady operation, the charge period and the rest period from one discharge to the next discharge can be generally long, so the thermal design should not exceed the maximum allowable temperature at the end of the discharge time, and the heat insulation performance of the module should be improved. By increasing the temperature and slowly lowering the temperature, it is possible to reduce the heater input for maintaining the battery temperature at an appropriate temperature at the time of suspension, thereby increasing the efficiency of the entire system. In this case, instead of the module 1 'of FIG. 1, a secondary battery module other than a high-temperature sodium secondary battery such as a lead secondary battery, a lithium secondary battery, a nickel hydride secondary battery, or a nickel cadmium secondary battery. May be used.

【0019】図4は本発明に用いる高温ナトリウム二次
電池モジュールの構造例であり、図1と同じ符号で示さ
れたものは同じ内容を示している。ここで、収納容器3
には断熱性能が優れている理由により、金属2重壁の間
隙に断熱材(図示されていない)を充填し、間隙を真空
に引いた真空断熱容器が用いられており、側壁31と下
壁32から構成される箱状の容器本体に、上壁33を構
成する箱状の蓋をかぶせた構造を持っている。また、1
0はヒータ4を固定した金属板、11は金属板10と電
気配線5とを分離した絶縁板、12は電池2と真空断熱
容器の下壁32とを分離した絶縁台、13は電気配線5
と真空断熱容器の側壁31,上壁33とを電気絶縁した
絶縁材である。さらに、20は乾燥砂などの絶縁粒子
で、電池間に充填して、モジュールの安全性と均熱性を
高めている。ここで、真空断熱容器の側壁31の真空度
を高く保ち、上壁33又は/及び下壁32の真空度を制
御することにより、図1のモジュール1,1′のよう
に、断熱性能の異なる収納容器を得ることが可能であ
る。
FIG. 4 shows an example of the structure of a high-temperature sodium secondary battery module used in the present invention. The components denoted by the same reference numerals as those in FIG. 1 have the same contents. Here, the storage container 3
For the reason that the heat insulation performance is excellent, a vacuum heat insulating container in which a gap between the metal double walls is filled with a heat insulating material (not shown) and the gap is evacuated is used. It has a structure in which a box-shaped lid constituting the upper wall 33 is covered on a box-shaped container main body composed of 32. Also, 1
0 is a metal plate to which the heater 4 is fixed, 11 is an insulating plate separating the metal plate 10 and the electric wiring 5, 12 is an insulating table separating the battery 2 and the lower wall 32 of the vacuum heat insulating container, and 13 is an electric wiring 5
It is an insulating material that electrically insulates the side wall 31 and the upper wall 33 of the vacuum heat insulating container. Further, reference numeral 20 denotes insulating particles such as dry sand, which are filled between the cells to enhance the safety and uniformity of the module. Here, by maintaining a high degree of vacuum on the side wall 31 of the vacuum insulated container and controlling the degree of vacuum on the upper wall 33 and / or the lower wall 32, the heat insulation performance differs as in the modules 1 and 1 'in FIG. It is possible to obtain a storage container.

【0020】具体例として、1本当りの容量約480W
h,定格出力約60Wのナトリウム硫黄電池を用い、電
池216本を縦約1m,横約1.5m,高さ約0.6mの
真空断熱容器に平面方向に配列して収納し、図4に示し
たと類似の構造の容量約100kWhのモジュールを得
た。なお、電気配線としてはアルミニウム製のブスバを
用い、ガラスウールで絶縁して、真空断熱容器の外部へ
取り出した。また、一方のモジュールの真空断熱容器の
側壁内と下壁内の真空度を0.001 気圧,上壁内の真
空度0.05 気圧とし、他方のモジュールの上下壁内,
側壁内の真空度を0.001 気圧に調節することによ
り、同じ構造で断熱性能の異なる2種類のモジュールを
得た。
As a specific example, the capacity per one piece is about 480 W
h, using a sodium-sulfur battery with a rated output of about 60 W, 216 batteries were arranged in a vacuum insulated container having a length of about 1 m, a width of about 1.5 m, and a height of about 0.6 m in a planar direction, and stored in FIG. A module with a capacity of about 100 kWh with a structure similar to that shown was obtained. In addition, an aluminum bus bar was used as electric wiring, insulated with glass wool, and taken out of the vacuum insulated container. The degree of vacuum in the side wall and the lower wall of the vacuum insulated container of one module is set to 0.001 atm and the degree of vacuum in the upper wall is set to 0.05 atm.
By adjusting the degree of vacuum in the side wall to 0.001 atm, two types of modules having the same structure and different heat insulating performances were obtained.

【0021】得られた2種類のモジュールをそれぞれ交
直変換器と絶縁トランスを介して系統配線と接続し、一
方のモジュールを図2のa,bのパターンに従って充放
電運転し(放電出力ピーク25kW,充電入力ピーク3
0kW)、他方のモジュールを図2のa′,b′のパタ
ーンで充放電運転(放電出力ピーク12.5kW ,充電
入力ピーク16kW)することにより、系統配線での負
荷変化に追随した運転が可能であった。また、電池温度
は放電開始時310℃、温度上昇は最高30℃で、電池
の許容温度範囲内にあり、また、充電時および停止時の
放熱により温度低下して、翌日の放電開始時には元の3
10℃に戻り、毎日連続して運転することが可能であっ
た。
The obtained two types of modules are connected to the system wiring via an AC / DC converter and an insulating transformer, respectively, and one of the modules is charged and discharged according to the patterns a and b in FIG. Charge input peak 3
0 kW), and the other module can be operated in accordance with the load change in the system wiring by performing the charge / discharge operation (discharge output peak 12.5 kW, charge input peak 16 kW) in the pattern of a 'and b' in FIG. Met. The battery temperature is 310 ° C. at the start of discharge and the maximum temperature rise is 30 ° C., which is within the allowable temperature range of the battery. 3
After returning to 10 ° C., it was possible to operate continuously every day.

【0022】[0022]

【発明の効果】本発明によれば、高温ナトリウム二次電
池モジュールの電池温度範囲を適切に保ちながら、負荷
平準化用とピークシフト用との兼用、あるいは負荷平準
化用やピークシフト用と非常用電源,無停電電源や予備
力電源用などの非定常運転用との兼用システムのような
複雑な運転パターンでの運転が可能である。この結果、
負荷追随運転システムや非常用電源兼用システムなどと
して、電力の負荷平準化が有効に行える。
According to the present invention, while maintaining the battery temperature range of the high-temperature sodium secondary battery module properly, it can be used for both load leveling and peak shifting, or for load leveling and peak shifting. It is possible to operate in a complicated operation pattern such as a system that is shared with a non-stationary operation such as a power supply, an uninterruptible power supply, or a standby power supply. As a result,
Power leveling can be effectively performed as a load following operation system or an emergency power supply system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高温ナトリウム二次電池システムの構
成例を示す図。
FIG. 1 is a diagram showing a configuration example of a high-temperature sodium secondary battery system of the present invention.

【図2】本発明の高温ナトリウム二次電池モジュールの
運転方法の例を示す図。
FIG. 2 is a diagram showing an example of an operation method of the high-temperature sodium secondary battery module of the present invention.

【図3】本発明の高温ナトリウム二次電池モジュールの
運転方法の例を示す図。
FIG. 3 is a diagram showing an example of an operation method of the high-temperature sodium secondary battery module of the present invention.

【図4】本発明に用いられる高温ナトリウム二次電池を
収納したモジュールの構成例を示す図。
FIG. 4 is a diagram showing a configuration example of a module containing a high-temperature sodium secondary battery used in the present invention.

【符号の説明】[Explanation of symbols]

1,1′…モジュール、2,2′…高温ナトリウム二次
電池、3,3′…収納容器、4,4′…ヒータ、5,
5′…電気配線、6,6′…交直変換器、7,7′…絶
縁トランス、8…系統配線、9…制御装置、31…側
壁、32…下壁、33…上壁。
1, 1 ': module, 2, 2': high temperature sodium secondary battery, 3, 3 ': container, 4, 4': heater, 5,
5 ': electric wiring, 6, 6': AC / DC converter, 7, 7 ': insulating transformer, 8: system wiring, 9: control device, 31: side wall, 32: lower wall, 33: upper wall.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ00 AJ12 AK05 AL13 AM15 BJ00 BJ02 BJ06 BJ21 BJ23 BJ25 HJ00 HJ15 5H031 AA01 AA02 AA03 AA05 AA09 CC01 CC05 CC09 HH00 HH06 KK02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ00 AJ12 AK05 AL13 AM15 BJ00 BJ02 BJ06 BJ21 BJ23 BJ25 HJ00 HJ15 5H031 AA01 AA02 AA03 AA05 AA09 CC01 CC05 CC09 HH00 HH06 KK02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】高温ナトリウム二次電池を収納容器に収納
したモジュールと交直変換器とをそれぞれ複数個組み合
わせた高温ナトリウム二次電池システムであって、 前記複数個のモジュール内の一部のモジュールを構成す
る収納容器が残りのモジュールを構成する収納容器とは
異なった断熱性能を有し、かつ、前記一部のモジュール
と残りのモジュールとがそれぞれ交直変換器を介して接
続されていることを特徴とする高温ナトリウム二次電池
システム。
1. A high-temperature sodium secondary battery system in which a plurality of modules accommodating a high-temperature sodium secondary battery in a storage container and a plurality of AC / DC converters are combined. The constituent container has a different heat insulation performance from the constituent containers constituting the remaining modules, and the part of the modules and the remaining modules are connected via an AC / DC converter, respectively. High temperature sodium secondary battery system.
【請求項2】請求項1に記載の前記収納容器が少なくと
も2重の隔壁を有する真空断熱容器から成り、前記一部
のモジュールを構成する真空断熱容器と前記残りのモジ
ュールを構成する真空断熱容器とは隔壁内の真空度が異
なることを特徴とする高温ナトリウム二次電池システ
ム。
2. The storage container according to claim 1, comprising a vacuum insulation container having at least two partition walls, wherein the vacuum insulation container forming the partial module and the vacuum insulation container forming the remaining module. And a high-temperature sodium secondary battery system characterized in that the degree of vacuum in the partition walls is different.
【請求項3】請求項1あるいは2に記載の前記収納容器
が側壁,上壁又は/及び下壁から構成され、前記一部の
モジュールの上壁又は/及び下壁の断熱性能が前記残り
のモジュールの上壁又は/及び下壁の断熱性能とは異な
ることを特徴とする高温ナトリウム二次電池システム。
3. The storage container according to claim 1, wherein the storage container comprises a side wall, an upper wall and / or a lower wall, and the heat insulating performance of an upper wall and / or a lower wall of the partial module is the remaining capacity. A high-temperature sodium secondary battery system, which is different from the heat insulating performance of an upper wall and / or a lower wall of a module.
【請求項4】高温ナトリウム二次電池からなるモジュー
ルと、高温ナトリウム二次電池以外の二次電池から成る
モジュールとがそれぞれ交直変換器を介して接続されて
いることを特徴とする高温ナトリウム二次電池システ
ム。
4. A high-temperature sodium secondary battery characterized in that a module comprising a high-temperature sodium secondary battery and a module comprising a secondary battery other than the high-temperature sodium secondary battery are respectively connected via an AC / DC converter. Battery system.
【請求項5】請求項4に記載の前記高温ナトリウム二次
電池以外の二次電池が鉛二次電池,リチウム二次電池,
ニッケル水素二次電池、あるいはニッケルカドミウム二
次電池のいずれかであることを特徴とする高温ナトリウ
ム二次電池システム。
5. A secondary battery other than the high-temperature sodium secondary battery according to claim 4, wherein the secondary battery is a lead secondary battery, a lithium secondary battery,
A high-temperature sodium secondary battery system, which is one of a nickel hydride secondary battery and a nickel cadmium secondary battery.
【請求項6】高温ナトリウム二次電池を収納容器に収納
した複数のモジュールのうち、一部のモジュールと残り
のモジュールとをそれぞれ交直変換器を介して接続し、
前記一部のモジュールの運転パターンが前記残りのモジ
ュールの運転パターンとは異なることを特徴とする高温
ナトリウム二次電池システムの運転方法。
6. A plurality of modules in which a high-temperature sodium secondary battery is stored in a storage container, and some of the modules and the remaining modules are connected via an AC / DC converter, respectively.
An operation method of the high-temperature sodium secondary battery system, wherein an operation pattern of the some modules is different from an operation pattern of the remaining modules.
【請求項7】請求項6に記載の前記一部のモジュールを
構成する収納容器の断熱性能を前記残りのモジュールを
構成する収納容器の断熱性能より小さくし、前記一部の
モジュールをピークシフトの目的に使用することを特徴
とする高温ナトリウム二次電池システムの運転方法。
7. The heat insulation performance of the storage container forming the part of the module according to claim 6 is made smaller than the heat insulation performance of the storage container forming the remaining module, and the part of the module has a peak shift. A method for operating a high-temperature sodium secondary battery system, which is used for a purpose.
【請求項8】請求項6に記載の前記一部のモジュールを
構成する収納容器の断熱性能を前記残りのモジュールを
構成する収納容器の断熱性能より大きくし、前記一部の
モジュールを非定常運転の目的に使用することを特徴と
する高温ナトリウム二次電池システムの運転方法。
8. The heat insulation performance of the storage container forming the part of the module according to claim 6 is made larger than the heat insulation performance of the storage container forming the remaining module, and the part of the module is operated in an unsteady state. A method for operating a high-temperature sodium secondary battery system, wherein the method is used for the purpose of (1).
【請求項9】高温ナトリウム二次電池からなるモジュー
ルと高温ナトリウム二次電池以外の二次電池から成るモ
ジュールをそれぞれ交直変換器を介して接続し、前記高
温ナトリウム二次電池からなるモジュールの運転パター
ンが、前記高温ナトリウム二次電池以外の二次電池から
なるモジュールの運転パターンとは異なることを特徴と
する高温ナトリウム二次電池システムの運転方法。
9. An operation pattern of a module comprising a high-temperature sodium secondary battery, wherein a module comprising a high-temperature sodium secondary battery and a module comprising a secondary battery other than the high-temperature sodium secondary battery are connected via an AC / DC converter, respectively. The operation method of the high-temperature sodium secondary battery system is different from the operation pattern of a module including a secondary battery other than the high-temperature sodium secondary battery.
【請求項10】請求項9に記載の前記高温ナトリウム二
次電池以外の二次電池からなるモジュールを非定常運転
の目的に使用することを特徴とする高温ナトリウム二次
電池システムの運転方法。
10. A method for operating a high-temperature sodium secondary battery system, comprising using a module comprising a secondary battery other than the high-temperature sodium secondary battery according to claim 9 for the purpose of unsteady operation.
JP5508499A 1999-03-03 1999-03-03 High temperature sodium secondary battery system and its operating method Pending JP2000251931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5508499A JP2000251931A (en) 1999-03-03 1999-03-03 High temperature sodium secondary battery system and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5508499A JP2000251931A (en) 1999-03-03 1999-03-03 High temperature sodium secondary battery system and its operating method

Publications (1)

Publication Number Publication Date
JP2000251931A true JP2000251931A (en) 2000-09-14

Family

ID=12988864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5508499A Pending JP2000251931A (en) 1999-03-03 1999-03-03 High temperature sodium secondary battery system and its operating method

Country Status (1)

Country Link
JP (1) JP2000251931A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083082A (en) * 2001-08-17 2003-03-19 Alstom (Switzerland) Ltd Operation method for gas storage power generation facility
JP2003223938A (en) * 2002-01-30 2003-08-08 Sanyo Electric Co Ltd Battery unit for vehicle
JP2007211137A (en) * 2006-02-09 2007-08-23 Shin Etsu Chem Co Ltd Anti-algal condensation curable type organopolysiloxane composition, method for coating the same and structure
WO2011161072A1 (en) * 2010-06-22 2011-12-29 Basf Se Improved technical apparatus for the large-scale storage of electrical energy
US8478625B2 (en) 2001-08-17 2013-07-02 Alstom Technology Ltd Method for operating a gas storage power plant
US8679668B2 (en) 2010-06-22 2014-03-25 Basf Se Industrial apparatus for the large-scale storage of electric energy
US9957625B2 (en) 2012-06-11 2018-05-01 Basf Se Electrode unit
DE102017008392B4 (en) 2017-09-07 2022-07-07 Diehl Aerospace Gmbh emergency power module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083082A (en) * 2001-08-17 2003-03-19 Alstom (Switzerland) Ltd Operation method for gas storage power generation facility
US8478625B2 (en) 2001-08-17 2013-07-02 Alstom Technology Ltd Method for operating a gas storage power plant
JP2003223938A (en) * 2002-01-30 2003-08-08 Sanyo Electric Co Ltd Battery unit for vehicle
JP2007211137A (en) * 2006-02-09 2007-08-23 Shin Etsu Chem Co Ltd Anti-algal condensation curable type organopolysiloxane composition, method for coating the same and structure
JP4711072B2 (en) * 2006-02-09 2011-06-29 信越化学工業株式会社 Algae-proof condensation-curing organopolysiloxane composition, coating method thereof, and structure
WO2011161072A1 (en) * 2010-06-22 2011-12-29 Basf Se Improved technical apparatus for the large-scale storage of electrical energy
CN103069606A (en) * 2010-06-22 2013-04-24 巴斯夫欧洲公司 Improved technical apparatus for the large-scale storage of electrical energy
US8679668B2 (en) 2010-06-22 2014-03-25 Basf Se Industrial apparatus for the large-scale storage of electric energy
EP2768043A3 (en) * 2010-06-22 2015-04-22 Basf Se Improved technical apparatus for the large-scale storage of electrical energy
US9957625B2 (en) 2012-06-11 2018-05-01 Basf Se Electrode unit
DE102017008392B4 (en) 2017-09-07 2022-07-07 Diehl Aerospace Gmbh emergency power module

Similar Documents

Publication Publication Date Title
Bukhari et al. Comparison of characteristics--lead acid, nickel based, lead crystal and lithium based batteries
JP2004530398A (en) Load energy storage device with variable power
US8228034B2 (en) Method and system for load shifting
Rand et al. Lead–acid battery fundamentals
WO2012147121A1 (en) Cell pack
Jamahori et al. Hybrid energy storage system for life cycle improvement
US20140272486A1 (en) Molten salt battery device and control method for molten salt battery device
JP2000251931A (en) High temperature sodium secondary battery system and its operating method
WO2018123616A1 (en) Storage battery system
Trinidad et al. High power valve regulated lead-acid batteries for new vehicle requirements
JPH11185800A (en) Operation method for high temperature sodium secondary battery
JP2001045677A (en) Power supplying device using solar cell
Shin et al. Design and control of fuel cell-battery hybrid system for forklift
JP2004215456A (en) Hybrid battery system
CN114899916A (en) BMS passive equalization method for battery pack
KR20230107278A (en) Power battery charging method, charging device and charging system
KR100815431B1 (en) Uniform energy-backup device of battery cell for hybrid electric vehicle
JP2021048028A (en) Power storage system
CN220233257U (en) Battery and electricity utilization device
CN220341278U (en) Battery and electric equipment
TW201906223A (en) Composite battery pack utilizes battery packs having different characteristics to supply power to electrical load, thereby achieving optimal power supply effect
JP2015076918A (en) Power supply device and electrically propelled vehicle
JP2019040733A (en) Battery pack
JP3223373U (en) Camper
CN215955413U (en) Management device for uninterruptible power supply and battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207