JP2010259238A - Regenerative power managing system - Google Patents

Regenerative power managing system Download PDF

Info

Publication number
JP2010259238A
JP2010259238A JP2009107118A JP2009107118A JP2010259238A JP 2010259238 A JP2010259238 A JP 2010259238A JP 2009107118 A JP2009107118 A JP 2009107118A JP 2009107118 A JP2009107118 A JP 2009107118A JP 2010259238 A JP2010259238 A JP 2010259238A
Authority
JP
Japan
Prior art keywords
regenerative power
heat
storage device
power
electrothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009107118A
Other languages
Japanese (ja)
Inventor
Sachikazu Suzuki
祥和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009107118A priority Critical patent/JP2010259238A/en
Publication of JP2010259238A publication Critical patent/JP2010259238A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regenerative power managing system for improving use efficiency of regenerative power in a hybrid vehicle and improving vehicle fuel consumption much more. <P>SOLUTION: The regenerative power managing system is provided with a storage battery 250 charged by charging, a power converting part 400 converting regenerative power into DC power, an electrothermal/thermoelectric conversion element 710 performing electrothermal conversion based on power supply of DC power, a high-temperature heat accumulator 720 radiating heat which is electrothermally converted by the electrothermal/thermoelectric conversion element 710 and a low-temperature heat accumulator 730 absorbing heat which is electrothermally converted. A thermoelectric conversion function being an inversion conversion function of the electrothermal/thermoelectric conversion element 710 charges the storage battery 250 by using electromotive force of the electrothermal/thermoelectric conversion element 710 when output voltage of the storage battery 250 drops compared to voltage generated in accordance with a temperature difference of the high-temperature heat accumulator 720 and the low-temperature heat accumulator 730. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、原動機として例えば内燃機関および電動モーターを備えるハイブリッド車両にあって、車両制動時等に発電される回生電力を管理する回生電力管理システムに関する。   The present invention relates to a regenerative power management system that manages a regenerative power generated when a vehicle is braked in a hybrid vehicle including, for example, an internal combustion engine and an electric motor as a prime mover.

従来この種のシステムとしては、例えば特許文献1に見られるシステムが知られている。図3に、この特許文献1に記載のシステムについてその構成の概念を示す。
同図3に示すように、このシステムでは、車両の制動時には、回生発電機1が車両の運動エネルギーを電気エネルギーに変換して回生電力を発生し、この発生された電力が電力変換部2を介して蓄電池3に充電される。またこのシステムには、個別に制御可能なヒーター10とクーラー20、およびヒーター10から放熱される熱を蓄える高温蓄熱装置11と、クーラー20に吸熱されて熱が奪われる低温蓄熱装置21が設けられている。
Conventionally, as this type of system, for example, a system found in Patent Document 1 is known. FIG. 3 shows the concept of the configuration of the system described in Patent Document 1.
As shown in FIG. 3, in this system, when the vehicle is braked, the regenerative generator 1 converts the kinetic energy of the vehicle into electric energy to generate regenerative power, and the generated power passes through the power converter 2. The storage battery 3 is charged via In addition, this system includes an individually controllable heater 10 and cooler 20, a high-temperature heat storage device 11 that stores heat radiated from the heater 10, and a low-temperature heat storage device 21 that absorbs heat and takes heat away from the cooler 20. ing.

ところで、こうしたシステムにあっては、上記回生電力が蓄電池3の充電能力を超える場合もある。この場合、電力変換部2は、高温蓄熱装置11に放熱すべくその超過分の電力を用いてヒーター10を作動させ、あるいは低温蓄熱装置21から吸熱すべくその超過分の電力を用いてクーラー20を作動させるように機能する。このとき高温蓄熱装置11に蓄えられた熱は、例えば車内暖房時に空調システム(暖房用)12で利用される他、蓄電池3等の暖機にも利用される。また低温蓄熱装置21に蓄えられた冷熱は、例えば車内冷房時に空調システム(冷房用)22で利用される他、蓄電池3等の冷却にも利用される。   By the way, in such a system, the regenerative power may exceed the charging capacity of the storage battery 3 in some cases. In this case, the power conversion unit 2 operates the heater 10 using the excess power to dissipate heat to the high-temperature heat storage device 11, or uses the excess power to absorb heat from the low-temperature heat storage device 21. Function to activate. At this time, the heat stored in the high-temperature heat storage device 11 is used not only for the air conditioning system (for heating) 12 but also for warming up the storage battery 3 or the like, for example, during heating in the vehicle. The cold energy stored in the low-temperature heat storage device 21 is used for cooling the storage battery 3 and the like in addition to being used by the air conditioning system (for cooling) 22 at the time of cooling the inside of the vehicle, for example.

同システムではこのように、蓄電池3に回収し切れなかった余剰回生電力を熱または冷熱に変換して蓄え、この蓄えた熱または冷熱をハイブリッド車内の各装置の暖機あるいは冷却に用いることで、従来廃棄されていた余剰回生電力を有効活用することができるようにしている。   In this system, surplus regenerative power that could not be recovered in the storage battery 3 is converted into heat or cold and stored, and the stored heat or cold is used for warming up or cooling each device in the hybrid vehicle. The surplus regenerative power that has been discarded in the past can be used effectively.

特開2000−59918号公報JP 2000-59918 A

ところで、この特許文献1に記載のシステムにあっては上述のように、回生発電機1が車両の制動時に発電して電力変換部2により電力変換された回生電力をヒーター10またはクーラー20の作動に利用するようにしている。しかし、ヒーター10は高温蓄熱装置11等に放熱し、クーラー20は低温蓄熱装置21等から吸熱するだけで、高温蓄熱装置11および低温蓄熱装置21に蓄えられた熱エネルギーが再度電気エネルギーに変換されることはない。このため、特許文献1に記載のシステムにあっては、せっかく余剰回生電力を熱や冷熱に変換して蓄えたとしても、その蓄えたエネルギーを使い切ることはできず、余ったエネルギーは結局廃棄することとなっていた。そしてこのような状況では、エネルギーの利用効率も上がらないために、ハイブリッド車とはいえ燃費の更なる向上を図ることが困難となっている。   By the way, in the system described in Patent Document 1, as described above, the regenerative power generated by the regenerative generator 1 during braking of the vehicle and converted into power by the power conversion unit 2 is used to operate the heater 10 or the cooler 20. I am trying to use it. However, the heater 10 radiates heat to the high-temperature heat storage device 11 and the like, and the cooler 20 simply absorbs heat from the low-temperature heat storage device 21 and the like, and the heat energy stored in the high-temperature heat storage device 11 and the low-temperature heat storage device 21 is converted back to electrical energy. Never happen. For this reason, in the system described in Patent Document 1, even if excessive regenerative power is converted into heat or cold and stored, the stored energy cannot be used up, and the surplus energy is eventually discarded. It was supposed to be. In such a situation, since the energy utilization efficiency does not increase, it is difficult to further improve the fuel consumption even though it is a hybrid vehicle.

本発明は、こうした実情に鑑みてなされたものであり、ハイブリッド車両等における回生電力の利用効率を高めて車両燃費性能の更なる向上を図ることのできる回生電力管理シ
ステムを提供することにある。
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a regenerative power management system capable of improving the vehicle fuel efficiency by improving the efficiency of using regenerative power in a hybrid vehicle or the like.

以下、上記課題を解決するための手段およびその作用効果について記載する。
請求項1に記載の発明では、車両制動時に発電される回生電力を管理する回生電力管理システムであって、充電により蓄電される蓄電池と、前記発電される回生電力を直流電力に電力変換する電力変換部と、前記電力変換部にて変換された直流電力の給電に基づき電熱変換する電熱変換素子と、前記電熱変換素子にて電熱変換されて放熱された熱が蓄熱される高温蓄熱装置と、前記電熱変換素子にて電熱変換されて吸熱された熱が蓄熱される低温蓄熱装置と、を備え、前記電熱変換素子の逆変換機能である熱電変換機能により前記低温蓄熱装置と前記高温蓄熱装置との温度差に応じて同電熱変換素子から発生される電圧よりも前記蓄電池の出力電圧が低下したときに、前記電熱変換素子の熱電変換機能に基づく起電力を用いて前記蓄電池を充電することを要旨とする。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
According to the first aspect of the present invention, there is provided a regenerative power management system for managing regenerative power generated during vehicle braking, and a storage battery that is stored by charging, and power that converts the generated regenerative power into DC power. A conversion unit, an electrothermal conversion element that performs electrothermal conversion based on feeding of DC power converted by the power conversion unit, and a high-temperature heat storage device that stores heat that has been electrothermally converted by the electrothermal conversion element and radiated, and A low-temperature heat storage device that stores heat absorbed by heat converted by the electrothermal conversion element, and the low-temperature heat storage device and the high-temperature heat storage device by a thermoelectric conversion function that is an inverse conversion function of the electrothermal conversion element When the output voltage of the storage battery is lower than the voltage generated from the electrothermal conversion element according to the temperature difference, the battery is charged using an electromotive force based on the thermoelectric conversion function of the electrothermal conversion element. And it is required to.

このような回生電力管理システムによれば、従来、例えば発電ブレーキの抵抗器や機械ブレーキにより熱損失として廃棄せざるを得なかった余剰回生電力を十分に活用することができるようになる。すなわち、この回生電力を電熱変換素子により熱および冷熱に同時変換して上記各蓄熱装置に蓄えておき、これら各蓄熱装置の温度差に応じて電熱変換素子の熱電変換機能により発生される起電力により蓄電池を充電することができるようになる。これにより、ハイブリッド車等の車両にあって加速等のためにモーターを積極的に駆動させるためにもこの回生電力を活用することができるようになり、廃棄せざるを得なかった回生電力の有効利用が図られるとともに、車両燃費性能の向上も併せて図られるようになる。   According to such a regenerative power management system, surplus regenerative power that has been conventionally discarded as heat loss by, for example, a resistor of a power generation brake or a mechanical brake can be fully utilized. That is, the regenerative power is simultaneously converted into heat and cold by the electrothermal conversion element and stored in each of the heat storage devices, and the electromotive force generated by the thermoelectric conversion function of the electrothermal conversion element according to the temperature difference between these heat storage devices Thus, the storage battery can be charged. As a result, this regenerative power can be used in a vehicle such as a hybrid vehicle to actively drive the motor for acceleration, etc., and the regenerative power that had to be discarded must be effectively used. As well as being used, the vehicle fuel efficiency is also improved.

本発明に係る回生電力管理システムの一実施の形態について、その全体構成を示すブロック図。The block diagram which shows the whole structure about one Embodiment of the regenerative power management system which concerns on this invention. 同実施の形態にて実行される回生電力管理についてその処理手順を示すフローチャート。The flowchart which shows the process sequence about the regenerative power management performed in the embodiment. 従来の回生電力管理システムについてその模式的な構成を示すブロック図。The block diagram which shows the typical structure about the conventional regenerative electric power management system.

以下、本発明にかかる回生電力管理システムを具体化した一実施の形態を、図1および図2を参照して詳細に説明する。
図1に示すように、本実施形態の回生電力管理システムでは、その構成要素として、車両の制動操作等に応じて回生電力を発生させる回生発電機100(モーターと兼用可)や、蓄電池250の充電量を監視する充電量監視部200が設けられている。そして、これら回生発電機100や充電量監視部200から発電情報や監視情報を取り込む回生電力分配演算部300が本実施の形態の回生電力管理システム全体を制御すべく設けられている。一方、回生発電機100にて発生される交流電力たる回生電力は、電力変換部400を通じて直流電力に変換され、この変換された直流電力(DC)が、回生電力分配演算部300からの指令に応じて蓄電池250をはじめ、抵抗器550や電熱/熱電変換・蓄熱装置700に分配される。すなわち、回生電力分配演算部300は、回生発電機100からの発電情報に基づいて回生電力が発生していることを認識すると、充電量監視部200から呼び出した監視結果に基づいて蓄電池250がフル充電状態にあるか否かを判断する。そして回生電力分配演算部300は、蓄電池250がフル充電状態にないと判断される場合には、上記直流電力に変換済みの回生電力の送り先を蓄電池250に指定する。また回生電力分配演算部300は、蓄電池250がフル充電状態にあるとの自己判断に基づき、直流電力に変換された回生電力の送り先を抵抗器550あるいは電熱/熱電変換・蓄熱装置700に指定してもよいか否かをさらに判断する。
Hereinafter, an embodiment of a regenerative power management system according to the present invention will be described in detail with reference to FIGS. 1 and 2.
As shown in FIG. 1, in the regenerative power management system of this embodiment, as its constituent elements, a regenerative generator 100 (which can also be used as a motor) that generates regenerative power in accordance with a braking operation of the vehicle, a storage battery 250, and the like. A charge amount monitoring unit 200 for monitoring the charge amount is provided. A regenerative power distribution calculation unit 300 that captures power generation information and monitoring information from the regenerative generator 100 and the charge amount monitoring unit 200 is provided to control the entire regenerative power management system of the present embodiment. On the other hand, the regenerative power that is AC power generated by the regenerative generator 100 is converted to DC power through the power conversion unit 400, and the converted DC power (DC) is used as a command from the regenerative power distribution calculation unit 300. Accordingly, the battery is distributed to the storage battery 250, the resistor 550, and the electric heat / thermoelectric conversion / heat storage device 700. That is, when the regenerative power distribution calculation unit 300 recognizes that regenerative power is generated based on the power generation information from the regenerative generator 100, the rechargeable battery 250 is full based on the monitoring result called from the charge amount monitoring unit 200. It is determined whether or not the battery is charged. When it is determined that the storage battery 250 is not in a fully charged state, the regenerative power distribution calculation unit 300 designates the storage battery 250 as a destination of the regenerative power that has been converted into the DC power. Further, the regenerative power distribution calculation unit 300 designates the destination of the regenerative power converted into DC power to the resistor 550 or the electric heat / thermoelectric conversion / heat storage device 700 based on the self-determination that the storage battery 250 is in a fully charged state. It is further judged whether or not it is acceptable.

ここで、この回生電力管理システムには、いわゆる機械ブレーキとしてブレーキ摩擦制動機構500が設けられているとともに、いわゆる発電ブレーキの熱エネルギー消費部として上記抵抗器550が設けられている。また同システムにおいて、制動力演算部600は、車両に制動力が働いたときに消費すべき運動エネルギー量を演算する部分であり、この演算された情報も回生電力分配演算部300によって参照される。そして回生電力分配演算部300では、上記回生電力を電熱/熱電変換・蓄熱装置700に向けて送ってはならないと判断されるときには、ブレーキ摩擦制動機構500と抵抗器550とを働かせるべく各構成要素を制御する。すなわちこのとき、回生電力分配演算部300は、制動力演算部600から呼び出した演算結果に基づき、ブレーキ摩擦制動機構500を作動させて運動エネルギーを機械的に熱エネルギーに変換して消費させる。併せて回生電力分配演算部300は、上記直流電力に変換された回生電力の送り先を抵抗器550に指定し、電力変換部400から送られた回生電力を抵抗器550にて熱エネルギーとして消費させる。一方、回生電力分配演算部300は、回生電力を電熱/熱電変換・蓄熱装置700に送ってもよいと判断されるときには、同直流電力に変換された回生電力の送り先を電熱/熱電変換・蓄熱装置700に指定する。   Here, in this regenerative power management system, a brake friction braking mechanism 500 is provided as a so-called mechanical brake, and the resistor 550 is provided as a thermal energy consumption unit of a so-called power generation brake. In the system, the braking force calculation unit 600 is a part that calculates the amount of kinetic energy that should be consumed when the braking force is applied to the vehicle, and the calculated information is also referred to by the regenerative power distribution calculation unit 300. . When the regenerative power distribution calculation unit 300 determines that the regenerative power should not be sent to the electric heat / thermoelectric conversion / heat storage device 700, each component is configured to operate the brake friction braking mechanism 500 and the resistor 550. To control. That is, at this time, the regenerative power distribution calculating unit 300 operates the brake friction braking mechanism 500 based on the calculation result called from the braking force calculating unit 600 to mechanically convert the kinetic energy into heat energy for consumption. At the same time, the regenerative power distribution calculation unit 300 designates the destination of the regenerative power converted into the DC power to the resistor 550 and causes the regenerative power sent from the power conversion unit 400 to be consumed as thermal energy by the resistor 550. . On the other hand, when it is determined that the regenerative power may be sent to the electric heat / thermoelectric conversion / heat storage device 700, the regenerative power distribution calculation unit 300 sets the destination of the regenerative power converted to the DC power to the electric heat / thermoelectric conversion / heat storage. Specify to the device 700.

この電熱/熱電変換・蓄熱装置700には、上記電力変換部400から送られてきた直流電力を電熱変換して熱に変換することができ、かつ、熱電変換をして熱を直流電力に変換することができる電熱/熱電変換素子710が設けられている。そして、この電熱/熱電変換素子710における電熱変換により放熱された熱は高温蓄熱装置720に蓄熱され、同じくその電熱変換により吸熱された熱は低温蓄熱装置730に蓄熱される。他方、電力変換部400から前記直流電力が電熱/熱電変換・蓄熱装置700に送られてこない場合は、電熱/熱電変換素子710が、低温蓄熱装置730と高温蓄熱装置720との温度差に応じて上述の熱電変換機能により直流電力を発生させる。この場合、蓄電池250の出力電圧が電熱/熱電変換素子710から発生される起電力よりも低ければ、この起電力に基づく直流電力(DC)によって蓄電池250が自動的に充電されることになる。   In this electric heat / thermoelectric conversion / storage device 700, the DC power sent from the power conversion unit 400 can be converted into heat by electrothermal conversion, and the heat is converted into DC power by thermoelectric conversion. An electrothermal / thermoelectric conversion element 710 is provided. The heat dissipated by the electrothermal conversion in the electrothermal / thermoelectric conversion element 710 is stored in the high-temperature heat storage device 720, and the heat absorbed by the electrothermal conversion is stored in the low-temperature heat storage device 730. On the other hand, when the DC power is not sent from the power conversion unit 400 to the electric heat / thermoelectric conversion / heat storage device 700, the electric heat / thermoelectric conversion element 710 responds to the temperature difference between the low temperature heat storage device 730 and the high temperature heat storage device 720. Thus, DC power is generated by the thermoelectric conversion function described above. In this case, if the output voltage of the storage battery 250 is lower than the electromotive force generated from the electrothermal / thermoelectric conversion element 710, the storage battery 250 is automatically charged with direct-current power (DC) based on this electromotive force.

また、この電熱/熱電変換・蓄熱装置700において、温度センサ725は、高温蓄熱装置720が過加熱となること(正常に機能する限界温度以上となること)を防止すべく高温蓄熱装置720の温度を監視するために設けられている。同様に、温度センサ735も、低温蓄熱装置730が過冷却となること(正常に機能する限界温度以下となること)を防止すべく低温蓄熱装置730の温度を監視するために設けられている。これら各限界温度は、例えば回生電力分配演算部300内の記憶部に予め格納されている。   Further, in this electric heat / thermoelectric conversion / heat storage device 700, the temperature sensor 725 detects the temperature of the high-temperature heat storage device 720 in order to prevent the high-temperature heat storage device 720 from being overheated (beyond a normally functioning limit temperature). Is provided for monitoring. Similarly, the temperature sensor 735 is also provided to monitor the temperature of the low-temperature heat storage device 730 in order to prevent the low-temperature heat storage device 730 from being overcooled (below the normal functioning limit temperature). Each of these limit temperatures is stored in advance in a storage unit in the regenerative power distribution calculation unit 300, for example.

すなわち回生電力分配演算部300では、温度センサ725から呼び出した高温蓄熱装置720の温度情報および温度センサ735から呼び出した低温蓄熱装置730の温度情報と、上記記憶部から呼び出した各限界温度とを比較し、上記回生電力の送り先を電熱/熱電変換・蓄熱装置700に指定してもよいか否かの判断をすることとなる。そして、各温度情報がその限界温度に達していなければ、回生電力分配演算部300は、回生電力の送り先を電熱/熱電変換・蓄熱装置700に指定してもよいと判断する。   That is, the regenerative power distribution calculation unit 300 compares the temperature information of the high temperature heat storage device 720 called from the temperature sensor 725 and the temperature information of the low temperature heat storage device 730 called from the temperature sensor 735 with each limit temperature called from the storage unit. Then, it is determined whether or not the regenerative power destination may be designated in the electric heat / thermoelectric conversion / heat storage device 700. If each temperature information does not reach the limit temperature, regenerative power distribution calculation unit 300 determines that the destination of regenerative power may be designated to electric heat / thermoelectric conversion / heat storage device 700.

ここで電熱/熱電変換・蓄熱装置700にて行われる上記電熱変換および上記熱電変換について詳細に説明する。
前述の電熱変換はいわゆるペルチェ効果により、また前述の熱電変換はいわゆるゼーベック効果により、同一の変換素子にて行われる。ここで、ペルチェ効果とは、異なる2種類の金属または半導体(例えばN型とP型)を2点で接合したものに直流電流を流した場合、上流側の接点で放熱しつつ下流側の接点で吸熱することをいう。そして、ゼーベック効果とは、異なる2種類の金属または半導体(例えばN型とP型)を接合した2点の間に温度差を設けると、この2点間に電圧が発生することをいい、ペルチェ効果とは逆の現象
である。すなわち、ペルチェ効果を得ることができる電熱変換素子は、ゼーベック効果を得ることができる熱電変換素子としても用いることができる。したがって、上記電熱/熱電変換素子710として、例えばペルチェ素子を用いることができる。
Here, the electrothermal conversion performed in the electrothermal / thermoelectric conversion / heat storage device 700 and the thermoelectric conversion will be described in detail.
The above-described electrothermal conversion is performed by the same conversion element by the so-called Peltier effect, and the above-described thermoelectric conversion is performed by the so-called Seebeck effect. Here, the Peltier effect means that when a direct current is applied to two different types of metals or semiconductors (for example, N-type and P-type) joined at two points, the downstream contact while radiating heat at the upstream contact It means to absorb heat. The Seebeck effect means that when a temperature difference is provided between two points where two different kinds of metals or semiconductors (for example, N-type and P-type) are joined, a voltage is generated between the two points. This is the opposite of the effect. That is, the electrothermal conversion element that can obtain the Peltier effect can also be used as a thermoelectric conversion element that can obtain the Seebeck effect. Therefore, for example, a Peltier element can be used as the electrothermal / thermoelectric conversion element 710.

こうして構成されるペルチェ素子の電熱変換時における放熱側の電極と吸熱側の電極とには、それぞれ熱伝導性に優れ、かつ、電気絶縁性に優れた材料(例えば、アルミナ、窒化アルミナ等)からなる熱伝導絶縁ベースが接合されている。そして、放熱側の電極の熱伝導絶縁ベースが高温蓄熱装置720の隔壁に、吸熱側の電極の熱伝導絶縁ベースが低温蓄熱装置730の隔壁に半田付けされるなどして、いわゆる熱交換部が形成されている。   The heat dissipation side electrode and the heat absorption side electrode at the time of electrothermal conversion of the Peltier element thus configured are each made of a material having excellent thermal conductivity and excellent electrical insulation (eg, alumina, alumina nitride, etc.). The heat conductive insulating base is joined. The heat conduction insulating base of the heat radiation side electrode is soldered to the partition wall of the high temperature heat storage device 720, and the heat conduction insulation base of the heat absorption side electrode is soldered to the partition wall of the low temperature heat storage device 730. Is formed.

そして、図1に併せて示すように、本実施形態の回生電力管理システムには、暖房暖機システム800が、例えば車両の室内を暖房したり、内燃機関(図示略)やトランスミッション(図示略)あるいは蓄電池250や回生発電機100を暖機したりすべく設けられている。またこれと同様に、冷房冷却システム900は、例えば車両の室内を冷房したり、前記内燃機関やトランスミッションあるいは蓄電池250や回生発電機100を冷却したりすべく備えられている。そして、上記高温蓄熱装置720は暖房暖機システム800に熱を放熱し、上記低温蓄熱装置730は冷房冷却システム900から熱を吸熱する。   As shown in FIG. 1, in the regenerative power management system according to the present embodiment, a heating / warming system 800 heats, for example, a vehicle interior, or an internal combustion engine (not shown) or a transmission (not shown). Alternatively, the storage battery 250 and the regenerative generator 100 are provided to warm up. Similarly, the cooling / cooling system 900 is provided, for example, to cool the interior of the vehicle or to cool the internal combustion engine, the transmission, the storage battery 250, or the regenerative generator 100. The high temperature heat storage device 720 dissipates heat to the heating / warming system 800, and the low temperature heat storage device 730 absorbs heat from the cooling / cooling system 900.

次に、図2を参照して、回生電力分配演算部300が中核となって制御する回生電力管理について詳述する。なお、この回生電力管理は、車両の制動時に発生する回生電力の利用効率を高めて車両燃費性能の更なる向上を図るべく繰り返して実施されるものである。   Next, regenerative power management controlled by the regenerative power distribution calculation unit 300 as a core will be described in detail with reference to FIG. It should be noted that this regenerative power management is repeatedly performed in order to improve the use efficiency of the regenerative power generated when the vehicle is braked and to further improve the vehicle fuel consumption performance.

図2に示されるように、同管理が開始されると、まず、回生電力分配演算部300が回生発電機100で回生電力が発生しているか否かの判断を行う(ステップS100)。そして、回生電力が発生していると判断すれば、回生電力分配演算部300は、充電量監視部200から蓄電池250の充電量監視結果を、また制動力演算部600から制動力演算結果を読み込む(ステップS101)。その後、回生電力分配演算部300は、読み込んだ充電量監視結果に基づき、蓄電池250がフル充電状態ではないと判断すると、電力変換部400に対し、回生電力の送り先を蓄電池250に指定する。これにより電力変換部400では、回生発電機100から送られた交流電力たる回生電力を直流電力に変換した上で蓄電池250に送り、同蓄電池250を充電する(ステップS102、S103)。   As shown in FIG. 2, when the management is started, first, the regenerative power distribution calculation unit 300 determines whether or not regenerative power is generated in the regenerative generator 100 (step S100). If it is determined that regenerative power is generated, regenerative power distribution calculation unit 300 reads the charge amount monitoring result of storage battery 250 from charge amount monitoring unit 200 and the braking force calculation result from braking force calculation unit 600. (Step S101). Thereafter, when the regenerative power distribution calculation unit 300 determines that the storage battery 250 is not in a fully charged state based on the read charge amount monitoring result, the regenerative power distribution calculation unit 300 designates the storage battery 250 as a destination of regenerative power to the power conversion unit 400. As a result, the power converter 400 converts the regenerative power, which is AC power sent from the regenerative generator 100, into DC power, and then sends it to the storage battery 250 to charge the storage battery 250 (steps S102 and S103).

また、回生電力分配演算部300は、読み込んだ充電量監視結果に基づき、蓄電池250がフル充電状態であると判断すると、温度センサ725から高温蓄熱装置720の温度情報を、また温度センサ735から低温蓄熱装置730の温度情報を読み込む(ステップS102、S104)。そして、この読み込んだ各温度情報が先の記憶部に格納されている高温蓄熱装置720および低温蓄熱装置730の各限界温度を超えていないこと、すなわち蓄熱余裕があるか否かを判断する。その結果、蓄熱余裕がないと判断される場合、回生電力分配演算部300はブレーキ摩擦制動機構500を作動させ、車両の運動エネルギーを熱エネルギーに変換して廃棄する。この処理は、ディスクブレーキやドラムブレーキ等のいわゆる機械式ブレーキを作動させていることに相当する。また併せて、回生電力分配演算部300は、電力変換部400に対して回生電力の送り先を抵抗器550に指定し、電力変換部400から送られた回生電力を抵抗器550にて熱エネルギーとして廃棄する。この処理は、いわゆる発電ブレーキを作動させていることに相当する(ステップS105、S106)。   Further, when the regenerative power distribution calculation unit 300 determines that the storage battery 250 is in a fully charged state based on the read charge amount monitoring result, the temperature information of the high temperature heat storage device 720 from the temperature sensor 725 and the low temperature from the temperature sensor 735. The temperature information of the heat storage device 730 is read (steps S102 and S104). Then, it is determined whether the read temperature information does not exceed the limit temperatures of the high temperature heat storage device 720 and the low temperature heat storage device 730 stored in the previous storage unit, that is, whether there is a heat storage margin. As a result, when it is determined that there is no heat storage margin, the regenerative power distribution calculation unit 300 operates the brake friction braking mechanism 500 to convert the kinetic energy of the vehicle into thermal energy and discard it. This process corresponds to operating a so-called mechanical brake such as a disc brake or a drum brake. In addition, the regenerative power distribution calculation unit 300 designates the destination of the regenerative power to the resistor 550 with respect to the power conversion unit 400, and uses the regenerative power sent from the power conversion unit 400 as heat energy. Discard. This process corresponds to operating a so-called power generation brake (steps S105 and S106).

一方、回生電力分配演算部300は、高温蓄熱装置720および低温蓄熱装置730に蓄熱余裕があると判断した場合、電力変換部400に対して直流電力に変換した回生電力の送り先を電熱/熱電変換素子710に指定する。これにより、電熱/熱電変換素子710に直流電力が供給され、上述した電熱変換が行われる(ステップS105、S107)
。すなわち、放熱側の電極の熱伝導絶縁ベースが高温蓄熱装置720に放熱し、かつ、吸熱側の電極の熱伝導絶縁ベースが低温蓄熱装置730から吸熱する。これにより、回生電力が熱エネルギーとして蓄えられるようになる。その後、先のステップS104での処理と同様に、回生電力分配演算部300は、温度センサ725から高温蓄熱装置720の温度情報を、また温度センサ735から低温蓄熱装置730の温度情報をそれぞれ読み込む(ステップS108)。そして、ステップS105での処理と同様に、この読み込んだ各温度情報が、高温蓄熱装置720および低温蓄熱装置730の各限界温度を超えていないこと、すなわち蓄熱余裕があるか否かを再度判定する。その結果、蓄熱余裕がないと判断される場合、回生電力分配演算部300は上記のように、いわゆる機械式ブレーキおよびいわゆる発電ブレーキを作動させる(ステップS109、S106)。
On the other hand, when the regenerative power distribution calculation unit 300 determines that the high-temperature heat storage device 720 and the low-temperature heat storage device 730 have a heat storage margin, the regenerative power destination converted into DC power for the power conversion unit 400 is electrothermal / thermoelectric conversion. Designated as element 710. Thereby, direct-current power is supplied to the electrothermal / thermoelectric conversion element 710, and the above-described electrothermal conversion is performed (steps S105 and S107).
. That is, the heat conduction insulating base of the heat radiation side electrode dissipates heat to the high temperature heat storage device 720, and the heat conduction insulation base of the heat absorption side electrode absorbs heat from the low temperature heat storage device 730. Thereby, regenerative electric power comes to be stored as heat energy. Thereafter, similar to the process in step S104, the regenerative power distribution calculation unit 300 reads the temperature information of the high-temperature heat storage device 720 from the temperature sensor 725 and the temperature information of the low-temperature heat storage device 730 from the temperature sensor 735, respectively ( Step S108). Then, similarly to the processing in step S105, it is determined again whether each read temperature information does not exceed the respective limit temperatures of the high temperature heat storage device 720 and the low temperature heat storage device 730, that is, whether there is a heat storage margin. . As a result, when it is determined that there is no heat storage margin, the regenerative power distribution calculation unit 300 operates a so-called mechanical brake and a so-called power generation brake as described above (steps S109 and S106).

その後、回生電力分配演算部300は、ステップS103またはステップS106での処理を経た後、あるいはステップS109での蓄熱余裕があるとの判断に基づき、回生発電機100で回生電力が依然として発生しているか否かの判断を行う(ステップS110)。そして、回生電力が発生していなければ処理を終了し、回生電力が発生していればステップS101の処理に戻って上述した一連の処理を繰り返す。   After that, the regenerative power distribution calculation unit 300 has undergone the processing in step S103 or step S106, or based on the determination that there is a heat storage margin in step S109, does the regenerative power generation still occur in the regenerative generator 100? It is determined whether or not (step S110). If regenerative power is not generated, the process is terminated. If regenerative power is generated, the process returns to step S101 to repeat the series of processes described above.

他方、上述の回生電力管理において、直流電力に変換された回生電力が電熱/熱電変換素子710に供給されていない場合、電熱/熱電変換素子710は、前述したゼーベック効果による熱電変換を試みる(図2においては図示略)。すなわち、電熱/熱電変換素子710は、高温蓄熱装置720から熱を吸熱し、低温蓄熱装置730に熱を放熱しつつ、熱エネルギーを電気エネルギーに変換して直流電力を発生させようとする。そして、蓄電池250の出力電圧が車両の電気エネルギー消費に伴って低下し、電熱/熱電変換素子710の熱電変換機能により発生された起電力よりも低くなったときには、その起電力によって蓄電池250が自動的に充電される。   On the other hand, in the above-described regenerative power management, when the regenerative power converted into DC power is not supplied to the electrothermal / thermoelectric conversion element 710, the electrothermal / thermoelectric conversion element 710 attempts thermoelectric conversion by the Seebeck effect described above (FIG. 2 is omitted). That is, the electrothermal / thermoelectric conversion element 710 absorbs heat from the high-temperature heat storage device 720 and radiates heat to the low-temperature heat storage device 730, and converts the heat energy into electric energy to generate DC power. When the output voltage of the storage battery 250 decreases with the electric energy consumption of the vehicle and becomes lower than the electromotive force generated by the thermoelectric conversion function of the electrothermal / thermoelectric conversion element 710, the storage battery 250 is automatically activated by the electromotive force. Charged.

以上説明したように、本実施の形態に係る回生電力管理システムによれば、以下のような効果が得られるようになる。
(1)この回生電力を電熱/熱電変換素子710による電熱変換機能により同時変換された冷熱および熱を、それぞれ高温蓄熱装置720および低温蓄熱装置730に蓄えておき、それらの温度差に応じて電熱/熱電変換素子710の熱電変換機能により発生される起電力により蓄電池250を充電するようにした。これにより、従来、例えば蓄熱の廃棄やいわゆる発電ブレーキの抵抗器や機械ブレーキにより熱損失として廃棄せざるを得なかった余剰回生電力を十分に活用することができるようになる。すなわち、ハイブリッド車等の車両にあって加速等のためにモーターを積極的に駆動させるためにもこの回生電力を活用することができるようになり、余剰回生電力の有効利用を図りつつ、車両燃費性能の向上も達成することができるようになる。
As described above, according to the regenerative power management system according to the present embodiment, the following effects can be obtained.
(1) Cold heat and heat simultaneously converted from the regenerative power by the electrothermal conversion function by the electrothermal / thermoelectric conversion element 710 are stored in the high-temperature heat storage device 720 and the low-temperature heat storage device 730, respectively. / The storage battery 250 is charged by the electromotive force generated by the thermoelectric conversion function of the thermoelectric conversion element 710. As a result, it is possible to fully utilize the surplus regenerative power that has conventionally been discarded as heat loss by, for example, discarding heat storage or a resistor or mechanical brake of a power generation brake. In other words, this regenerative power can be used to actively drive a motor for acceleration or the like in a vehicle such as a hybrid vehicle, and the vehicle fuel efficiency can be improved while making effective use of surplus regenerative power. An improvement in performance can also be achieved.

(2)電熱変換および熱電変換が同一の変換素子たる電熱/熱電変換素子710にて行われるようにした。これにより、従来のようにクーラーやヒーターを個別に使用する場合に比べて車両の占有部分を小さくすることができるようになる。すなわち、設計自由度が向上し、ハイブリッド車等の自動車の車体デザインや重量バランス等を配慮したより望ましい設計を行うことができるようにもなる。   (2) The electrothermal conversion and the thermoelectric conversion are performed by the electrothermal / thermoelectric conversion element 710 which is the same conversion element. Thereby, compared with the case where a cooler and a heater are used separately like before, the occupation part of a vehicle can be made small. That is, the degree of freedom in design is improved, and a more desirable design can be performed in consideration of the vehicle body design and weight balance of a hybrid vehicle or the like.

なお、上記実施の形態は、以下のような態様をもって実施することもできる。
・上記実施の形態では、回生電力分配演算部300によって高温蓄熱装置720または低温蓄熱装置730に蓄熱余裕がない旨の判断がなされると、ブレーキ摩擦制動機構500を作動させたり抵抗器550に回生電力を送ったりして、車両の運動エネルギーを熱エネルギーに変換して廃棄するシステムとした。しかしこれに限らず、電熱/熱電変換素子710が例えばペルチェ素子である場合に、電熱/熱電変換素子710に流す直流電流の
量や方向を制御することで、吸熱/放熱量や吸熱/放熱方向を自由に選択(反転)することのできるシステムとしてもよい。すなわち、回生電力分配演算部300が、例えば温度センサ725および温度センサ735から読み出した各温度情報から蓄熱余裕がなくなってきた旨を把握すると、電熱/熱電変換素子710に流す直流電流の量を蓄熱余裕のレベルに応じて調整することとしてもよい。この場合、例えば蓄熱余裕のレベル(例えば蓄熱率や限界温度までの温度差等)と流すべき直流電流の量との関係を規定した情報を上述した記憶部に予め格納しておき、回生電力分配演算部300が、その情報に基づいて流すべき直流電流の量を制御する構成等が有効である。また、例えば回生電力の発生中に蓄電池250の充電能力、および高温蓄熱装置720または低温蓄熱装置730の蓄熱能力を超えてしまった場合、上記作動原理を用いて電熱/熱電変換素子710の吸熱/放熱方向を反転させることで、その蓄熱能力を強制的に回復させることもできる。すなわちこの場合、例えば温度センサ725による高温蓄熱装置720の温度情報および温度センサ735による低温蓄熱装置730の温度情報に対して前述した限界温度から相応の安全率を差し引いた温度を予め設定しておく。そして、この値と前記測定された各温度情報とに基づき、回生電力分配演算部300が電熱/熱電変換素子710の吸熱/放熱方向を反転させるべく電力変換部400を制御する。このようにすれば、上述した効果を維持しつつ、回収能力を超える回生電力を更に有効活用し、機械ブレーキや発電ブレーキにより熱損失としてエネルギーを直ちに廃棄する必要がなくなる。またこれにより、機械ブレーキの使用頻度が少なくなるため、同ブレーキの磨耗が軽減され、その交換頻度の低減を図ることができるようになる。加えて、発電ブレーキでの廃熱量も低減されるため、例えば抵抗器550周辺に厳重な廃熱対策を施さずにすむようにもなる。
In addition, the said embodiment can also be implemented with the following aspects.
In the above embodiment, when the regenerative power distribution calculating unit 300 determines that the high temperature heat storage device 720 or the low temperature heat storage device 730 has no heat storage margin, the brake friction braking mechanism 500 is operated or the resistor 550 is regenerated. The system is configured to send electric power and convert the kinetic energy of the vehicle into thermal energy and discard it. However, the present invention is not limited to this, and when the electrothermal / thermoelectric conversion element 710 is, for example, a Peltier element, the amount of heat absorption / radiation and the direction of heat absorption / radiation are controlled by controlling the amount and direction of the direct current flowing through the electrothermal / thermoelectric conversion element 710. It is good also as a system which can select (invert) freely. That is, when the regenerative power distribution calculation unit 300 grasps that the heat storage margin has disappeared from each temperature information read from, for example, the temperature sensor 725 and the temperature sensor 735, the amount of direct current flowing through the electric heat / thermoelectric conversion element 710 is stored. It is good also as adjusting according to a margin level. In this case, for example, information defining the relationship between the level of the heat storage margin (for example, the heat storage rate, the temperature difference to the limit temperature, etc.) and the amount of direct current to be passed is stored in advance in the storage unit described above, and regenerative power distribution is performed. A configuration in which the arithmetic unit 300 controls the amount of direct current to flow based on the information is effective. Further, for example, when the charging capacity of the storage battery 250 and the heat storage capacity of the high-temperature heat storage device 720 or the low-temperature heat storage device 730 are exceeded during the generation of regenerative electric power, the heat absorption / By reversing the heat dissipation direction, the heat storage capacity can be forcibly recovered. That is, in this case, for example, a temperature obtained by subtracting a corresponding safety factor from the limit temperature described above is set in advance for the temperature information of the high-temperature heat storage device 720 by the temperature sensor 725 and the temperature information of the low-temperature heat storage device 730 by the temperature sensor 735. . Then, based on this value and the measured temperature information, the regenerative power distribution calculation unit 300 controls the power conversion unit 400 to reverse the heat absorption / heat dissipation direction of the electric heat / thermoelectric conversion element 710. In this way, it is not necessary to utilize the regenerative power exceeding the recovery capability more effectively while maintaining the above-described effects, and to immediately discard the energy as heat loss by the mechanical brake or the power generation brake. This also reduces the frequency of use of the mechanical brake, so that wear of the brake is reduced and the replacement frequency can be reduced. In addition, since the amount of waste heat in the power generation brake is also reduced, for example, it is not necessary to take strict measures against waste heat around the resistor 550.

・上記実施の形態では、高温蓄熱装置720が暖房暖機システム800に放熱し、低温蓄熱装置730が冷房冷却システム900から吸熱するシステムとした。ただし当該回生電力管理システムを搭載した車両が置かれた環境によっては、高温蓄熱装置720の放熱量と低温蓄熱装置730の吸熱量とバランスが大きく崩れることも考えられる。例えば、寒冷地等で車内暖房に空調システムを作動させ続け、内燃機関等や蓄電池250の暖機を継続するような場合には、高温蓄熱装置720のみが放熱し続け、低温蓄熱装置730による吸熱はあまり行われないようになる。このような状況下では、高温蓄熱装置720のみが蓄熱余裕を有することとなってしまい、回生電力を冷熱および熱に同時変換する電熱変換素子たる電熱/熱電変換素子710を用いて蓄熱することができなくなってしまう。そこでこのような場合は、いわゆる発電ブレーキとして作用する抵抗器550等における廃熱を用いて高温蓄熱装置720のみに蓄熱するシステムとしてもよい。このようにすれば、上述した効果を確保しつつ、廃棄していた熱エネルギーをさらに回収して活用することができるようになる。そしてこれにより、車両が寒冷地にある場合に生じてしまう上記余剰回生電力の有効利用率の低下を防ぎつつ、車両燃費性能の向上も実現することができるようになる。   In the above embodiment, the high temperature heat storage device 720 dissipates heat to the heating / warming system 800 and the low temperature heat storage device 730 absorbs heat from the cooling / cooling system 900. However, depending on the environment in which the vehicle on which the regenerative power management system is mounted is placed, the balance between the heat radiation amount of the high-temperature heat storage device 720 and the heat absorption amount of the low-temperature heat storage device 730 may be greatly lost. For example, in the case where the air conditioning system is continuously operated to heat the vehicle interior in a cold district and the internal combustion engine or the storage battery 250 is continuously warmed up, only the high-temperature heat storage device 720 continues to dissipate heat and the low-temperature heat storage device 730 absorbs heat. Will not be done much. Under such circumstances, only the high-temperature heat storage device 720 has a heat storage margin, and heat can be stored using the electric heat / thermoelectric conversion element 710 that is an electric heat conversion element that simultaneously converts regenerative power into cold and heat. It becomes impossible. Therefore, in such a case, a system that stores heat only in the high-temperature heat storage device 720 by using waste heat in the resistor 550 or the like acting as a so-called power generation brake may be used. In this way, it is possible to further recover and utilize the discarded thermal energy while ensuring the above-described effects. As a result, it is possible to improve the vehicle fuel efficiency while preventing a decrease in the effective utilization rate of the surplus regenerative power that occurs when the vehicle is in a cold region.

・上記実施の形態では、電熱/熱電変換素子710たるペルチェ素子の放熱側の電極の熱伝導絶縁ベースが高温蓄熱装置720の隔壁に、吸熱側の電極の熱伝導絶縁ベースが低温蓄熱装置730の隔壁に半田付けされ、直接熱交換するとしたが、これに限られない。例えば高温蓄熱装置720または低温蓄熱装置730とは流体媒体の循環を介して電熱/熱電変換素子710と熱交換することとしてもよい。ここで、上記流体媒体として、水や油等を用いてもよい。   In the above embodiment, the heat conduction insulating base of the heat radiation side electrode of the Peltier element that is the electrothermal / thermoelectric conversion element 710 is the partition wall of the high temperature heat storage device 720, and the heat conduction insulation base of the heat absorption side electrode is the low temperature heat storage device 730. Although it was soldered to the partition and directly exchanged heat, it is not limited to this. For example, heat exchange with the electrothermal / thermoelectric conversion element 710 may be performed through circulation of a fluid medium with the high temperature heat storage device 720 or the low temperature heat storage device 730. Here, water, oil, or the like may be used as the fluid medium.

・上記実施の形態では、電熱/熱電変換素子710としてペルチェ素子を例示したが、これに限らず、上記のような電熱変換機能と熱電変換機能とを併せ持つ素子であればどのような変換素子を用いてもよい。   In the above embodiment, the Peltier element is exemplified as the electrothermal / thermoelectric conversion element 710. However, the present invention is not limited to this, and any conversion element can be used as long as the element has both the electrothermal conversion function and the thermoelectric conversion function as described above. It may be used.

・上記実施の形態では、電熱/熱電変換・蓄熱装置700が温度センサ725および温
度センサ735を備えるとしたが、これらは必須の構成要素ではない。例えば、高温蓄熱装置720および低温蓄熱装置730の温度測定を行わなくても過去の実績から経験的に上記各限界温度を超えないように管理することができる場合には、これら温度センサ725および温度センサ735の配設を割愛することもできる。
In the above embodiment, the electrothermal / thermoelectric conversion / heat storage device 700 includes the temperature sensor 725 and the temperature sensor 735, but these are not essential components. For example, when it is possible to manage from the past results so as not to exceed the above limit temperatures without measuring the temperature of the high-temperature heat storage device 720 and the low-temperature heat storage device 730, the temperature sensor 725 and the temperature The arrangement of the sensor 735 can be omitted.

1…回生発電機、2…電力変換部、3…蓄電池、10…ヒーター、11…高温蓄熱装置、12…空調システム、20…クーラー、21…低温蓄熱装置、22…空調システム、100…回生発電機、200…充電量監視部、250…蓄電池、300…回生電力分配演算部、400…電力変換部、500…ブレーキ摩擦制動機構、550…抵抗器、600…制動力演算部、700…電熱/熱電変換・蓄熱装置、710…電熱/熱電変換素子、720…高温蓄熱装置、725…温度センサ、730…低温蓄熱装置、735…温度センサ、800…暖房暖機システム、900…冷房冷却システム。   DESCRIPTION OF SYMBOLS 1 ... Regenerative generator, 2 ... Power conversion part, 3 ... Storage battery, 10 ... Heater, 11 ... High temperature thermal storage device, 12 ... Air conditioning system, 20 ... Cooler, 21 ... Low temperature thermal storage device, 22 ... Air conditioning system, 100 ... Regenerative power generation 200 ... charge amount monitoring unit, 250 ... storage battery, 300 ... regenerative power distribution calculation unit, 400 ... power conversion unit, 500 ... brake friction braking mechanism, 550 ... resistor, 600 ... braking force calculation unit, 700 ... electric heat / Thermoelectric conversion / storage device, 710 ... electric heating / thermoelectric conversion element, 720 ... high temperature storage device, 725 ... temperature sensor, 730 ... low temperature storage device, 735 ... temperature sensor, 800 ... heating warming system, 900 ... cooling cooling system.

Claims (1)

車両制動時に発電される回生電力を管理する回生電力管理システムにおいて、
充電により蓄電される蓄電池と、
前記発電される回生電力を直流電力に電力変換する電力変換部と、
前記電力変換部にて変換された直流電力の給電に基づき電熱変換する電熱変換素子と、
前記電熱変換素子にて電熱変換されて放熱された熱が蓄熱される高温蓄熱装置と、
前記電熱変換素子にて電熱変換されて吸熱された熱が蓄熱される低温蓄熱装置と、
を備え、前記電熱変換素子の逆変換機能である熱電変換機能により前記低温蓄熱装置と前記高温蓄熱装置との温度差に応じて同電熱変換素子から発生される電圧よりも前記蓄電池の出力電圧が低下したときに、前記電熱変換素子の熱電変換機能に基づく起電力を用いて前記蓄電池を充電する
ことを特徴とする回生電力管理システム。
In a regenerative power management system that manages regenerative power generated during vehicle braking,
A storage battery charged by charging;
A power converter that converts the regenerative power generated into DC power; and
An electrothermal conversion element that performs electrothermal conversion based on feeding of DC power converted by the power conversion unit;
A high-temperature heat storage device in which the heat converted into heat by the electrothermal conversion element is stored;
A low-temperature heat storage device for storing heat absorbed by heat conversion by the electrothermal conversion element; and
The output voltage of the storage battery is higher than the voltage generated from the electrothermal conversion element according to the temperature difference between the low temperature storage device and the high temperature storage device by the thermoelectric conversion function that is the reverse conversion function of the electrothermal conversion element. When the voltage drops, the regenerative power management system is characterized in that the storage battery is charged using an electromotive force based on a thermoelectric conversion function of the electrothermal conversion element.
JP2009107118A 2009-04-24 2009-04-24 Regenerative power managing system Pending JP2010259238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107118A JP2010259238A (en) 2009-04-24 2009-04-24 Regenerative power managing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107118A JP2010259238A (en) 2009-04-24 2009-04-24 Regenerative power managing system

Publications (1)

Publication Number Publication Date
JP2010259238A true JP2010259238A (en) 2010-11-11

Family

ID=43319509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107118A Pending JP2010259238A (en) 2009-04-24 2009-04-24 Regenerative power managing system

Country Status (1)

Country Link
JP (1) JP2010259238A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205760A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Cooling device
JP2014525229A (en) * 2011-07-26 2014-09-25 ゴゴロ インク Thermal management of components in electric vehicles
WO2016017083A1 (en) * 2014-07-29 2016-02-04 株式会社デンソー Energy management system
JP2016196201A (en) * 2015-04-02 2016-11-24 日本特殊陶業株式会社 Vehicle control device and vehicle control method
US20160347281A1 (en) * 2011-07-26 2016-12-01 Gogoro Inc. Apparatus, method and article for a power storage device compartment
US9911252B2 (en) 2011-07-26 2018-03-06 Gogoro Inc. Apparatus, method and article for providing to a user device information regarding availability of portable electrical energy storage devices at a portable electrical energy storage device collection, charging and distribution machine
US10055911B2 (en) 2011-07-26 2018-08-21 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries, based on user profiles
US10065525B2 (en) 2013-08-06 2018-09-04 Gogoro Inc. Adjusting electric vehicle systems based on an electrical energy storage device thermal profile
US10186094B2 (en) 2011-07-26 2019-01-22 Gogoro Inc. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
US10209090B2 (en) 2011-07-26 2019-02-19 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries
WO2019130703A1 (en) * 2017-12-26 2019-07-04 カルソニックカンセイ株式会社 Energy management system
US11075530B2 (en) 2013-03-15 2021-07-27 Gogoro Inc. Modular system for collection and distribution of electric storage devices

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205760A (en) * 2010-03-25 2011-10-13 Toyota Motor Corp Cooling device
US10186094B2 (en) 2011-07-26 2019-01-22 Gogoro Inc. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
US20160347281A1 (en) * 2011-07-26 2016-12-01 Gogoro Inc. Apparatus, method and article for a power storage device compartment
US10209090B2 (en) 2011-07-26 2019-02-19 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries
US11139684B2 (en) 2011-07-26 2021-10-05 Gogoro Inc. Apparatus, method and article for a power storage device compartment
US10573103B2 (en) 2011-07-26 2020-02-25 Gogoro Inc. Apparatus, method and article for physical security of power storage devices in vehicles
US9908506B2 (en) 2011-07-26 2018-03-06 Gogoro Inc. Apparatus, method and article for physical security of power storage devices in vehicles
US9911252B2 (en) 2011-07-26 2018-03-06 Gogoro Inc. Apparatus, method and article for providing to a user device information regarding availability of portable electrical energy storage devices at a portable electrical energy storage device collection, charging and distribution machine
US10055911B2 (en) 2011-07-26 2018-08-21 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries, based on user profiles
US10546438B2 (en) 2011-07-26 2020-01-28 Gogoro Inc. Apparatus, method and article for providing vehicle diagnostic data
JP2014525229A (en) * 2011-07-26 2014-09-25 ゴゴロ インク Thermal management of components in electric vehicles
US10459471B2 (en) 2011-07-26 2019-10-29 Gorogo Inc. Apparatus, method and article for collection, charging and distributing power storage devices, such as batteries
US10345843B2 (en) 2011-07-26 2019-07-09 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
US11075530B2 (en) 2013-03-15 2021-07-27 Gogoro Inc. Modular system for collection and distribution of electric storage devices
US10065525B2 (en) 2013-08-06 2018-09-04 Gogoro Inc. Adjusting electric vehicle systems based on an electrical energy storage device thermal profile
WO2016017083A1 (en) * 2014-07-29 2016-02-04 株式会社デンソー Energy management system
JP2016032348A (en) * 2014-07-29 2016-03-07 株式会社デンソー Energy management system
US10279657B2 (en) 2014-07-29 2019-05-07 Denso Corporation Energy management system
JP2016196201A (en) * 2015-04-02 2016-11-24 日本特殊陶業株式会社 Vehicle control device and vehicle control method
JP2019118178A (en) * 2017-12-26 2019-07-18 カルソニックカンセイ株式会社 Energy management system
CN111512514A (en) * 2017-12-26 2020-08-07 马瑞利株式会社 Energy management system
WO2019130703A1 (en) * 2017-12-26 2019-07-04 カルソニックカンセイ株式会社 Energy management system

Similar Documents

Publication Publication Date Title
JP2010259238A (en) Regenerative power managing system
US9573487B2 (en) Electrically driven vehicle
JP5484071B2 (en) Vehicle equipped with thermoelectric generator
CN108199114B (en) Battery thermal management system, control method thereof and vehicle air conditioning system
JP5856488B2 (en) Temperature control device
JP2006177265A (en) Thermoelectric power generation device
KR101526389B1 (en) Thermal management system of battery for electric vehicle
JP2010532066A (en) Battery temperature control device for electric vehicle using thermoelectric semiconductor element
US20090024256A1 (en) Centralized multi-zone cooling for increased battery efficiency
WO2005122311A1 (en) Cooling device for fuel cell and vehicle having the same
JP2005335680A (en) Electric power train for vehicle having electrical dissipation element cooled with cooling liquid
JP2015081089A (en) Cooling system of electric motorcar and cooling system driving method
CN110492135B (en) Fuel cell automobile waste heat power generation system, working method thereof and fuel cell automobile
JP2008108509A (en) Battery mounting apparatus and temperature regulation system
JP2010284045A (en) Heat supply device
CN110417300B (en) Tramcar waste heat power generation system, fuel cell tramcar and working method
KR20120112194A (en) System and method for controlling heat transfer timing
JP2008103108A (en) Warming system of battery, and automobile using battery as power source
JP2003175720A (en) On-vehicle air-conditioning system
JP2007032534A (en) Thermal power generating apparatus
KR20180032411A (en) Vehicle power module using thermoelectric element
JP4396351B2 (en) Thermoelectric generator
US20130215571A1 (en) Semiconductor device and cooling system for semiconductor device
CN110745001A (en) Energy distribution device and vehicle
US20130276849A1 (en) Teg-powered cooling circuit for thermoelectric generator