JP2013113408A - Heat control device and heat control method - Google Patents

Heat control device and heat control method Download PDF

Info

Publication number
JP2013113408A
JP2013113408A JP2011262192A JP2011262192A JP2013113408A JP 2013113408 A JP2013113408 A JP 2013113408A JP 2011262192 A JP2011262192 A JP 2011262192A JP 2011262192 A JP2011262192 A JP 2011262192A JP 2013113408 A JP2013113408 A JP 2013113408A
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
heat
thermal
thermal control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011262192A
Other languages
Japanese (ja)
Other versions
JP5893364B2 (en
Inventor
Seiji Izeki
清治 井関
Tadachika Nakayama
忠親 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2011262192A priority Critical patent/JP5893364B2/en
Publication of JP2013113408A publication Critical patent/JP2013113408A/en
Application granted granted Critical
Publication of JP5893364B2 publication Critical patent/JP5893364B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Thermal Insulation (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat control device of simple and compact configuration without needing to provide a cooling device or the like separately from a heat insulating material, and a heat control method.SOLUTION: A heat control device includes a heat insulating material provided around a heat control object and having a continuous void, and a heat insulating material thickness changing means for changing thickness of the heat insulating material to change a thermal resistance of the heat insulating material.

Description

本発明は、熱制御装置および熱制御方法に関する。   The present invention relates to a thermal control device and a thermal control method.

様々な用途に用いられている充電池には、その性能を十分に発揮させるための適切な温度範囲が存在する。   Rechargeable batteries used for various applications have an appropriate temperature range for fully exhibiting their performance.

そのため、寒冷地等の気温の低い場所では、充電池の温度を下げないために、断熱材で覆う等の措置が必要である。   For this reason, measures such as covering with a heat insulating material are necessary in order to prevent the temperature of the rechargeable battery from being lowered in a cold place such as a cold region.

しかし、充電池を断熱材等で覆うと、充電池を使用したときに発生した熱を放出することが出来なくなるため、充電池の温度が上昇し、その性能が低下する。   However, if the rechargeable battery is covered with a heat insulating material or the like, the heat generated when the rechargeable battery is used cannot be released, so the temperature of the rechargeable battery rises and its performance decreases.

従来、この問題を解決するために、充電池を断熱材で覆い、充電池の温度が一定以上に達したときにファン等で冷却する熱制御装置が知られている(特許文献1)。   Conventionally, in order to solve this problem, a thermal control device is known in which a rechargeable battery is covered with a heat insulating material and cooled by a fan or the like when the temperature of the rechargeable battery reaches a certain level (Patent Document 1).

しかし、従来の熱制御装置は断熱材とは別に冷却装置を設ける必要があり、熱制御装置が大型になった。さらに、冷却装置として冷却ファン等を設けた場合は、冷却時に継続的にファンを回す電力が必要となる上、非常に複雑な配線の構成等が必要となる等の問題があった。また、冷却装置としてヒートパイプなどを備えた場合(特許文献2)も同様に、その構造は非常に複雑かつ大きくなる。   However, the conventional heat control device needs to be provided with a cooling device separately from the heat insulating material, and the heat control device has become large. Further, when a cooling fan or the like is provided as a cooling device, there is a problem that electric power for continuously rotating the fan is required during cooling and a very complicated wiring configuration is required. Similarly, when a heat pipe or the like is provided as a cooling device (Patent Document 2), the structure is very complicated and large.

特開2001−76771号公報JP 2001-76771 A 特開平10−76771号公報Japanese Patent Laid-Open No. 10-76771

本発明は、上記課題に鑑みてなされたものであり、シンプルかつコンパクトな構成の熱制御装置および熱制御方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a heat control device and a heat control method having a simple and compact configuration.

第1の発明は、熱制御対象物の周囲に設けられ連続した空隙を有する断熱材と、上記断熱材の熱抵抗を変化させるために上記断熱材の厚みを変更させる断熱材厚変更手段と、を有する熱制御装置である。   1st invention is the heat insulating material which has the continuous space | gap provided around the thermal control object, and the heat insulating material thickness change means which changes the thickness of the said heat insulating material in order to change the thermal resistance of the said heat insulating material, It is the thermal control apparatus which has.

第2の発明は、上記第1の発明に従属する発明であって、上記断熱材は、樹脂発泡体であることを特徴とする。   A second invention is an invention dependent on the first invention, wherein the heat insulating material is a resin foam.

第3の発明は、上記第2の発明に従属する発明であって、上記樹脂発泡体は、軟質ポリウレタン樹脂を含むことを特徴とする。   A third invention is an invention subordinate to the second invention, wherein the resin foam contains a soft polyurethane resin.

第4の発明は、上記第1〜3のいずれか1つの発明に従属する発明であって、上記断熱材は、熱伝導性フィラーを含むことを特徴とする。   4th invention is invention which is dependent on any one invention of said 1st-3rd, Comprising: The said heat insulating material contains a heat conductive filler, It is characterized by the above-mentioned.

第5の発明は、上記第4の発明に従属する発明であって、上記熱伝導性フィラーは、窒化ホウ素を含むことを特徴とする。   A fifth invention is an invention subordinate to the fourth invention, wherein the thermally conductive filler includes boron nitride.

第6の発明は、上記第4または5の発明に従属する発明であって、上記熱伝導性フィラーは、熱制御対象物に対して略垂直に配向されていることを特徴とする。   A sixth invention is an invention subordinate to the fourth or fifth invention, wherein the thermally conductive filler is oriented substantially perpendicularly to a thermal control object.

第7の発明は、上記第1〜6のいずれか1つの発明に従属する発明であって、上記熱制御装置は、上記熱制御対象物の温度を取得する温度取得手段を有し、上記断熱材厚変更手段は、上記温度取得手段によって取得された上記熱制御対象物の温度に基づいて上記断熱材の厚みを変更させることを特徴とする。   A seventh invention is an invention subordinate to any one of the first to sixth inventions, wherein the thermal control device includes a temperature acquisition means for acquiring the temperature of the thermal control object, and the thermal insulation. The material thickness changing means changes the thickness of the heat insulating material based on the temperature of the thermal control object acquired by the temperature acquisition means.

第8の発明は、熱制御対象物の周囲に設けられ連続した空隙を有する断熱材の厚みを変化させ、上記断熱材の熱抵抗を変化させることにより、上記熱制御対象物の熱を制御する熱制御方法である。   8th invention changes the thickness of the heat insulating material provided in the circumference | surroundings of the heat control target object, and has the continuous space | gap, and controls the heat | fever of the said heat control target object by changing the thermal resistance of the said heat insulating material. This is a thermal control method.

本発明によれば、断熱材の厚みを変更することにより、断熱材の熱抵抗を変化させることができるため、従来の熱制御装置とは異なり、断熱材とは別に冷却装置を設ける必要がなく、シンプルかつコンパクトな構成の熱制御装置および熱制御方法を提供することができる。   According to the present invention, since the thermal resistance of the heat insulating material can be changed by changing the thickness of the heat insulating material, unlike the conventional heat control device, there is no need to provide a cooling device separately from the heat insulating material. A simple and compact thermal control device and thermal control method can be provided.

本発明の第1の実施形態に係る熱制御装置を示す概略図Schematic which shows the thermal control apparatus which concerns on the 1st Embodiment of this invention. 断熱材厚変更手段12によって断熱材11を圧縮した状態の熱制御装置を示す概略図Schematic showing a heat control device in a state where the heat insulating material 11 is compressed by the heat insulating material thickness changing means 12 本発明の第2の実施形態に係る熱制御装置を示す概略図Schematic which shows the thermal control apparatus which concerns on the 2nd Embodiment of this invention. 断熱材厚変更手段12によって断熱材13を圧縮した状態の熱制御装置を示す概略図Schematic showing a heat control device in a state where the heat insulating material 13 is compressed by the heat insulating material thickness changing means 12 本発明の第3の実施形態に係る熱制御装置を示す概略図Schematic which shows the thermal control apparatus which concerns on the 3rd Embodiment of this invention. 断熱材厚変更手段12によって断熱材11を圧縮した状態の熱制御装置を示す概略図Schematic showing a heat control device in a state where the heat insulating material 11 is compressed by the heat insulating material thickness changing means 12

(第1の実施形態)
本発明の第1の実施形態に係る熱制御装置1について、図面を参照しつつ説明する。図1は、本発明の第1の実施形態に係る熱制御装置1の構成を示す概略図である。
(First embodiment)
A thermal control device 1 according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of a thermal control apparatus 1 according to the first embodiment of the present invention.

本実施形態に係る熱制御装置1は、少なくとも断熱材11および断熱材厚変更手段12を有する。   The heat control apparatus 1 according to the present embodiment includes at least a heat insulating material 11 and a heat insulating material thickness changing unit 12.

断熱材11は、熱制御対象物4の周囲を覆うように設けられている。断熱材11は、断熱機能を有し、例えば、寒冷地等の気温が低い環境では、熱制御対象物4の温度が低くなりすぎないように周囲から断熱する。   The heat insulating material 11 is provided so as to cover the periphery of the thermal control object 4. The heat insulating material 11 has a heat insulating function, and insulates from the surroundings so that the temperature of the heat control object 4 does not become too low, for example, in an environment where the temperature is low, such as a cold district.

断熱材11は、弾性体であって、高い連続空隙率を有する。断熱材11の連続空隙率が低い場合、空隙内の空気が抜け難いため、断熱材11を圧縮等(後述)することができず、断熱材11の熱抵抗を低下させることができない(後述)。断熱材11は、連続空隙率が高い弾性体であって断熱機能を有し、熱制御対象物4の温度に耐えることができればいかなる材質でも良い。断熱材11の材質の一例としては、樹脂発泡体や不織布、グラスウール等が挙げられる。樹脂発泡体の一例としては、軟質ポリウレタン樹脂発泡体が挙げられる。   The heat insulating material 11 is an elastic body and has a high continuous porosity. When the continuous porosity of the heat insulating material 11 is low, it is difficult for air in the gap to escape, so the heat insulating material 11 cannot be compressed (described later), and the thermal resistance of the heat insulating material 11 cannot be reduced (described later). . The heat insulating material 11 is an elastic body having a high continuous porosity, has a heat insulating function, and may be any material as long as it can withstand the temperature of the heat control object 4. As an example of the material of the heat insulating material 11, a resin foam, a nonwoven fabric, glass wool, etc. are mentioned. An example of the resin foam is a soft polyurethane resin foam.

断熱材11の空隙率は、当該断熱材11の材質によって異なり、所望の断熱効果を有し、断熱材11を圧縮等(後述)することが出来れば良い。一例としては、本実施形態に係る断熱材11として軟質ポリウレタン樹脂を用いた場合、空隙率は70〜99%が好ましく、80〜98%がより好ましい。空隙率が70%未満の場合は、十分な断熱性が得られないため好ましくない。空隙率が99%を超えると断熱材の成形性が低下し、成形できなくなるため好ましくない。また、連続空隙率は70%以上が好ましく、80%以上がより好ましい。連続空隙率が70%未満の場合は、圧縮時に空気が抜けにくいため好ましくない。   The porosity of the heat insulating material 11 is different depending on the material of the heat insulating material 11 and may have a desired heat insulating effect and can compress the heat insulating material 11 (described later). As an example, when a soft polyurethane resin is used as the heat insulating material 11 according to the present embodiment, the porosity is preferably 70 to 99%, and more preferably 80 to 98%. A porosity of less than 70% is not preferable because sufficient heat insulation cannot be obtained. If the porosity exceeds 99%, the moldability of the heat insulating material is lowered and it becomes impossible to mold, which is not preferable. Further, the continuous porosity is preferably 70% or more, and more preferably 80% or more. When the continuous porosity is less than 70%, it is not preferable because air is difficult to escape during compression.

以下に断熱材11の製造方法の一例として、軟質ポリウレタン樹脂発泡体を用いた断熱材11の製造方法を挙げる。当該製造方法は以下の工程を有する。
(1)軟質ポリウレタン樹脂発泡体の原料を計量、混合し、混合材料を調製する混合材料調整工程
(2)上記混合材料調製工程にて調製した混合材料を、金型等に注入し発泡、硬化させる発泡硬化工程
(3)所望の寸法に成形する成形工程
Below, the manufacturing method of the heat insulating material 11 using a soft polyurethane resin foam as an example of the manufacturing method of the heat insulating material 11 is mentioned. The manufacturing method includes the following steps.
(1) Mixing material adjustment step of measuring and mixing the raw materials of the flexible polyurethane resin foam to prepare the mixed material (2) The mixed material prepared in the mixed material preparation step is injected into a mold or the like and foamed and cured Foam curing process (3) to form to the desired dimensions

上記軟質ポリウレタン樹脂発泡体の原料は、イソシアネート成分及び活性水素基含有化合物を主原料とする。   The raw material of the flexible polyurethane resin foam is mainly composed of an isocyanate component and an active hydrogen group-containing compound.

イソシアネート成分としては、軟質ポリウレタン樹脂の分野において公知のイソシアネート化合物を適宜選択することができる。特に、ジイソシアネート化合物とその誘導体、とりわけイソシアネートプレポリマーの使用が、得られる軟質ポリウレタン樹脂発泡体の物理的特性が優れており、好適である。   As an isocyanate component, a well-known isocyanate compound can be suitably selected in the field of a flexible polyurethane resin. In particular, the use of a diisocyanate compound and a derivative thereof, particularly an isocyanate prepolymer, is preferable because the physical properties of the obtained flexible polyurethane resin foam are excellent.

活性水素基含有化合物とは、イソシアネート基と反応する活性水素基を有する化合物であり、例えば、ポリオール成分、ポリアミン成分、鎖延長剤などが挙げられる。これらは、軟質ポリウレタンの分野において公知の化合物を適宜選択することができる。また、イソシアネート成分及び活性水素基含有化合物等の比は、各々の分子量や断熱材11の所望物性などにより種々変え得る。   The active hydrogen group-containing compound is a compound having an active hydrogen group that reacts with an isocyanate group, and examples thereof include a polyol component, a polyamine component, and a chain extender. These can be appropriately selected from known compounds in the field of flexible polyurethane. Further, the ratio of the isocyanate component and the active hydrogen group-containing compound can be variously changed depending on the molecular weight of each, the desired physical properties of the heat insulating material 11, and the like.

発泡剤としては、公知の発泡剤を使用することができるが、水、メチレンクロライド等が例示され、特に水又は水とメチレンクロライドを併用した発泡剤を使用することが好ましい。   As the foaming agent, known foaming agents can be used, and water, methylene chloride and the like are exemplified, and it is particularly preferable to use water or a foaming agent using water and methylene chloride in combination.

なお、必要に応じて、酸化防止剤等の安定剤、滑剤、顔料、充填剤、帯電防止剤、その他の添加剤を加えてもよい。   In addition, you may add stabilizers, such as antioxidant, a lubricant, a pigment, a filler, an antistatic agent, and another additive as needed.

なお、軟質ポリウレタン樹脂発泡体の製造方法としては、プレポリマー法、ワンショット法が知られているが、本実施形態においてはいずれの方法も使用可能である。   In addition, as a manufacturing method of a flexible polyurethane resin foam, the prepolymer method and the one-shot method are known, but any method can be used in this embodiment.

参考として、表1に、連続空隙率が高い軟質ポリウレタン樹脂発泡体の非圧縮時および圧縮時の熱抵抗等(実験例1)を示す。   For reference, Table 1 shows the thermal resistance and the like (Experimental Example 1) during non-compression and compression of a flexible polyurethane resin foam having a high continuous porosity.

(実験例1)
下記原料および配合に基づき、常法により、高い連続空隙率を有する軟質ポリウレタン樹脂発泡体を調製した。
<原料および配合>
1)ポリエーテルポリオール化合物
・アクトコールLR−00(三井化学社製):100重量部
2)架橋剤
・グリセリン(ナカライテスク社製):2重量部
3)発泡剤
・水:2重量部
4)触媒
・Dabco33LV(東ソー社製):0.4重量部
・T−9(東栄化学工業社製):0.1重量部
5)整泡剤
・B−8017(ゴールドシュミット社製):1重量部
6)イソシアネート成分
・コスモネートT−80[TDI−80](三井化学社製):29.2重量部
(Experimental example 1)
Based on the following raw materials and blending, a flexible polyurethane resin foam having a high continuous porosity was prepared by a conventional method.
<Raw materials and blending>
1) Polyether polyol compound, Actol LR-00 (manufactured by Mitsui Chemicals): 100 parts by weight 2) Crosslinking agent / glycerin (manufactured by Nacalai Tesque): 2 parts by weight 3) Foaming agent / water: 2 parts by weight 4) Catalyst / Dabco33LV (manufactured by Tosoh Corporation): 0.4 parts by weight T-9 (manufactured by Toei Chemical Co., Ltd.): 0.1 parts by weight 5) Foam stabilizer / B-8017 (manufactured by Goldschmidt): 1 part by weight 6) Isocyanate component / Cosmonate T-80 [TDI-80] (manufactured by Mitsui Chemicals): 29.2 parts by weight

<評価方法>
1)密度
上記各軟質ポリウレタン樹脂発泡体から縦100mm×横100mm×厚さ50mmのサンプルを切り出し、重量を測定して計算により求めた。
2)熱伝導率
熱伝導率測定装置AUTO−Λ HC−074(英弘精機社製)を使用し、JIS A 9511に準拠して測定した。なお、発泡体サンプルを1600Nの荷重で圧縮したものを荷重時の発泡体サンプルとした。
3)連続空隙率
連続空隙率は、発泡体サンプルを縦20mm×横20mm×高さ30mmの形状に切り出し、ASTM−2856−94−C法に準拠して測定した。測定器は、空気比較式比重計930型(ベックマン株式会社製)を用いた。連続空隙率は下記式により算出した。
連続空隙率(%)=〔(V−V1)/V〕×100
V:サンプル寸法から算出した見かけ容積(cm
V1:空気比較式比重計を用いて測定したサンプルの容積(cm
4)熱伝導率の上昇率
熱伝導率の上昇率は、以下の式により求めた。
熱伝導率の上昇率(%)=圧縮時の熱伝導率/非圧縮時の熱伝導率×100
5)熱抵抗
熱抵抗(K/W)は、熱伝導率(W/mK)の逆数(mK/W)を、試料の厚み(m)で除算した値である。
6)熱抵抗変化率
熱抵抗変化率は、以下の式により求めた。
熱抵抗変化率(%)=非圧縮時の熱抵抗/圧縮時の熱抵抗×100
<Evaluation method>
1) Density A sample having a length of 100 mm, a width of 100 mm, and a thickness of 50 mm was cut out from each of the above flexible polyurethane resin foams, and the weight was measured and calculated.
2) Thermal conductivity A thermal conductivity measuring device AUTO-Λ HC-074 (manufactured by Eihiro Seiki Co., Ltd.) was used and measured according to JIS A 9511. In addition, what compressed the foam sample with the load of 1600 N was made into the foam sample at the time of a load.
3) Continuous porosity The continuous porosity was measured in accordance with the ASTM-2856-94-C method by cutting a foam sample into a shape of 20 mm long × 20 mm wide × 30 mm high. As a measuring instrument, an air comparison type hydrometer 930 type (manufactured by Beckman Co., Ltd.) was used. The continuous porosity was calculated by the following formula.
Continuous porosity (%) = [(V−V1) / V] × 100
V: Apparent volume calculated from sample size (cm 3 )
V1: Sample volume (cm 3 ) measured using an air-comparing hydrometer
4) Rate of increase in thermal conductivity The rate of increase in thermal conductivity was determined by the following equation.
Thermal conductivity increase rate (%) = thermal conductivity during compression / thermal conductivity during non-compression × 100
5) Thermal resistance Thermal resistance (K / W) is a value obtained by dividing the reciprocal (mK / W) of thermal conductivity (W / mK) by the thickness (m) of the sample.
6) Thermal resistance change rate The thermal resistance change rate was determined by the following equation.
Thermal resistance change rate (%) = thermal resistance during non-compression / thermal resistance during compression × 100

上記各軟質ポリウレタン樹脂発泡体における評価結果を表1に示す。   Table 1 shows the evaluation results for each of the flexible polyurethane resin foams.

Figure 2013113408
Figure 2013113408

表1の結果より、連続空隙率が高い実験例1の軟質ポリウレタン樹脂発泡体は、空隙内の空気が抜けやすいため、非圧縮状態から圧縮状態になったときの熱抵抗変化率が高い。   From the results shown in Table 1, the flexible polyurethane resin foam of Experimental Example 1 having a high continuous porosity has a high rate of change in thermal resistance when the air is easily removed from the non-compressed state.

本実施形態に係る断熱材厚変更手段12は、断熱材11を圧縮、または圧縮を解放もしくは断熱材11を厚さ方向に伸長することによって、断熱材11の厚さを調節する手段である。断熱材厚変更手段12は、断熱材11を圧縮等することによって厚みを調節することができれば、公知一般の手法を用いることができる。一例としては、機械式もしくは液圧式プレスが挙げられる。   The heat insulating material thickness changing means 12 according to the present embodiment is a means for adjusting the thickness of the heat insulating material 11 by compressing the heat insulating material 11, releasing the compression, or extending the heat insulating material 11 in the thickness direction. The heat insulating material thickness changing means 12 can use a publicly known general method as long as the thickness can be adjusted by compressing the heat insulating material 11 or the like. An example is a mechanical or hydraulic press.

図2は、本実施形態に係る熱制御装置1の、断熱材11が断熱材厚変更手段12によって圧縮されて厚みを調節された状態の一例を示す概略図である。断熱材11は、図1に示すような圧縮されていない状態では、内部の空隙による断熱効果を有するが、図2に示すように、断熱材11は、断熱材厚変更手段12によって圧縮され、断熱材11内の空隙が押しつぶされることにより、熱抵抗が低下する。上述のように、断熱材11は高い連続空隙率を有した弾性体であるため、非圧縮状態から圧縮状態になったときの熱抵抗変化率は高い。これにより、断熱材11の熱抵抗を調節することができる。   FIG. 2 is a schematic diagram illustrating an example of a state in which the heat insulating material 11 is compressed by the heat insulating material thickness changing unit 12 and the thickness is adjusted in the heat control apparatus 1 according to the present embodiment. In the state where the heat insulating material 11 is not compressed as shown in FIG. 1, the heat insulating material 11 has a heat insulating effect due to the internal gap, but as shown in FIG. 2, the heat insulating material 11 is compressed by the heat insulating material thickness changing means 12 When the voids in the heat insulating material 11 are crushed, the thermal resistance decreases. As described above, since the heat insulating material 11 is an elastic body having a high continuous porosity, the rate of change in thermal resistance when the non-compressed state is changed to the compressed state is high. Thereby, the thermal resistance of the heat insulating material 11 can be adjusted.

第1の実施形態では、断熱材厚変更手段12は、熱制御対象物4の温度が、熱制御対象物4の性能を十分に発揮させることができる温度範囲の上限を超えて上昇することが予想される場合、断熱材11を圧縮し、断熱材11の熱抵抗を低下させ、断熱材11の断熱機能を抑える。一方、断熱材厚変更手段12は、熱制御対象物4の温度が、上昇することが予想されない場合、断熱材11の圧縮を解放することにより、断熱材11の熱抵抗を向上させ、断熱材11の断熱機能を発揮させる。   In 1st Embodiment, the heat insulating material thickness change means 12 may raise the temperature of the heat control target object 4 exceeding the upper limit of the temperature range which can fully exhibit the performance of the heat control target object 4. When anticipated, the heat insulating material 11 is compressed, the thermal resistance of the heat insulating material 11 is reduced, and the heat insulating function of the heat insulating material 11 is suppressed. On the other hand, when the temperature of the heat control object 4 is not expected to rise, the heat insulating material thickness changing means 12 improves the thermal resistance of the heat insulating material 11 by releasing the compression of the heat insulating material 11, and the heat insulating material. 11 heat-insulating function is exhibited.

上記「熱制御対象物4の温度が、熱制御対象物4の性能を十分に発揮させることができる温度範囲の上限を超えて上昇することが予想される場合」とは、例えば、熱制御対象物4が自動車に搭載された充電池であり、当該自動車のエンジンを作動させた場合が挙げられる。上記「断熱材厚変更手段12は、熱制御対象物4の温度が、上昇することが予想されない場合」とは、例えば、熱制御対象物4が自動車に搭載された充電池であり、自動車のエンジンを停止させた場合が挙げられる。   The above-mentioned “when the temperature of the thermal control object 4 is expected to rise beyond the upper limit of the temperature range in which the performance of the thermal control object 4 can be sufficiently exerted” is, for example, the thermal control object A case where the object 4 is a rechargeable battery mounted on a car and the engine of the car is operated. The above-mentioned “when the temperature of the heat control object 4 is not expected to increase” is, for example, a rechargeable battery in which the heat control object 4 is mounted on an automobile. One example is when the engine is stopped.

(第2の実施形態)
本発明の第2の実施形態について図面を参照しつつ説明する。図3は、本発明の第2の実施形態に係る熱制御装置2の構成を示す概略図である。なお、第1の実施形態と同様の構成については、その説明を省略する。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram showing the configuration of the thermal control device 2 according to the second embodiment of the present invention. Note that the description of the same configuration as in the first embodiment is omitted.

第2の実施形態に係る断熱材13は、第1の実施形態に係る断熱材11と同様、弾性体であって、連続した空隙を有している。第2の実施形態に係る断熱材13は、熱伝導性フィラー15を含有する。   The heat insulating material 13 which concerns on 2nd Embodiment is an elastic body similarly to the heat insulating material 11 which concerns on 1st Embodiment, Comprising: It has the continuous space | gap. The heat insulating material 13 according to the second embodiment contains a heat conductive filler 15.

本実施形態で用いられる熱伝導性フィラー15の平均粒径は1〜500μmが好ましく、5〜100μmがより好ましい。平均粒径が1μm未満になると分散させた時にウレタン原液の増粘が起こるため好ましくない。一方、平均粒径が500μmを超えると発泡阻害が起こるため好ましくない。なお、本明細書において、「平均粒径」とは、積算分布(累積分布)の中位径(累積分布曲線で累積量が50%時の粒子径)であり、平均粒径は、動的光散乱法、誘電泳動現象と回折光を利用した方法などによって測定される。また、平均粒径測定時の溶媒として、水、アルコール、アセトンなどを使用することができる。   1-500 micrometers is preferable and, as for the average particle diameter of the heat conductive filler 15 used by this embodiment, 5-100 micrometers is more preferable. When the average particle size is less than 1 μm, the viscosity of the urethane stock solution increases when dispersed, which is not preferable. On the other hand, if the average particle diameter exceeds 500 μm, foaming inhibition occurs, which is not preferable. In the present specification, the “average particle diameter” is a median diameter (particle diameter when the cumulative amount is 50% in the cumulative distribution curve) of the cumulative distribution (cumulative distribution). It is measured by a light scattering method, a method using a dielectrophoresis phenomenon and diffracted light. Moreover, water, alcohol, acetone, etc. can be used as a solvent at the time of measuring an average particle diameter.

本実施形態で用いられる熱伝導性フィラー15のアスペクト比は2〜1000が好ましく、2〜100がより好ましい。アスペクト比が2未満になると断熱材13を圧縮したときに伝熱路が形成され難いため、非圧縮状態から圧縮状態になったときの熱抵抗変化率が低く、好ましくない。一方、アスペクト比が1000を超えると発泡障害がおこり、断熱材の成形性が著しく低下するため好ましくない。なお、熱伝導性フィラー15の「アスペクト比」とは、当該熱伝導性フィラーの平均長径と平均短径の比(平均長径/平均短径)をいう。平均短径とは、熱伝導性フィラーの短い方の辺の長さを意味し、平均長径とは、熱伝導性フィラーの長い方の辺の長さを意味する。平均短径および平均長径は、例えば透過型電子顕微鏡(TEM)により、直接熱伝導性フィラーを観察することにより測定する。無差別に50個の熱伝導性フィラー15をサンプリングして、平均短径及び平均長径を個々にカウントし、その平均値を平均短径及び平均長径とした。   The aspect ratio of the thermally conductive filler 15 used in the present embodiment is preferably 2 to 1000, and more preferably 2 to 100. If the aspect ratio is less than 2, it is difficult to form a heat transfer path when the heat insulating material 13 is compressed. Therefore, the rate of change in thermal resistance when the non-compressed state is changed to the compressed state is low, which is not preferable. On the other hand, if the aspect ratio exceeds 1000, foaming failure occurs, and the moldability of the heat insulating material is remarkably deteriorated, which is not preferable. The “aspect ratio” of the heat conductive filler 15 refers to the ratio of the average major axis to the average minor axis (average major axis / average minor axis) of the thermal conductive filler. The average minor axis means the length of the shorter side of the thermally conductive filler, and the average major axis means the length of the longer side of the thermally conductive filler. The average minor axis and the average major axis are measured, for example, by directly observing the thermally conductive filler with a transmission electron microscope (TEM). Fifty thermal conductive fillers 15 were sampled indiscriminately, the average minor axis and the average major axis were counted individually, and the average values were taken as the average minor axis and the average major axis.

本実施形態で用いられる熱伝導性フィラー15の材料としては、平均粒径およびアスペクト比が上記範囲である熱伝導性フィラーであれば特に制限なく用いることが出来る。一例としては、窒化ホウ素、窒化アルミ、アルミナ、カーボンファイバー、酸化マグネシウム、シリカ、酸化亜鉛、カルボニル鉄粉が挙げられる。これらの中で、上記アスペクト比を有する窒化ホウ素は、その縦方向と横方向でその熱伝導率が大きく異なる特徴があり、断熱材13内で圧縮方向に配向させた場合に熱伝導率の変化率がより大きくなるため好ましい。   As a material of the heat conductive filler 15 used in the present embodiment, any heat conductive filler having an average particle diameter and an aspect ratio in the above ranges can be used without any particular limitation. Examples include boron nitride, aluminum nitride, alumina, carbon fiber, magnesium oxide, silica, zinc oxide, and carbonyl iron powder. Among these, boron nitride having the above aspect ratio has a feature that its thermal conductivity is greatly different in the vertical direction and the horizontal direction, and the change in thermal conductivity when oriented in the compression direction in the heat insulating material 13. This is preferable because the rate becomes higher.

熱伝導性フィラー15の配合割合は、断熱材13の組成物の25体積%以下であることが好ましく、20体積%以下であることがより好ましい。   The blending ratio of the heat conductive filler 15 is preferably 25% by volume or less of the composition of the heat insulating material 13, and more preferably 20% by volume or less.

熱伝導性フィラー15の配合量が上記範囲より多いと、断熱材13の成形性が損なわれることがある。例えば、断熱材13の材質が軟質ポリウレタン樹脂発泡体である場合、成形時に発泡障害が起こることがある。この場合、発泡体を作成できず、断熱材を製造することができない。   When the compounding quantity of the heat conductive filler 15 is more than the said range, the moldability of the heat insulating material 13 may be impaired. For example, when the material of the heat insulating material 13 is a soft polyurethane resin foam, a foaming failure may occur during molding. In this case, a foam cannot be created and a heat insulating material cannot be manufactured.

熱伝導性フィラー15の配合割合は、断熱材13の組成物の3体積%以上であることが好ましく、5体積%以上であることがより好ましい。熱伝導性フィラー15の配合量が上記範囲より少ないと、断熱材13を圧縮しても、熱伝導性フィラー15が接触し難く、伝熱路が確保され難いため、熱伝導性フィラー15を配合した効果は低い傾向がある。   The blending ratio of the heat conductive filler 15 is preferably 3% by volume or more of the composition of the heat insulating material 13, and more preferably 5% by volume or more. When the blending amount of the heat conductive filler 15 is less than the above range, even if the heat insulating material 13 is compressed, the heat conductive filler 15 is difficult to contact and a heat transfer path is difficult to be secured. The effect is low.

本実施形態において、熱伝導性フィラーは、1種を単独で用いても良く、平均粒径やアスペクト比、材料の異なるものを2種以上組み合わせて用いても良い。   In the present embodiment, one kind of heat conductive filler may be used alone, or two or more kinds having different average particle diameters, aspect ratios, and materials may be used in combination.

以下に断熱材13の製造方法の一例として、軟質ポリウレタン樹脂発泡体と熱伝導性フィラーを用いた断熱材13の製造方法を説明する。当該製造方法は以下の工程を有する。
(1)軟質ポリウレタン樹脂原料と、熱伝導性フィラーとを計量、混合し、混合材料を調製する混合材料調整工程
(2)上記混合材料調製工程にて調製した混合材料を、金型等に注入し発泡、硬化させる発泡硬化工程
(3)所望の寸法に成形する成形工程
Below, the manufacturing method of the heat insulating material 13 using a soft polyurethane resin foam and a heat conductive filler as an example of the manufacturing method of the heat insulating material 13 is demonstrated. The manufacturing method includes the following steps.
(1) A mixed material adjusting step for measuring and mixing a soft polyurethane resin raw material and a heat conductive filler to prepare a mixed material. (2) Injecting the mixed material prepared in the mixed material preparing step into a mold or the like. Foaming and curing process for foaming and curing (3) molding process for molding to desired dimensions

本実施形態に用いられる軟質ポリウレタン樹脂原料については、第1の実施形態で用いられる軟質ポリウレタン樹脂発泡体の製造方法で用いられる軟質ポリウレタン樹脂原料と同様である。また、発泡剤および添加剤等についても同様である。   The soft polyurethane resin raw material used in the present embodiment is the same as the soft polyurethane resin raw material used in the method for producing the flexible polyurethane resin foam used in the first embodiment. The same applies to foaming agents and additives.

本実施形態に係る軟質ポリウレタン樹脂発泡体は、連続した空隙を有し、かつ熱伝導性フィラー15を含むため、軟質ポリウレタン樹脂発泡体を圧縮したときに熱伝導性フィラー15同士が接触することによって、伝熱路が確保されるため、熱抵抗が大きく低下する。   Since the soft polyurethane resin foam according to the present embodiment has continuous voids and includes the heat conductive filler 15, when the soft polyurethane resin foam is compressed, the heat conductive fillers 15 come into contact with each other. Since the heat transfer path is secured, the thermal resistance is greatly reduced.

本実施形態に係る軟質ポリウレタン樹脂発泡体の製造方法は、上記発泡硬化工程において、当該熱伝導性フィラー15を配向させ、軟質ポリウレタン樹脂原料を硬化させるのも好ましい。上述のように、高アスペクト比を有する熱伝導性フィラー15は、長径方向は短径方向よりも高い熱伝導率を有する。当該熱伝導性フィラー15を含んだ断熱材13を圧縮すると当該熱伝導性フィラー15同士が接触し、当該接触した部分を通して熱が伝達される。従って、当該熱伝導性フィラーの配向方向(すなわち、熱伝導性フィラーの長径方向))が断熱材13の圧縮方向(すなわち、熱制御対象物4に対して垂直方向)に対して略平行になるように当該断熱材13を熱制御対象物4の周囲に設けることにより、圧縮時の断熱材13の熱伝導率をさらに向上させることができる。   In the method for producing a flexible polyurethane resin foam according to the present embodiment, it is also preferable that the thermal conductive filler 15 is oriented and the flexible polyurethane resin raw material is cured in the foam curing step. As described above, the heat conductive filler 15 having a high aspect ratio has a higher thermal conductivity in the major axis direction than in the minor axis direction. When the heat insulating material 13 including the heat conductive filler 15 is compressed, the heat conductive fillers 15 come into contact with each other, and heat is transmitted through the contacted part. Accordingly, the orientation direction of the heat conductive filler (that is, the major axis direction of the heat conductive filler) is substantially parallel to the compression direction of the heat insulating material 13 (that is, the direction perpendicular to the heat control object 4). Thus, the thermal conductivity of the heat insulating material 13 at the time of compression can be further improved by providing the heat insulating material 13 around the thermal control object 4.

上記発泡硬化工程で当該熱伝導性フィラー15を配向させる手法の一例としては、電場を用いて配向させる手法が挙げられる。すなわち、電場中で熱伝導性フィラー15を含んだ軟質ポリウレタン樹脂材料を硬化させることにより、熱伝導性フィラー15を配向させることができる。   An example of a method for orienting the thermal conductive filler 15 in the foam curing step is a method for orienting using an electric field. That is, the heat conductive filler 15 can be oriented by curing the soft polyurethane resin material containing the heat conductive filler 15 in an electric field.

参考として、表2に、本実施形態において好ましいアスペクト比を有する熱伝導性フィラー15を含む軟質ポリウレタン樹脂発泡体の非圧縮時および圧縮時の熱抵抗等(実験例2〜6)を示す。   As a reference, Table 2 shows the thermal resistance and the like (Experimental Examples 2 to 6) during non-compression and compression of a flexible polyurethane resin foam containing the thermally conductive filler 15 having a preferred aspect ratio in the present embodiment.

(実験例2)
下記原料および配合に基づき、常法により、高い連続空隙率を有する軟質ポリウレタン樹脂発泡体を調製した。なお、熱伝導性フィラーの配合量は、軟質ポリウレタン樹脂発泡体の組成物の体積中の体積%で規定した。
<原料および配合>
1)ポリエーテルポリオール化合物
・アクトコールLR−00(三井化学社製):100重量部
2)架橋剤
・グリセリン(ナカライテスク社製):2重量部
3)発泡剤
・水:2重量部
4)触媒
・Dabco33LV(東ソー社製):0.4重量部
・T−9(東栄化学工業社製):0.1重量部
5)整泡剤
・B−8017(ゴールドシュミット社製):1重量部
6)イソシアネート成分
・コスモネートT−80[TDI−80](三井化学社製):29.2重量部
7)熱伝導性フィラー
・窒化ホウ素BN(デンカボロンナイトライド−GP:平均粒子径D508.0、アスペクト比8.7):32.2重量部(10体積%)
(Experimental example 2)
Based on the following raw materials and blending, a flexible polyurethane resin foam having a high continuous porosity was prepared by a conventional method. In addition, the compounding quantity of the heat conductive filler was prescribed | regulated by the volume% in the volume of the composition of a flexible polyurethane resin foam.
<Raw materials and blending>
1) Polyether polyol compound, Actol LR-00 (manufactured by Mitsui Chemicals): 100 parts by weight 2) Crosslinking agent / glycerin (manufactured by Nacalai Tesque): 2 parts by weight 3) Foaming agent / water: 2 parts by weight 4) Catalyst / Dabco33LV (manufactured by Tosoh Corporation): 0.4 parts by weight T-9 (manufactured by Toei Chemical Co., Ltd.): 0.1 parts by weight 5) Foam stabilizer / B-8017 (manufactured by Goldschmidt): 1 part by weight 6) Isocyanate component / Cosmonate T-80 [TDI-80] (manufactured by Mitsui Chemicals): 29.2 parts by weight 7) Thermally conductive filler / boron nitride BN (Dencaboron nitride-GP: average particle size D 50) 8.0, aspect ratio 8.7): 32.2 parts by weight (10% by volume)

(実験例3)
下記原料および配合に基づき、常法により、高い連続空隙率を有する軟質ポリウレタン樹脂発泡体を調製した。
<原料および配合>
1)ポリエーテルポリオール化合物
・アクトコールLR−00(三井化学社製):100重量部
2)架橋剤
・グリセリン(ナカライテスク社製):2重量部
3)発泡剤
・水:2重量部
4)触媒
・Dabco33LV(東ソー社製):0.4重量部
・T−9(東栄化学工業社製):0.1重量部
5)整泡剤
・B−8017(ゴールドシュミット社製):1重量部
6)イソシアネート成分
・コスモネートT−80[TDI−80](三井化学社製):29.2重量部
7)熱伝導性フィラー
・窒化ホウ素BN(デンカボロンナイトライド−GP):51.1重量部(15体積%)
(Experimental example 3)
Based on the following raw materials and blending, a flexible polyurethane resin foam having a high continuous porosity was prepared by a conventional method.
<Raw materials and blending>
1) Polyether polyol compound, Actol LR-00 (manufactured by Mitsui Chemicals): 100 parts by weight 2) Crosslinking agent / glycerin (manufactured by Nacalai Tesque): 2 parts by weight 3) Foaming agent / water: 2 parts by weight 4) Catalyst / Dabco33LV (manufactured by Tosoh Corporation): 0.4 parts by weight T-9 (manufactured by Toei Chemical Co., Ltd.): 0.1 parts by weight 5) Foam stabilizer / B-8017 (manufactured by Goldschmidt): 1 part by weight 6) Isocyanate component / Cosmonate T-80 [TDI-80] (manufactured by Mitsui Chemicals): 29.2 parts by weight 7) Thermally conductive filler / boron nitride BN (Dencaboron nitride-GP): 51.1 weight Parts (15% by volume)

(実験例4)
上記実験例2の原料および配合に基づき、常法により、高い連続空隙率を有する軟質ポリウレタン樹脂発泡体を調製した。なお、本実験例4は、上記発泡硬化工程で、電場によって熱伝導性フィラーを配向させ、軟質ポリウレタン樹脂原料を発泡、硬化させた。
(Experimental example 4)
A flexible polyurethane resin foam having a high continuous porosity was prepared by a conventional method based on the raw materials and blends in Experimental Example 2 above. In Experimental Example 4, in the foam curing step, the heat conductive filler was oriented by an electric field, and the soft polyurethane resin raw material was foamed and cured.

(実験例5)
上記実験例3の原料および配合に基づき、常法により、高い連続空隙率を有する軟質ポリウレタン樹脂発泡体を調製した。なお、本実験例5は、上記発泡硬化工程で、電場によって熱伝導性フィラーを配向させ、軟質ポリウレタン樹脂原料を発泡、硬化させた。
(Experimental example 5)
Based on the raw materials and blends of Experimental Example 3, a flexible polyurethane resin foam having a high continuous porosity was prepared by a conventional method. In Experimental Example 5, in the foam curing step, the thermally conductive filler was oriented by an electric field, and the soft polyurethane resin raw material was foamed and cured.

(実験例6)
下記原料および配合に基づき、常法により、高い連続空隙率を有する軟質ポリウレタン樹脂発泡体を調製した。
<原料および配合>
1)ポリエーテルポリオール化合物
・アクトコールLR−00(三井化学社製):100重量部
2)架橋剤
・グリセリン(ナカライテスク社製):2重量部
3)発泡剤
・水:2重量部
4)触媒
・Dabco33LV(東ソー社製):0.4重量部
・T−9(東栄化学工業社製):0.1重量部
5)整泡剤
・B−8017(ゴールドシュミット社製):1重量部
6)イソシアネート成分
・コスモネートT−80[TDI−80](三井化学社製):29.2重量部
7)熱伝導性フィラー
・窒化ホウ素BN(デンカボロンナイトライド−GP):124.1重量部(30体積%)
(Experimental example 6)
Based on the following raw materials and blending, a flexible polyurethane resin foam having a high continuous porosity was prepared by a conventional method.
<Raw materials and blending>
1) Polyether polyol compound, Actol LR-00 (manufactured by Mitsui Chemicals): 100 parts by weight 2) Crosslinking agent / glycerin (manufactured by Nacalai Tesque): 2 parts by weight 3) Foaming agent / water: 2 parts by weight 4) Catalyst / Dabco33LV (manufactured by Tosoh Corporation): 0.4 parts by weight T-9 (manufactured by Toei Chemical Co., Ltd.): 0.1 parts by weight 5) Foam stabilizer / B-8017 (manufactured by Goldschmidt): 1 part by weight 6) Isocyanate component / Cosmonate T-80 [TDI-80] (manufactured by Mitsui Chemicals): 29.2 parts by weight 7) Thermally conductive filler / boron nitride BN (Dencaboron nitride-GP): 124.1 weight Parts (30% by volume)

<評価方法>
第1の実施形態に記載の方法と同様に行なった。なお、評価において軟質ポリウレタン樹脂発泡体を圧縮する際、圧縮方向は熱伝導性フィラーの配向方向と略平行になるようにした。
<Evaluation method>
The same method as described in the first embodiment was performed. In the evaluation, when compressing the flexible polyurethane resin foam, the compression direction was made substantially parallel to the orientation direction of the heat conductive filler.

上記各軟質ポリウレタン樹脂発泡体における評価結果を表2に示す。なお、実験例6は、窒化ホウ素の添加量が多く、軟質ポリウレタン樹脂の発泡障害がおこるため、軟質ポリウレタン樹脂発泡体を作成できなかった。   Table 2 shows the evaluation results for each of the above flexible polyurethane resin foams. In Experimental Example 6, since a large amount of boron nitride was added and a foaming failure of the soft polyurethane resin occurred, a soft polyurethane resin foam could not be prepared.

Figure 2013113408
Figure 2013113408

表2の結果より、実験例2〜5に係る軟質ポリウレタン樹脂発泡体は、本実施形態において好ましいアスペクト比を有する熱伝導性フィラーを含有し、圧縮時には熱伝導性フィラー同士が接触して伝熱路が確保されやすいため、非圧縮状態から圧縮状態になったときの熱抵抗変化率が高い。   From the results shown in Table 2, the flexible polyurethane resin foams according to Experimental Examples 2 to 5 contain the heat conductive filler having a preferred aspect ratio in the present embodiment, and the heat conductive fillers come into contact with each other during compression to transfer heat. Since the path is easily secured, the rate of change in thermal resistance when the non-compressed state is changed to the compressed state is high.

なお、上記では断熱材13の材質として軟質ポリウレタン樹脂発泡体を用いた場合の断熱材13の製造方法を記載した。しかしながら、他の一実施形態として、断熱材13の材質に不織布を用いることが挙げられる。不織布を使用する場合、熱伝導性フィラーを配向させる手法の一例としては、表面に熱伝導性フィラーを配向させて設けた不織布を積層することによって、所望の厚さの断熱材13を製造することが挙げられる。   In addition, the manufacturing method of the heat insulating material 13 at the time of using a flexible polyurethane resin foam as a material of the heat insulating material 13 was described above. However, as another embodiment, a non-woven fabric is used as the material of the heat insulating material 13. When using a nonwoven fabric, as an example of a method for orienting the heat conductive filler, the heat insulating material 13 having a desired thickness is manufactured by laminating the nonwoven fabric provided with the heat conductive filler oriented on the surface. Is mentioned.

図4は、本実施形態に係る熱制御装置2の、断熱材13が断熱材厚変更手段12によって圧縮されて厚みを調節された状態の一例を示す概略図である。本実施形態に係る断熱材13は、連続した空隙を有し、かつ熱伝導性フィラー15を含むため、軟質ポリウレタン樹脂発泡体を圧縮したときに熱伝導性フィラー15同士が接触し、伝熱路が確保されるため、熱抵抗がより大きく低下する。   FIG. 4 is a schematic diagram illustrating an example of a state in which the heat insulating material 13 is compressed by the heat insulating material thickness changing unit 12 and the thickness is adjusted in the heat control apparatus 2 according to the present embodiment. Since the heat insulating material 13 according to this embodiment has continuous voids and includes the heat conductive filler 15, the heat conductive fillers 15 come into contact with each other when the soft polyurethane resin foam is compressed, and the heat transfer path Therefore, the thermal resistance is greatly reduced.

(第3の実施形態)
本発明の第3の実施形態について図面を参照しつつ説明する。図5は、本発明の第3の実施形態に係る熱制御装置3の構成を示す概略図である。なお、他の実施形態と同様の構成については、その説明を省略する。
(Third embodiment)
A third embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a schematic diagram showing the configuration of the thermal control device 3 according to the third embodiment of the present invention. Note that the description of the same configuration as in the other embodiments is omitted.

第3の実施形態に係る熱制御装置3は、温度計測手段16を有する。温度計測手段16は、熱制御対象物4の温度Tpを計測する。温度計測手段16は、熱制御対象物4の温度を測定出来る手段であれば、公知一般のいかなる手法でも用いることができる。温度計測手段16により計測された温度Tpが、予め定められたしきい値Thを超えたとき、断熱材厚変更手段12は断熱材11を圧縮する。しきい値Thは、例えば、熱制御対象物4の性能を十分に発揮させることができる温度範囲の上限を示す任意の値である。これにより、熱制御対象物4の温度が高いときは、図6に示すように、断熱材11を圧縮し、断熱材11の熱抵抗を下げ、熱制御対象物4が有する熱を放出して温度を下げることができる。一方、例えば、熱制御対象物4の温度がしきい値Th以下のときは断熱材11の圧縮を解放等し、断熱材11の熱抵抗を上げて断熱機能を高め、熱制御対象物4の温度が低下するのを防ぐことができる。   The thermal control device 3 according to the third embodiment includes a temperature measurement unit 16. The temperature measuring means 16 measures the temperature Tp of the thermal control object 4. As long as the temperature measurement means 16 is a means which can measure the temperature of the thermal control target object 4, it can use any well-known general method. When the temperature Tp measured by the temperature measuring means 16 exceeds a predetermined threshold Th, the heat insulating material thickness changing means 12 compresses the heat insulating material 11. The threshold value Th is, for example, an arbitrary value indicating the upper limit of the temperature range in which the performance of the thermal control object 4 can be sufficiently exerted. Thereby, when the temperature of the heat control object 4 is high, as shown in FIG. 6, the heat insulating material 11 is compressed, the heat resistance of the heat insulating material 11 is lowered, and the heat of the heat control object 4 is released. The temperature can be lowered. On the other hand, for example, when the temperature of the heat control object 4 is equal to or lower than the threshold value Th, the compression of the heat insulating material 11 is released, and the heat resistance of the heat insulating material 11 is increased to increase the heat insulating function. The temperature can be prevented from decreasing.

なお、第3の実施形態においては、温度計測手段16によって計測された熱制御対象物4の温度Tpがしきい値Thを超えた場合に、断熱材厚変更手段12は断熱材11を圧縮し、断熱機能を切り替えた。しかしながら、他の実施形態では、熱制御対象物4の温度と、断熱材11の当該温度での好ましい厚みとの相関関係を示すデータを記憶させておき、任意の間隔(例えば1分)で測定された熱制御対象物4の温度に応じて、適宜断熱材11の厚みを変更してもよい。   In the third embodiment, when the temperature Tp of the thermal control object 4 measured by the temperature measuring unit 16 exceeds the threshold value Th, the heat insulating material thickness changing unit 12 compresses the heat insulating material 11. , Switched insulation function. However, in another embodiment, data indicating the correlation between the temperature of the thermal control object 4 and the preferable thickness of the heat insulating material 11 at the temperature is stored, and measured at an arbitrary interval (for example, 1 minute). The thickness of the heat insulating material 11 may be changed as appropriate according to the temperature of the thermal control object 4 that has been made.

なお、説明の便宜上、第3の実施形態に係る熱制御装置1に用いる断熱材として第1の実施形態に係る断熱材11を用いた。しかしながら、第1の実施形態に係る断熱材11の代わりに、第2の実施形態に係る断熱材13を用いてもよい。   For convenience of explanation, the heat insulating material 11 according to the first embodiment is used as the heat insulating material used in the heat control apparatus 1 according to the third embodiment. However, you may use the heat insulating material 13 which concerns on 2nd Embodiment instead of the heat insulating material 11 which concerns on 1st Embodiment.

以上、本発明を詳細に説明してきたが、上述の説明はあらゆる点において本発明の一例にすぎず、その範囲を限定しようとするものではない。本発明の範囲を逸脱することなく種々の改良や変形を行うことが可能である。   Although the present invention has been described in detail above, the above description is merely an example of the present invention in all respects and is not intended to limit the scope thereof. Various improvements and modifications can be made without departing from the scope of the present invention.

本発明に係る熱制御装置および熱制御方法は、自動車に搭載された充電池の温度を調節する自動車用充電池に好適に利用することができる。   The thermal control device and the thermal control method according to the present invention can be suitably used for an automotive rechargeable battery that adjusts the temperature of the rechargeable battery mounted on the automobile.

1、2、3 熱制御装置
11、13 断熱材
12 断熱材厚変更手段
15 熱伝導性フィラー
16 温度計測手段
4 熱制御対象物
1, 2, 3 Thermal control device 11, 13 Thermal insulation material 12 Thermal insulation material thickness changing means 15 Thermal conductive filler 16 Temperature measurement means 4 Thermal control object

Claims (8)

熱制御対象物の周囲に設けられ連続した空隙を有する断熱材と、
前記断熱材の熱抵抗を変化させるために前記断熱材の厚みを変更させる断熱材厚変更手段と、を有する熱制御装置。
A heat insulating material provided around the thermal control object and having a continuous gap;
A heat control apparatus comprising: heat insulating material thickness changing means for changing the thickness of the heat insulating material in order to change the thermal resistance of the heat insulating material.
前記断熱材は、樹脂発泡体であることを特徴とする、請求項1に記載の熱制御装置。   The thermal control device according to claim 1, wherein the heat insulating material is a resin foam. 前記樹脂発泡体は、軟質ポリウレタン樹脂を含むことを特徴とする、請求項2に記載の熱制御装置。   The thermal control device according to claim 2, wherein the resin foam includes a soft polyurethane resin. 前記断熱材は、熱伝導性フィラーを含むことを特徴とする、請求項1〜3いずれか1項に記載の熱制御装置。   The said heat insulating material contains a heat conductive filler, The heat control apparatus of any one of Claims 1-3 characterized by the above-mentioned. 前記熱伝導性フィラーは、窒化ホウ素を含むことを特徴とする、請求項4に記載の熱制御装置。   The thermal control device according to claim 4, wherein the thermally conductive filler includes boron nitride. 前記熱伝導性フィラーは、熱制御対象物に対して略垂直に配向されていることを特徴とする、請求項4または5に記載の熱制御装置。   The thermal control device according to claim 4, wherein the thermally conductive filler is oriented substantially perpendicular to the thermal control object. 前記熱制御装置は、前記熱制御対象物の温度を取得する温度取得手段を有し、
前記断熱材厚変更手段は、前記温度取得手段によって取得された前記熱制御対象物の温度に基づいて前記断熱材の厚みを変更させることを特徴とする、請求項1〜6いずれか1項に記載の熱制御装置。
The thermal control device has temperature acquisition means for acquiring the temperature of the thermal control object,
The said heat insulating material thickness change means changes the thickness of the said heat insulating material based on the temperature of the said heat control target acquired by the said temperature acquisition means, The any one of Claims 1-6 characterized by the above-mentioned. The thermal control device described.
熱制御対象物の周囲に設けられ連続した空隙を有する断熱材の厚みを変化させ、前記断熱材の熱抵抗を変化させることにより、前記熱制御対象物の熱を制御する熱制御方法。   A thermal control method for controlling the heat of the thermal control object by changing the thickness of the thermal insulation material provided around the thermal control object and having a continuous gap and changing the thermal resistance of the thermal insulation material.
JP2011262192A 2011-11-30 2011-11-30 Thermal control apparatus and thermal control method Expired - Fee Related JP5893364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262192A JP5893364B2 (en) 2011-11-30 2011-11-30 Thermal control apparatus and thermal control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262192A JP5893364B2 (en) 2011-11-30 2011-11-30 Thermal control apparatus and thermal control method

Publications (2)

Publication Number Publication Date
JP2013113408A true JP2013113408A (en) 2013-06-10
JP5893364B2 JP5893364B2 (en) 2016-03-23

Family

ID=48709124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262192A Expired - Fee Related JP5893364B2 (en) 2011-11-30 2011-11-30 Thermal control apparatus and thermal control method

Country Status (1)

Country Link
JP (1) JP5893364B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089896A (en) * 2013-11-05 2015-05-11 東洋ゴム工業株式会社 Thermal conductivity variable material
JP2018109101A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Composite material and method of producing the same
WO2019031457A1 (en) * 2017-08-08 2019-02-14 株式会社Gsユアサ Electricity storage module and electricity storage element

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121594U (en) * 1983-02-02 1984-08-16 新日本製鐵株式会社 Telescopic tube structure
JPS622093A (en) * 1985-06-26 1987-01-08 松下電器産業株式会社 Heat-insulating structure
JPH0510556B2 (en) * 1984-11-15 1993-02-10 Isuzu Jidosha Kk
JPH0674391A (en) * 1992-08-24 1994-03-15 Kubota Corp Vacuum heat insulation and attachment device therefor
JPH07226229A (en) * 1994-02-09 1995-08-22 Kubota Corp Heat insulation container for high temperature battery
JPH09329290A (en) * 1996-06-10 1997-12-22 Matsushita Electric Ind Co Ltd Thermal conductivity variable heat insulation material and using method therefor
JPH11210982A (en) * 1998-01-19 1999-08-06 Yoshie Kanai Heat-insulating material and battery function deterioration preventing device using this material
JP2001345117A (en) * 2000-06-01 2001-12-14 Ngk Insulators Ltd Insulating container for battery system and method of controlling heat discharge
JP2004047208A (en) * 2002-07-10 2004-02-12 Ngk Insulators Ltd Heat insulating container for battery system
JP2006120359A (en) * 2004-10-07 2006-05-11 Yi-Chieh Wu Structure of battery case temperature control fan
JP2006125598A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Shape adjustable heat insulating device and rice cooker using it
JP2008064136A (en) * 2006-09-05 2008-03-21 Matsushita Electric Ind Co Ltd Cooling/warming system
JP2009301877A (en) * 2008-06-13 2009-12-24 Toyoda Gosei Co Ltd Battery pack device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121594U (en) * 1983-02-02 1984-08-16 新日本製鐵株式会社 Telescopic tube structure
JPH0510556B2 (en) * 1984-11-15 1993-02-10 Isuzu Jidosha Kk
JPS622093A (en) * 1985-06-26 1987-01-08 松下電器産業株式会社 Heat-insulating structure
JPH0674391A (en) * 1992-08-24 1994-03-15 Kubota Corp Vacuum heat insulation and attachment device therefor
JPH07226229A (en) * 1994-02-09 1995-08-22 Kubota Corp Heat insulation container for high temperature battery
JPH09329290A (en) * 1996-06-10 1997-12-22 Matsushita Electric Ind Co Ltd Thermal conductivity variable heat insulation material and using method therefor
JPH11210982A (en) * 1998-01-19 1999-08-06 Yoshie Kanai Heat-insulating material and battery function deterioration preventing device using this material
JP2001345117A (en) * 2000-06-01 2001-12-14 Ngk Insulators Ltd Insulating container for battery system and method of controlling heat discharge
JP2004047208A (en) * 2002-07-10 2004-02-12 Ngk Insulators Ltd Heat insulating container for battery system
JP2006120359A (en) * 2004-10-07 2006-05-11 Yi-Chieh Wu Structure of battery case temperature control fan
JP2006125598A (en) * 2004-11-01 2006-05-18 Matsushita Electric Ind Co Ltd Shape adjustable heat insulating device and rice cooker using it
JP2008064136A (en) * 2006-09-05 2008-03-21 Matsushita Electric Ind Co Ltd Cooling/warming system
JP2009301877A (en) * 2008-06-13 2009-12-24 Toyoda Gosei Co Ltd Battery pack device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089896A (en) * 2013-11-05 2015-05-11 東洋ゴム工業株式会社 Thermal conductivity variable material
JP2018109101A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Composite material and method of producing the same
WO2019031457A1 (en) * 2017-08-08 2019-02-14 株式会社Gsユアサ Electricity storage module and electricity storage element
CN110998905A (en) * 2017-08-08 2020-04-10 株式会社杰士汤浅国际 Power storage module and power storage element
EP3667762A4 (en) * 2017-08-08 2020-08-19 GS Yuasa International Ltd. Electricity storage module and electricity storage element
JPWO2019031457A1 (en) * 2017-08-08 2020-09-03 株式会社Gsユアサ Power storage module and power storage element
US11509015B2 (en) 2017-08-08 2022-11-22 Gs Yuasa International Ltd. Energy storage module and energy storage device
JP7214637B2 (en) 2017-08-08 2023-01-30 株式会社Gsユアサ Storage module and storage element

Also Published As

Publication number Publication date
JP5893364B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
Gavgani et al. Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties
KR102558979B1 (en) Thermally conductive sheet
JP5861185B2 (en) Thermally conductive polymer composition
JP5893364B2 (en) Thermal control apparatus and thermal control method
CN102971365B (en) Thermally conductive sheet and process for producing same
JP6785790B2 (en) Heat storage material
Kim et al. Glass fiber reinforced rigid polyurethane foams
KR20140013920A (en) Rubber composition based on a silicone elastomer and on a pcm, process for the preparation thereof, flexible element and thermal control/regulating system incorporating same
CN104024315A (en) Polypropylene-based resin foamed particles having excellent flame retardancy and conductivity and polypropylene-based resin in-mold foamed molded product
JP2014520920A (en) Improvement of sound absorption in foamed insulation
Chau et al. Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams
EP2036695B1 (en) Urethane foam molded article, manufacturing method thereof, and magnetic induction foam molding apparatus
Lei et al. Effect of crosslinking density on resilient performance of low‐resilience flexible polyurethane foams
Yıldırım et al. Acoustic properties of polyurethane compositions enhanced with multi‐walled carbon nanotubes and silica nanoparticles: Akustische Eigenschaften von durch mehrwandige Kohlenstoff‐Nanoröhren und Silizium‐Nanopartikel verstärkten Polyurethan‐Verbundwerkstoffen
JP6153702B2 (en) Variable thermal conductivity material
Bai et al. Lightweight poly (vinylidene fluoride) based quaternary nanocomposite foams with efficient and tailorable electromagnetic interference shielding properties
JP2012214625A (en) Resin foam and method of manufacturing the same
JP4386441B2 (en) Fireproof joint material
JP5041843B2 (en) Low thermal conductive heat resistant foam and method for producing the same
JP2022082862A (en) Thermally conductive composition and thermally conductive sheet using the same
KR100576970B1 (en) Composition for steel-based friction material
JP4761362B2 (en) Buffering resin composition and cushioning material
KR101240928B1 (en) Polyurethane foam acoustic absorbent using dash-panel of automobile
JP2015089897A (en) Thermal conductivity variable material using hollow magnetic particle
Wei et al. Study of the sound absorption performance of ethylene-vinyl acetate foam materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160224

R150 Certificate of patent or registration of utility model

Ref document number: 5893364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees