JP2015089897A - Thermal conductivity variable material using hollow magnetic particle - Google Patents

Thermal conductivity variable material using hollow magnetic particle Download PDF

Info

Publication number
JP2015089897A
JP2015089897A JP2013229224A JP2013229224A JP2015089897A JP 2015089897 A JP2015089897 A JP 2015089897A JP 2013229224 A JP2013229224 A JP 2013229224A JP 2013229224 A JP2013229224 A JP 2013229224A JP 2015089897 A JP2015089897 A JP 2015089897A
Authority
JP
Japan
Prior art keywords
thermal conductivity
hollow particles
magnetic field
magnetically polarized
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013229224A
Other languages
Japanese (ja)
Other versions
JP6427314B2 (en
Inventor
功一 上野
Koichi Ueno
功一 上野
哲 三俣
Satoru Mitsumata
哲 三俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2013229224A priority Critical patent/JP6427314B2/en
Publication of JP2015089897A publication Critical patent/JP2015089897A/en
Application granted granted Critical
Publication of JP6427314B2 publication Critical patent/JP6427314B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal conductivity variable material for realizing a heat control device that does not require the installation of a cooling device separate from an insulation material and that is simple and compact in construction.SOLUTION: Provided is a thermal conductivity variable material which is a high molecular weight material into which a hollow particle having a higher thermal conductivity than the high molecular weight material and having a magnetic polarization property as a result of magnetic field action, and/or a hollow particle having an electric polarization property as a result of electric field action, is dispersed, and which is characterized in that by applying a magnetic and/or electric field, at least portions of the hollow particles come into contact with each other and the thermal conductivity increases.

Description

本発明は、熱伝導率可変材料、当該熱伝導率可変材料を用いた熱制御装置、及び当該熱伝導率可変材料を用いた熱制御方法に関する。   The present invention relates to a thermal conductivity variable material, a thermal control device using the thermal conductivity variable material, and a thermal control method using the thermal conductivity variable material.

断熱材は多くの分野で使用されており、例えば、充電池は、その性能を十分に発揮させるための適切な温度範囲が存在するため、寒冷地等の気温の低い場所では充電池の温度を下げないために断熱材が用いられている。   Insulation materials are used in many fields.For example, since there is an appropriate temperature range for rechargeable batteries to fully demonstrate their performance, the temperature of the rechargeable batteries can be controlled in cold places such as cold regions. Insulation is used to prevent it from being lowered.

しかし、充電池を断熱材等で覆うと、充電池を使用したときに発生した熱を放出することが出来なくなるため、充電池の温度が上昇し、その性能が低下する。   However, if the rechargeable battery is covered with a heat insulating material or the like, the heat generated when the rechargeable battery is used cannot be released, so the temperature of the rechargeable battery rises and its performance decreases.

従来、この問題を解決するために、充電池を断熱材で覆い、充電池の温度が一定以上に達したときにファン等で冷却する熱制御装置が知られている(特許文献1)。   Conventionally, in order to solve this problem, a thermal control device is known in which a rechargeable battery is covered with a heat insulating material and cooled by a fan or the like when the temperature of the rechargeable battery reaches a certain level (Patent Document 1).

しかし、従来の熱制御装置は断熱材とは別に冷却装置を設ける必要があり、熱制御装置が大型になった。さらに、冷却装置として冷却ファン等を設けた場合は、冷却時に継続的にファンを回す電力が必要となる上、非常に複雑な配線の構成等が必要となる等の問題があった。また、冷却装置としてヒートパイプ等を備えた場合(特許文献2)も同様に、その構造は非常に複雑かつ大きくなる。   However, the conventional heat control device needs to be provided with a cooling device separately from the heat insulating material, and the heat control device has become large. Further, when a cooling fan or the like is provided as a cooling device, there is a problem that electric power for continuously rotating the fan is required during cooling and a very complicated wiring configuration is required. Similarly, when a heat pipe or the like is provided as a cooling device (Patent Document 2), the structure is very complicated and large.

特開2001−76771号公報JP 2001-76771 A 特開平10−55827号公報Japanese Patent Laid-Open No. 10-55827

本発明は、前記課題に鑑みてなされたものであり、断熱材と別に冷却装置を設ける必要がないシンプルかつコンパクトな構成の熱制御装置及び熱制御方法を実現するための材料を提供することを目的とする。   This invention is made | formed in view of the said subject, and provides the material for implement | achieving the thermal control apparatus and thermal control method of a simple and compact structure which do not need to provide a cooling device separately from a heat insulating material. Objective.

本発明は、高分子材料中に、当該高分子材料よりも高い熱伝導率を有し、磁場作用により磁気分極する性質を有する中空粒子、及び/又は電場作用により電気分極する性質を有する中空粒子が分散しており、磁場及び/又は電場を印加することによって前記中空粒子の少なくとも一部が相互に接触し熱伝導率が上昇することを特徴とする、熱伝導率可変材料である。   The present invention relates to a hollow particle having a higher thermal conductivity in the polymer material than that of the polymer material and having a property of being magnetically polarized by a magnetic field effect and / or a property of being electrically polarized by an electric field effect. Are dispersed, and when a magnetic field and / or an electric field is applied, at least a part of the hollow particles come into contact with each other and the thermal conductivity is increased.

本発明の熱伝導率可変材料は、高分子材料中に、当該高分子材料よりも高い熱伝導率を有し、磁場作用により磁気分極する性質を有する中空粒子、及び/又は電場作用により電気分極する性質を有する中空粒子が分散している。そのため、本発明の熱伝導率可変材料は、磁場等を印加して前記中空粒子の少なくとも一部を相互に接触させることにより伝熱路が確保されるため、熱伝導率を上昇させることができる。また、本発明の熱伝導率可変材料は、磁場等を印加していない状態、又は印加する磁場等が弱い状態では、前記高分子材料が有する弾性によって前記中空粒子が相互に離れて伝熱路が断たれるため、熱伝導率を低下させることができる。つまり、本発明の熱伝導率可変材料は、印加する磁場等の強さによって熱伝導率を無断階に変化させることができるため、当該熱伝導率可変材料を熱制御装置の材料として使用することにより、断熱材と別個に冷却装置を設ける必要がない、シンプルかつコンパクトな構成の熱制御装置及び熱制御方法を提供することができる。また、本発明は中空粒子を用いているため、中実粒子を用いた場合よりも磁場等を印加していない状態の熱伝導率が低い。そのため、本発明は、磁場等を印加していない状態から磁場等を印加した状態の熱伝導率の変化率(熱伝導率変化率)を大きくすることができる。   The heat conductivity variable material of the present invention is a hollow particle having a property of being magnetically polarized by a magnetic field action and / or electric polarization by an electric field action in the polymer material. The hollow particles having the property to be dispersed are dispersed. Therefore, the heat conductivity variable material of the present invention can increase the heat conductivity because a heat transfer path is secured by applying a magnetic field or the like to bring at least a part of the hollow particles into contact with each other. . Further, in the heat conductivity variable material of the present invention, in a state where a magnetic field or the like is not applied, or in a state where the applied magnetic field or the like is weak, the hollow particles are separated from each other by the elasticity of the polymer material. Is cut off, the thermal conductivity can be reduced. In other words, since the thermal conductivity variable material of the present invention can change the thermal conductivity without change depending on the strength of the applied magnetic field or the like, the thermal conductivity variable material should be used as the material of the thermal control device. Therefore, it is possible to provide a heat control device and a heat control method with a simple and compact configuration that do not require a cooling device separately from the heat insulating material. Moreover, since the present invention uses hollow particles, the thermal conductivity in a state where no magnetic field or the like is applied is lower than when solid particles are used. For this reason, the present invention can increase the rate of change in thermal conductivity (rate of change in thermal conductivity) from a state where a magnetic field or the like is not applied to a state where a magnetic field or the like is applied.

本発明の実施形態に係る熱制御装置を示す概略図Schematic which shows the thermal control apparatus which concerns on embodiment of this invention. 磁場印加手段によって磁気分極中空粒子を相互に接触させた熱制御装置を示す概略図Schematic showing a thermal control device in which magnetically polarized hollow particles are brought into contact with each other by a magnetic field applying means.

本実施形態に係る熱伝導率可変材料は、高分子材料中に、前記高分子材料よりも高い熱伝導率を有し、磁場作用により磁気分極する性質を有する中空粒子が分散しており、磁場を印加することによって前記中空粒子の少なくとも一部が相互に接触し熱伝導率が上昇する。以下、磁場作用により磁気分極する性質を有する粒子を磁気分極中空粒子と称する。   The heat conductivity variable material according to the present embodiment has a higher thermal conductivity than the polymer material in the polymer material, and hollow particles having a property of being magnetically polarized by the magnetic field action are dispersed in the polymer material. Is applied, at least a part of the hollow particles come into contact with each other to increase the thermal conductivity. Hereinafter, particles having the property of being magnetically polarized by the action of a magnetic field are referred to as magnetically polarized hollow particles.

(高分子材料)
本実施形態の熱伝導率可変材料に用いる高分子材料は、弾性を有し、分散された状態の前記磁気分極中空粒子を保持できる材料であれば特に限定されない。当該高分子材料の例としては、ポリウレタン、シリコンゴム、エチレン―プロピレンゴム、ブタジエンゴム、イソプレンゴム、ポリビニルアルコール、ポリアクリルアミド、ポリスチレン、エチレン―酢酸ビニル共重合体、ポリプロピレン、その他使用温度においてゴム状あるいは、ゲル状の高分子材料が挙げられる。また、当該高分子材料は可塑剤を含んでいても良い。
(Polymer material)
The polymer material used for the thermal conductivity variable material of this embodiment is not particularly limited as long as it is elastic and can hold the magnetically polarized hollow particles in a dispersed state. Examples of the polymer material include polyurethane, silicon rubber, ethylene-propylene rubber, butadiene rubber, isoprene rubber, polyvinyl alcohol, polyacrylamide, polystyrene, ethylene-vinyl acetate copolymer, polypropylene, and other rubbery or And a gel-like polymer material. The polymer material may contain a plasticizer.

前記高分子材料は、磁気分極中空粒子を含まない状態でのせん断弾性率が200kPa以下であることが好ましく、100kPa以下であることがより好ましく、50kPa以下であることが最も好ましい。また、前記高分子材料は、磁気分極中空粒子を含まない状態でのせん断弾性率が0.1kPa以上であることが好ましく、1kPa以上であることがより好ましく、3kPa以上であることが最も好ましい。前記せん断弾性率が200kPaを超えると、高分子材料中に分散されている磁気分極中空粒子の少なくとも一部を磁場作用によって相互に接触させて熱伝導率可変材料の熱伝導率を高めることが困難になる。また、前記せん断弾性率が0.1kPa未満になると、磁場作用によって相互に接触させた磁気分極中空粒子を高分子材料が有する弾性によって相互に離すことが困難になる。なお、本明細書において、せん断弾性率は、1Hzにおけるせん断貯蔵弾性率を意味し、実施例に記載の方法により測定する。   The polymer material preferably has a shear elastic modulus of 200 kPa or less, more preferably 100 kPa or less, and most preferably 50 kPa or less, in a state in which no magnetically polarized hollow particles are contained. Further, the polymer material preferably has a shear modulus of elasticity of 0.1 kPa or more, more preferably 1 kPa or more, and most preferably 3 kPa or more in a state in which no magnetically polarized hollow particles are contained. When the shear modulus exceeds 200 kPa, it is difficult to increase the thermal conductivity of the variable thermal conductivity material by bringing at least some of the magnetically polarized hollow particles dispersed in the polymer material into contact with each other by the action of a magnetic field. become. When the shear modulus is less than 0.1 kPa, it becomes difficult to separate the magnetically polarized hollow particles brought into contact with each other by the magnetic field action due to the elasticity of the polymer material. In addition, in this specification, a shear elastic modulus means the shear storage elastic modulus in 1 Hz, and is measured by the method as described in an Example.

(磁気分極中空粒子)
本実施形態の熱伝導率可変材料に用いる磁気分極中空粒子は、前記高分子材料よりも高い熱伝導率を有し、磁場作用により磁気分極する性質を有する中空粒子であれば良い。当該磁気分極中空粒子の例としては、純鉄、電磁軟鉄、方向性ケイ素鋼、Mn−Znフェライト、Ni−Znフェライト、マグネタイト、コバルト、ニッケル等からなる中空粒子や、ガラス等の無機材料や合成樹脂等からなる中空粒子に、前記高分子材料よりも高い熱伝導率を有し、磁場作用により磁気分極する性質を有する物質をコーティングしたものが挙げられる。当該磁気分極中空粒子のその他の例として、配向により高熱伝導性が促されるコンポジット系中空粒子も挙げられる。当該磁気分極中空粒子は、1種又は2種以上を用いることができる。また、磁気分極中空粒子は、磁場作用により磁気分極する性質を有さない中空粒子、磁場作用により磁気分極する性質を有する中実粒子、及び磁場作用により磁気分極する性質を有さない中実粒子と組み合わせて用いても良い。
(Magnetic polarization hollow particles)
The magnetically polarized hollow particles used for the thermal conductivity variable material of the present embodiment may be hollow particles having a higher thermal conductivity than the polymer material and having a property of being magnetically polarized by a magnetic field action. Examples of the magnetically polarized hollow particles include hollow particles made of pure iron, electromagnetic soft iron, directional silicon steel, Mn—Zn ferrite, Ni—Zn ferrite, magnetite, cobalt, nickel, etc., inorganic materials such as glass, and synthetic materials. Examples include those in which hollow particles made of resin or the like are coated with a substance having a thermal conductivity higher than that of the polymer material and having a property of being magnetically polarized by a magnetic field action. Other examples of the magnetically polarized hollow particles include composite hollow particles whose high thermal conductivity is promoted by orientation. The magnetically polarized hollow particles can be used alone or in combination of two or more. Magnetically polarized hollow particles are hollow particles that do not have the property of being magnetically polarized by the action of a magnetic field, solid particles that have the property of being magnetically polarized by the action of a magnetic field, and solid particles that have no property of being magnetically polarized by the action of a magnetic field. May be used in combination.

本実施形態の熱伝導率可変材料は、前記磁気分極中空粒子の少なくとも一部が相互に接触することにより熱伝導率が上昇し、前記磁気分極中空粒子の少なくとも一部が相互に離れることにより熱伝導率が低下する。従って、熱伝導率の変化率を大きくするためには、高分子材料の熱伝導率と磁気分極中空粒子の熱伝導率の差が大きいほうが好ましい。   In the heat conductivity variable material of the present embodiment, the thermal conductivity increases when at least a part of the magnetically polarized hollow particles come into contact with each other, and at least a part of the magnetically polarized hollow particles are separated from each other. Conductivity decreases. Therefore, in order to increase the rate of change in thermal conductivity, it is preferable that the difference between the thermal conductivity of the polymer material and the thermal conductivity of the magnetically polarized hollow particles is large.

本実施形態の熱伝導率可変材料の熱伝導率の変化率を大きくするために、熱伝導率が低い気体を封入した磁気分極中空粒子や、空隙部を真空にした磁気分極中空粒子を用いることもできる。   In order to increase the rate of change of thermal conductivity of the thermal conductivity variable material of the present embodiment, magnetically polarized hollow particles enclosing gas with low thermal conductivity or magnetically polarized hollow particles having voids in a vacuum are used. You can also.

前記磁気分極中空粒子の平均粒子径は、特段の制限がないが、5000μm以下であることが好ましく、1000μm以下であることがより好ましく、200μm以下であることが最も好ましい。また、前記磁気分極中空粒子の平均粒子径は、1μm以上であることが好ましく、10μm以上であることがより好ましく、30μm以上であることが最も好ましい。当該平均粒子径が5000μmを超えると前記高分子材料に分散するのが困難になる。また、当該平均粒子径が1μm未満になると、当該磁気分極中空粒子の少なくとも一部を磁場作用によって相互に接触させることが困難になる。なお、本明細書において、平均粒子径は実施例に記載の方法により測定する。   The average particle diameter of the magnetically polarized hollow particles is not particularly limited, but is preferably 5000 μm or less, more preferably 1000 μm or less, and most preferably 200 μm or less. The average particle diameter of the magnetically polarized hollow particles is preferably 1 μm or more, more preferably 10 μm or more, and most preferably 30 μm or more. When the average particle diameter exceeds 5000 μm, it is difficult to disperse in the polymer material. When the average particle diameter is less than 1 μm, it is difficult to bring at least a part of the magnetically polarized hollow particles into contact with each other by a magnetic field action. In addition, in this specification, an average particle diameter is measured by the method as described in an Example.

平均粒子径が異なる2種以上の磁気分極中空粒子を組み合わせて用いる場合、2種以上の磁気分極中空粒子のそれぞれの平均粒子径に特に限定はなく、適宜調整して用いることができる。一例としては、平均粒子径が異なる2種の磁気分極中空粒子を組み合わせて用いる場合、熱伝導率の変化率をより大きくする観点から、大きい方の平均粒子径と小さい方の平均粒子径の比(大きい方の平均粒子径/小さい方の平均粒子径)が2以上が好ましく、8以上がより好ましい。また、同様の観点から、大きい方の平均粒子径と小さい方の平均粒子径の比(大きい方の平均粒子径/小さい方の平均粒子径)が、40以下が好ましく、30以下がより好ましい。   When two or more kinds of magnetically polarized hollow particles having different average particle diameters are used in combination, the average particle diameter of each of the two or more kinds of magnetically polarized hollow particles is not particularly limited and can be appropriately adjusted and used. As an example, when two types of magnetically polarized hollow particles having different average particle sizes are used in combination, the ratio between the larger average particle size and the smaller average particle size from the viewpoint of increasing the rate of change in thermal conductivity. (Larger average particle diameter / smaller average particle diameter) is preferably 2 or more, and more preferably 8 or more. Further, from the same viewpoint, the ratio of the larger average particle diameter to the smaller average particle diameter (larger average particle diameter / smaller average particle diameter) is preferably 40 or less, and more preferably 30 or less.

平均粒子径が異なる2種の磁気分極中空粒子を組み合わせて用いる場合、熱伝導率の変化率をより大きくする観点から、平均粒子径が大きい方の磁気分極中空粒子と平均粒子径が小さい方の磁気分極中空粒子の体積比は、平均粒子径が大きい方の磁気分極中空粒子:平均粒子径が小さい方の磁気分極中空粒子が80:20〜99:1であることが好ましく、90:10〜95:5であることがより好ましい。   When two types of magnetically polarized hollow particles having different average particle diameters are used in combination, from the viewpoint of increasing the rate of change in thermal conductivity, the magnetically polarized hollow particles having a larger average particle diameter and those having a smaller average particle diameter are used. The volume ratio of the magnetically polarized hollow particles is preferably 80:20 to 99: 1 for the magnetically polarized hollow particles having the larger average particle diameter: the magnetically polarized hollow particles having the smaller average particle diameter, and 90:10 More preferably, it is 95: 5.

前記磁気分極中空粒子の空隙部の直径は、特段の制限がないが、4999μm以下であることが好ましく、999μm以下であることがより好ましく、499μm以下であることが更に好ましく、199μm以下であることが最も好ましい。また、前記磁気分極中空粒子の空隙部の直径は、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、10μm以上であることが最も好ましい。当該空隙部の直径が5000μmを超えると空隙部内の空気の対流による熱伝導が大きくなるため、断熱性が劣る場合がある。また、当該空隙部の直径が0.1μm未満になると、殻部分の占める割合が大きくなるため、断熱性が中実粒子を用いた場合と変わらなくなる。なお、本明細書において、磁気分極中空粒子の空隙部の直径は実施例に記載の方法により測定する。   The diameter of the void portion of the magnetically polarized hollow particles is not particularly limited, but is preferably 4999 μm or less, more preferably 999 μm or less, further preferably 499 μm or less, and 199 μm or less. Is most preferred. The diameter of the voids of the magnetically polarized hollow particles is preferably 0.1 μm or more, more preferably 1 μm or more, and most preferably 10 μm or more. When the diameter of the void portion exceeds 5000 μm, heat conduction due to air convection in the void portion increases, so that the heat insulating property may be inferior. Moreover, since the ratio which a shell part occupies will become large when the diameter of the said space | gap part becomes less than 0.1 micrometer, heat insulation is not different from the case where a solid particle is used. In addition, in this specification, the diameter of the space | gap part of a magnetic polarization hollow particle is measured by the method as described in an Example.

前記磁気分極中空粒子の飽和磁化は、特段の制限がないが、1.0T以上であることが好ましく、1.2T以上であることがより好ましく、1.5T以上であることが最も好ましい。当該飽和磁化が1.0T未満の場合、磁場等を印加したときの磁化が弱いため、前記中空粒子の少なくとも一部を相互に接触させて熱伝導率を上昇させることが困難になる傾向がある。なお、本明細書において、飽和磁化は実施例に記載の方法により測定する。   The saturation magnetization of the magnetically polarized hollow particles is not particularly limited, but is preferably 1.0 T or more, more preferably 1.2 T or more, and most preferably 1.5 T or more. When the saturation magnetization is less than 1.0 T, the magnetization when applying a magnetic field or the like is weak, so that it is difficult to increase the thermal conductivity by bringing at least some of the hollow particles into contact with each other. . In this specification, saturation magnetization is measured by the method described in the examples.

前記高分子材料中の前記磁気分極中空粒子の含有量は、体積分率で10vol%以上であることが好ましく、20vol%以上であることがより好ましい。また、前記高分子中の前記磁気分極中空粒子の含有量は、体積分率で50vol%以下であることが好ましく、40vol%以下であることがより好ましく、30vol%以下であることが最も好ましい。前記高分子材料における前記磁気分極中空粒子の体積分率が10vol%未満の場合は、磁場作用による磁気分極中空粒子同士の接触が起こりにくく、熱伝導率を変化させにくくなる傾向がある。前記高分子材料における前記磁気分極中空粒子の体積分率が50vol%を超えると、磁場作用が無い状態でも多くの磁気分極中空粒子が相互に接触しており、熱伝導率を変化させにくくなる傾向がある。   The content of the magnetically polarized hollow particles in the polymer material is preferably 10 vol% or more and more preferably 20 vol% or more in terms of volume fraction. The content of the magnetically polarized hollow particles in the polymer is preferably 50 vol% or less, more preferably 40 vol% or less, and most preferably 30 vol% or less in terms of volume fraction. When the volume fraction of the magnetically polarized hollow particles in the polymer material is less than 10 vol%, the magnetically polarized hollow particles are less likely to contact each other due to the magnetic field action, and the thermal conductivity tends to be difficult to change. When the volume fraction of the magnetically polarized hollow particles in the polymer material exceeds 50 vol%, many magnetically polarized hollow particles are in contact with each other even in the absence of a magnetic field action, and the thermal conductivity tends not to change. There is.

本実施形態に係る熱伝導率可変材料の製造方法の一例として、高分子材料に軟質ポリウレタン樹脂を用いた場合の製造方法を示す。当該製造方法は以下の工程を有する。
(1)軟質ポリウレタン樹脂原料と、磁気分極中空粒子とを計量、混合し、混合材料を調製する混合材料調整工程
(2)前記混合材料調製工程にて調製した混合材料を、金型等に注入し硬化させる硬化工程
(3)所望の寸法に成形する成形工程
As an example of the manufacturing method of the thermal conductivity variable material according to the present embodiment, a manufacturing method in the case where a soft polyurethane resin is used as the polymer material will be described. The manufacturing method includes the following steps.
(1) A mixed material adjusting step for preparing a mixed material by measuring and mixing soft polyurethane resin raw materials and magnetically polarized hollow particles. (2) Injecting the mixed material prepared in the mixed material preparing step into a mold or the like. Curing process to cure and cure (3) Molding process to mold to desired dimensions

前記軟質ポリウレタン樹脂原料は、ポリエーテルポリオール化合物及びイソシアネート成分を含む。必要に応じて、触媒、架橋剤、可塑剤、酸化防止剤等の安定剤、滑剤、顔料、充填剤、帯電防止剤、その他の添加剤を当該軟質ポリウレタン樹脂原料に用いても良い。また、高分子材料に軟質ポリウレタン樹脂を用いた場合のせん断弾性率は、例えば、NCO―INDEXや、触媒、架橋剤、可塑剤等の種類及び配合により調整することができる。   The soft polyurethane resin raw material includes a polyether polyol compound and an isocyanate component. If necessary, a stabilizer such as a catalyst, a crosslinking agent, a plasticizer, and an antioxidant, a lubricant, a pigment, a filler, an antistatic agent, and other additives may be used as the raw material for the flexible polyurethane resin. Further, the shear elastic modulus when a soft polyurethane resin is used as the polymer material can be adjusted by, for example, the types and blends of NCO-INDEX, a catalyst, a crosslinking agent, a plasticizer, and the like.

(熱制御装置)
本実施形態の熱制御装置は前記熱伝導率可変材料を用いる。より具体的には、本実施形態の熱制御装置は、高分子材料中に、前記高分子材料よりも高い熱伝導率を有する磁気分極中空粒子が分散している熱伝導率可変材料と、磁場印加手段とを有し、前記磁場印加手段により磁場を印加することによって前記磁気分極中空粒子の少なくとも一部が相互に接触し熱伝導率が上昇することを特徴とする。当該熱制御装置について、図面を参照しつつ説明する。
(Thermal control device)
The thermal control device of this embodiment uses the thermal conductivity variable material. More specifically, the thermal control device of the present embodiment includes a thermal conductivity variable material in which magnetically polarized hollow particles having higher thermal conductivity than the polymer material are dispersed in the polymer material, and a magnetic field. And a magnetic field is applied by the magnetic field applying means, and at least a part of the magnetically polarized hollow particles are brought into contact with each other to increase thermal conductivity. The thermal control device will be described with reference to the drawings.

図1は、前記熱伝導率可変材料を用いた熱制御装置1の構成を示す概略図である。前記熱制御装置1は、少なくとも前記熱伝導率可変材料11及び磁場印加手段12を有する。熱伝導率可変材料11は、熱制御対象物2の周囲を覆うように設けられている。   FIG. 1 is a schematic diagram showing a configuration of a thermal control device 1 using the thermal conductivity variable material. The thermal control device 1 includes at least the thermal conductivity variable material 11 and a magnetic field applying unit 12. The thermal conductivity variable material 11 is provided so as to cover the periphery of the thermal control object 2.

磁場印加手段12は、磁場を印加することによって、前記熱伝導率可変材料11に含まれる磁気分極中空粒子13に磁場作用を与える。磁場印加手段12は、前記磁気分極中空粒子13に磁場作用を与え、前記磁気分極中空粒子13の少なくとも一部を相互に接触させることができれば、公知一般の手法を用いることができる。磁場印加手段12の一例としては電磁石が挙げられる。電磁石は、容易に磁場強度を調節することができるため好ましい。   The magnetic field application means 12 applies a magnetic field to the magnetically polarized hollow particles 13 included in the thermal conductivity variable material 11 by applying a magnetic field. The magnetic field applying means 12 can use a publicly known general method as long as it can apply a magnetic field action to the magnetically polarized hollow particles 13 and bring at least a part of the magnetically polarized hollow particles 13 into contact with each other. An example of the magnetic field applying unit 12 is an electromagnet. An electromagnet is preferable because the magnetic field strength can be easily adjusted.

図2は、磁場印加手段12が前記磁気分極中空粒子13に磁場作用を与えることにより、前記磁気分極中空粒子13の少なくとも一部を相互に接触させた状態の一例を示す概略図である。図2に示すような前記磁気分極中空粒子13の少なくとも一部を相互に接触させた状態では、伝熱路が確保されるために熱伝導率が高くなる。また、磁場印加手段12によって印加される磁場の強度が弱い場合、又は磁場が印加されない場合は、図1に示すような前記磁気分極中空粒子13が相互に接触していない状態に戻る。本実施形態に係る熱制御装置は、前記構成により、熱制御対象物2の熱(例えば、表面温度や内部温度)を制御することができる。   FIG. 2 is a schematic view showing an example of a state in which at least a part of the magnetically polarized hollow particles 13 are brought into contact with each other by applying a magnetic field action to the magnetically polarized hollow particles 13 by the magnetic field applying unit 12. In a state where at least a part of the magnetically polarized hollow particles 13 as shown in FIG. 2 are in contact with each other, a heat transfer path is ensured, so that the thermal conductivity is increased. Further, when the intensity of the magnetic field applied by the magnetic field applying means 12 is weak, or when no magnetic field is applied, the magnetically polarized hollow particles 13 as shown in FIG. 1 return to a state where they are not in contact with each other. The heat control device according to the present embodiment can control the heat (for example, the surface temperature or the internal temperature) of the heat control object 2 with the above configuration.

なお、本実施形態では、磁気分極中空粒子を用い、磁場作用によって熱伝導率可変材料の熱伝導率を変化させた。しかしながら、他の実施形態では、前記高分子材料よりも高い熱伝導率を有し、電場作用により電気分極する性質を有する粒子を用い、電場作用によって熱伝導率可変材料の熱伝導率を変化させても良い。以下、電場作用により電気分極する性質を有する粒子を電気分極中空粒子と称する。当該電気分極中空粒子の例としては、誘電性(不導体、半導体)粒子、炭素粒子、金属粒子、合金粒子、金属間化合物粒子、シリカ、アルミナ、窒化ホウ素等のセラミック粒子、高導電性ポリマー粒子、誘電性ポリマー粒子等が挙げられ、当該電気分極中空粒子は1種又は2種以上を用いることができる。また、当該電気分極中空粒子は、磁気分極中空粒子と組み合わせて用いても良い。   In the present embodiment, magnetically polarized hollow particles are used, and the thermal conductivity of the thermal conductivity variable material is changed by a magnetic field action. However, in another embodiment, particles having a higher thermal conductivity than the polymer material and having a property of being electrically polarized by the electric field action are used to change the thermal conductivity of the variable thermal conductivity material by the electric field action. May be. Hereinafter, particles having the property of being electrically polarized by the action of an electric field are referred to as electrically polarized hollow particles. Examples of the electrically polarized hollow particles include dielectric (non-conductor, semiconductor) particles, carbon particles, metal particles, alloy particles, intermetallic compound particles, ceramic particles such as silica, alumina and boron nitride, and highly conductive polymer particles. , Dielectric polymer particles, and the like, and one or more of the electric polarization hollow particles can be used. Further, the electric polarization hollow particles may be used in combination with magnetic polarization hollow particles.

以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.

(評価方法)
(平均粒子径)
島津レーザ回折式粒度分布測定装置SALD2200にて測定した。本明細書において平均粒子径は、水分散液の状態で、レーザ回折式粒度分布測定装置にて測定した粒度分布を体積基準で微粒側から積算した場合の50%粒子径(メディアン径D50)をいう。
(Evaluation method)
(Average particle size)
Measurement was performed with a Shimadzu laser diffraction particle size distribution analyzer SALD2200. In this specification, the average particle diameter is the 50% particle diameter (median diameter D50) when the particle size distribution measured with a laser diffraction particle size distribution measuring device is integrated from the fine particle side on a volume basis in the state of an aqueous dispersion. Say.

(中空粒子の空隙の直径)
中空粒子の空隙の直径は、以下の式(1)〜(3)から、中空粒子の空隙率、空隙の体積を求め、これらの値から計算して求めた。なお、中空粒子の体積は、前記方法によって得られた平均粒子径を中空粒子の直径とし、当該直径から計算により求めた。
(1)殻成分の密度×(1−空隙率)=中空粒子の密度
(2)中空粒子の体積×空隙率=空隙の体積
(3)空隙の体積=(4π×(空隙の半径))/3
(Cavity diameter of hollow particles)
The void diameter of the hollow particles was obtained by calculating the void ratio and void volume of the hollow particles from the following formulas (1) to (3), and calculating from these values. The volume of the hollow particles was obtained by calculation from the diameter, using the average particle diameter obtained by the above method as the diameter of the hollow particles.
(1) density of shell component × (1−porosity) = density of hollow particles (2) volume of hollow particles × porosity = volume of voids (3) volume of voids = (4π × (radius of voids) 3 ) / 3

(飽和磁化)
各磁性粒子の磁気特性は、振動試料型磁力計(玉川製作所製:TM−VSM311483−HGC型)を用いて、常温(300K)にて、印加磁場30kOeの条件で磁気ヒステリシスループを測定し、得られた曲線より、飽和磁化を読み取ることで測定した。
(Saturation magnetization)
The magnetic properties of each magnetic particle were obtained by measuring a magnetic hysteresis loop using a vibrating sample magnetometer (manufactured by Tamagawa Seisakusho: TM-VSM311483-HGC type) at room temperature (300K) under an applied magnetic field of 30 kOe. The saturation magnetization was read from the obtained curve.

(せん断弾性率)
せん断弾性率(kPa)は、JIS K−7312に準拠し、粘弾性測定装置MCR301(アントンパール社製)を用いて測定した。高分子材料の測定サンプルは、直径20mm、厚さ1mmであり、測定条件は、ひずみ制御方式で、温度25℃、周波数1Hz、せん断ひずみが0.001の測定値を記載した。測定サンプルに用いた高分子材料は、磁気分極中空粒子等の磁性粒子を加え無かったこと以外は後述の熱伝導率可変材料の製造と同様にして作製した。測定結果は16.5kPaだった。
(Shear modulus)
The shear modulus (kPa) was measured using a viscoelasticity measuring device MCR301 (manufactured by Anton Paar) in accordance with JIS K-7312. A measurement sample of the polymer material has a diameter of 20 mm and a thickness of 1 mm, and the measurement conditions are a strain control method, and a measurement value with a temperature of 25 ° C., a frequency of 1 Hz, and a shear strain of 0.001 is described. The polymer material used for the measurement sample was produced in the same manner as the production of the thermal conductivity variable material described later except that no magnetic particles such as magnetically polarized hollow particles were added. The measurement result was 16.5 kPa.

(熱伝導率可変材料の評価)
熱伝導率可変材料の評価は、電磁石(玉川製作所製:TM−YS4型)と熱流計(江藤電気製:M55A,2300A)、ラバーヒーター(サミコン230,SBX3030K1S)を組み合わせた装置を用いて性能評価を行った。
(Evaluation of heat conductivity variable material)
The thermal conductivity variable material is evaluated by using a device that combines an electromagnet (manufactured by Tamagawa Seisakusho: TM-YS4 type), a heat flow meter (manufactured by Eto Denki: M55A, 2300A), and a rubber heater (Samcon 230, SBX3030K1S). Went.

1)熱伝導率
磁場印加前の熱伝導率は、熱伝導率可変材料の厚さ方向についてJISA 1412−2に従って熱流計法によって測定した。磁場印加時の熱伝導率は、熱伝導率可変材料の厚さ方向に前記電磁石によって700mTの磁場を印加した状態で、熱伝導率可変材料の厚さ方向についてJISA 1412−2に従って熱流計法によって測定した。
2)熱伝導率変化率
熱伝導率変化率は、磁場作用がない状態(磁場を印加していない状態)の熱伝導率可変材料の熱伝導率を100%とし、磁場作用を与える(磁場を印加する)ことによる熱伝導率の変化の度合いを表す。数値が大きい方がより大きく熱伝導率が変化したことを意味する。熱伝導率変化率は、以下の式により求めた。
熱伝導率変化率(%)=700mTの磁場を印加した状態の熱伝導率可変材料の熱伝導率/磁場作用がない状態の熱伝導率可変材料の熱伝導率×100
1) Thermal conductivity The thermal conductivity before applying a magnetic field was measured by a heat flow meter method according to JISA 1412-2 in the thickness direction of the thermal conductivity variable material. The thermal conductivity at the time of applying a magnetic field is determined by the heat flow meter method according to JISA 1412-2 in the thickness direction of the thermal conductivity variable material in a state where a magnetic field of 700 mT is applied by the electromagnet in the thickness direction of the thermal conductivity variable material. It was measured.
2) Rate of change in thermal conductivity The rate of change in thermal conductivity gives the magnetic field effect when the thermal conductivity of the thermal conductivity variable material in a state where there is no magnetic field action (state where no magnetic field is applied) is 100%. This represents the degree of change in thermal conductivity due to application. A larger value means a greater change in thermal conductivity. The rate of change in thermal conductivity was determined by the following formula.
Thermal conductivity change rate (%) = thermal conductivity of the variable thermal conductivity material with a magnetic field of 700 mT applied / thermal conductivity of the variable thermal conductivity material with no magnetic field effect × 100

<磁気分極中空粒子Aの製造>
中空ガラスビーズ(Sphericel25P45:ポッターズバロティーニ株式会社製)を従来法によって鉄−コバルトメッキして、磁気分極中空粒子Aを得た。
<Production of magnetically polarized hollow particles A>
Hollow glass beads (Sphericel 25P45: manufactured by Potters Barotini Co., Ltd.) were iron-cobalt plated by a conventional method to obtain magnetically polarized hollow particles A.

<熱伝導率可変材料の製造>
ポリオール(N4567:日本ポリウレタン工業)に磁気分極中空粒子等の磁性粒子を加え良く混合し、プレポリマー(コロネート4028:日本ポリウレタン工業)を加え、ハイブリッドミキサーで混合したものを金型に注型して硬化させ、磁性粒子が分散したポリウレタンエラストマーからなる熱伝導率可変材料を得た。
<Manufacture of variable thermal conductivity materials>
Add magnetic particles such as magnetically polarized hollow particles to polyol (N4567: Nippon Polyurethane Industry), mix well, add prepolymer (Coronate 4028: Nippon Polyurethane Industry), and mix with a hybrid mixer into a mold. A heat conductivity variable material made of a polyurethane elastomer in which magnetic particles were dispersed was obtained by curing.

<熱伝導率可変材料の構成>
(実施例1−1)
・ポリウレタンエラストマー:100重量部
・磁性粒子
磁気分極中空粒子A(密度2.5g/cm):27.8重量部(10体積%)
<Configuration of variable thermal conductivity material>
(Example 1-1)
Polyurethane elastomer: 100 parts by weightMagnetic particles Magnetic polarization hollow particles A (density 2.5 g / cm 3 ): 27.8 parts by weight (10% by volume)

(実施例1−2)
・ポリウレタンエラストマー:100重量部
・磁性粒子
磁気分極中空粒子A(密度2.5g/cm):83.3重量部(25体積%)
(Example 1-2)
Polyurethane elastomer: 100 parts by weightMagnetic particles Magnetic polarization hollow particles A (density 2.5 g / cm 3 ): 83.3 parts by weight (25% by volume)

(実施例1−3)
・ポリウレタンエラストマー:100重量部
・磁性粒子
磁気分極中空粒子A(密度2.5g/cm):134.6重量部(35体積%)
(Example 1-3)
Polyurethane elastomer: 100 parts by weightMagnetic particles Magnetic polarized hollow particles A (density 2.5 g / cm 3 ): 134.6 parts by weight (35% by volume)

(実施例1−4)
・ポリウレタンエラストマー:100重量部
・磁性粒子
磁気分極中空粒子A(密度2.5g/cm):250重量部(50体積%)
(Example 1-4)
Polyurethane elastomer: 100 parts by weight Magnetic particles Magnetic polarized hollow particles A (density 2.5 g / cm 3 ): 250 parts by weight (50% by volume)

(実施例2)
・ポリウレタンエラストマー:100重量部
・磁性粒子
中空鉄球(品名TEC−BALL JFEテクノリサーチ社製):30重量部(25体積%)
(Example 2)
-Polyurethane elastomer: 100 parts by weight-Magnetic particles Hollow iron sphere (product name: TEC-BALL JFE Techno-Research): 30 parts by weight (25% by volume)

(実施例3)
・ポリウレタンエラストマー:100重量部
・磁性粒子
中空鉄球(品名TEC−BALL JFEテクノリサーチ社製):30重量部(25体積%)
(Example 3)
-Polyurethane elastomer: 100 parts by weight-Magnetic particles Hollow iron sphere (product name: TEC-BALL JFE Techno-Research): 30 parts by weight (25% by volume)

(比較例1−1)
・ポリウレタンエラストマー:100重量部
・磁性粒子
カルボニル鉄粉(品名CI−CS BASF社製):260重量部(25体積%)
(Comparative Example 1-1)
Polyurethane elastomer: 100 parts by weight Magnetic particles Carbonyl iron powder (product name: CI-CS BASF): 260 parts by weight (25% by volume)

(比較例1−2)
・ポリウレタンエラストマー:100重量部
・磁性粒子
カルボニル鉄粉(品名CI−CS BASF社製):420重量部(35体積%)
(Comparative Example 1-2)
-Polyurethane elastomer: 100 parts by weight-Magnetic particles Carbonyl iron powder (product name: CI-CS BASF): 420 parts by weight (35% by volume)

(比較例1−3)
・ポリウレタンエラストマー:100重量部
・磁性粒子
カルボニル鉄粉(品名CI−CS BASF社製):780重量部(50体積%)
(Comparative Example 1-3)
Polyurethane elastomer: 100 parts by weight Magnetic particles Carbonyl iron powder (product name: CI-CS BASF): 780 parts by weight (50% by volume)

前記各熱伝導率可変材料の評価結果を表1に示す。   Table 1 shows the evaluation results of the respective thermal conductivity variable materials.

Figure 2015089897
Figure 2015089897

表1に記載の結果から、本発明に係る熱伝導率可変材料は、磁場を印加することによって熱伝導率がより大きく変化することがわかる。   From the results shown in Table 1, it can be seen that the thermal conductivity variable material according to the present invention changes more greatly when the magnetic field is applied.

以上、本発明を詳細に説明してきたが、前記の説明はあらゆる点において本発明の一例にすぎず、その範囲を限定しようとするものではない。本発明の範囲を逸脱することなく種々の改良や変形を行うことが可能である。   Although the present invention has been described in detail above, the above description is merely an example of the present invention in all respects and is not intended to limit the scope thereof. Various improvements and modifications can be made without departing from the scope of the present invention.

本発明に係る熱伝導率可変材料は、熱制御装置及び熱制御方法に使用することができ、例えば、自動車に搭載された充電池の温度を調節する熱制御装置及び熱制御方法に好適に利用することができる。   The heat conductivity variable material according to the present invention can be used in a heat control device and a heat control method, and is suitably used for, for example, a heat control device and a heat control method for adjusting the temperature of a rechargeable battery mounted on an automobile. can do.

1 熱制御装置
11 熱伝導率可変材料
12 磁場印加手段
13 磁気分極中空粒子
2 熱制御対象物
DESCRIPTION OF SYMBOLS 1 Thermal control apparatus 11 Thermal conductivity variable material 12 Magnetic field application means 13 Magnetic polarization hollow particle 2 Thermal control object

Claims (4)

高分子材料中に、前記高分子材料よりも高い熱伝導率を有し、磁場作用により磁気分極する性質を有する中空粒子、及び/又は電場作用により電気分極する性質を有する中空粒子が分散しており、
磁場及び/又は電場を印加することによって前記中空粒子の少なくとも一部が相互に接触し熱伝導率が上昇することを特徴とする、熱伝導率可変材料。
In the polymer material, hollow particles having a higher thermal conductivity than the polymer material and having a property of being magnetically polarized by a magnetic field effect and / or a hollow particle having a property of being electrically polarized by an electric field effect are dispersed. And
A thermal conductivity variable material, wherein applying a magnetic field and / or an electric field causes at least a part of the hollow particles to contact each other to increase thermal conductivity.
前記高分子材料は、せん断弾性率が200kPa以下であることを特徴とする、請求項1に記載の熱伝導率可変材料。   The thermal conductivity variable material according to claim 1, wherein the polymer material has a shear elastic modulus of 200 kPa or less. 請求項1又は2に記載の熱伝導率可変材料を用いた熱制御装置。   A thermal control device using the thermal conductivity variable material according to claim 1. 請求項1又は2に記載の熱伝導率可変材料を用いた熱制御方法。   A thermal control method using the thermal conductivity variable material according to claim 1.
JP2013229224A 2013-11-05 2013-11-05 Thermal conductivity variable material using hollow magnetic particles Expired - Fee Related JP6427314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229224A JP6427314B2 (en) 2013-11-05 2013-11-05 Thermal conductivity variable material using hollow magnetic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229224A JP6427314B2 (en) 2013-11-05 2013-11-05 Thermal conductivity variable material using hollow magnetic particles

Publications (2)

Publication Number Publication Date
JP2015089897A true JP2015089897A (en) 2015-05-11
JP6427314B2 JP6427314B2 (en) 2018-11-21

Family

ID=53193592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229224A Expired - Fee Related JP6427314B2 (en) 2013-11-05 2013-11-05 Thermal conductivity variable material using hollow magnetic particles

Country Status (1)

Country Link
JP (1) JP6427314B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114801344A (en) * 2022-05-16 2022-07-29 郑州大学 Intelligent heat conduction layer based on 3D printing and having automatic control function and manufacturing method
US11905385B2 (en) 2017-02-08 2024-02-20 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185728A (en) * 2012-03-07 2013-09-19 Kri Inc Heat flow control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185728A (en) * 2012-03-07 2013-09-19 Kri Inc Heat flow control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905385B2 (en) 2017-02-08 2024-02-20 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
CN114801344A (en) * 2022-05-16 2022-07-29 郑州大学 Intelligent heat conduction layer based on 3D printing and having automatic control function and manufacturing method
CN114801344B (en) * 2022-05-16 2024-01-19 郑州大学 Intelligent heat conduction layer with self-control function based on 3D printing and manufacturing method

Also Published As

Publication number Publication date
JP6427314B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
Kim et al. Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement
JP6013220B2 (en) Thermal conductivity variable material, thermal control device using the thermal conductivity variable material, and thermal control method using the thermal conductivity variable material
CN105778508A (en) Thermal-conductive silicone rubber composite material substrate and preparation method thereof
JP5719887B2 (en) Elastomer molded body and method for producing the same
JP5829279B2 (en) Urethane foam molding and method for producing the same
JP6165603B2 (en) Elastomer molded body and method for producing the same
JP6030894B2 (en) Elastomer molded body and method for producing the same
KR101491328B1 (en) Structure for power electronic parts housing of vehicle
JP6153702B2 (en) Variable thermal conductivity material
Al‐Ghamdi et al. Electromagnetic wave shielding and microwave absorbing properties of hybrid epoxy resin/foliated graphite nanocomposites
JP2006335957A (en) Method of manufacturing thermally conductive molded article and thermally conductive molded article
Vural et al. Nanostructured flexible magneto-dielectrics for radio frequency applications
Zhang et al. Design and synthesis strategies: 2D materials for electromagnetic shielding/absorbing
Sun et al. Temperature‐Dependent Electromagnetic Microwave Absorbing Characteristics of Stretchable Polyurethane Composite Foams with Ultrawide Bandwidth
JP6427314B2 (en) Thermal conductivity variable material using hollow magnetic particles
JP2014065769A (en) Elastomer molding and method for producing the same
CN111952034B (en) High-temperature-resistant high-thermal-conductivity sintered neodymium-iron-boron permanent magnet and preparation method thereof
US20090035556A1 (en) Electrical conductive composite material and production method thereof
KR20150041321A (en) Magnetic sheet, and magnetic material for wireless charging having the same
JP6739373B2 (en) Elastomer molding and manufacturing method thereof
JP2018170452A (en) Hybrid magnet
Zhong et al. Effect of annealing temperature on structure, magnetic and microwave absorption properties of Fe–B submicrometer particles
JP6199158B2 (en) Variable thermal conductivity material
KR20190047398A (en) Composite material
JP6735091B2 (en) Radio wave transmitting material and radio wave transmitting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R150 Certificate of patent or registration of utility model

Ref document number: 6427314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees