JP2009301877A - Battery pack device - Google Patents

Battery pack device Download PDF

Info

Publication number
JP2009301877A
JP2009301877A JP2008155266A JP2008155266A JP2009301877A JP 2009301877 A JP2009301877 A JP 2009301877A JP 2008155266 A JP2008155266 A JP 2008155266A JP 2008155266 A JP2008155266 A JP 2008155266A JP 2009301877 A JP2009301877 A JP 2009301877A
Authority
JP
Japan
Prior art keywords
heat
assembled battery
cooling passage
fiber
single battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008155266A
Other languages
Japanese (ja)
Inventor
Kenichi Mitsui
研一 三井
Yasunori Uchida
安則 内田
Hiroshi Onaka
博史 大中
Toru Isono
亨 磯野
Shigeki Takeo
茂樹 竹尾
Kimio Tsubaki
公男 椿
Takayoshi Iwata
貴吉 岩田
Noriyuki Noda
範幸 野田
Takaaki Yokoi
孝明 横井
Masanao Goto
正直 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2008155266A priority Critical patent/JP2009301877A/en
Publication of JP2009301877A publication Critical patent/JP2009301877A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact battery pack device which uniformalizes cooling characteristics of respective unit battery cells, prevents defects such as dust deposition and leakage due to dew condensation, and ensures high cooling efficiency. <P>SOLUTION: This battery pack device includes a battery pack member (101) having a plurality of unit battery cells (1) formed in a rectangular solid shape and a plurality of thermal conduction members (2) formed in a plate shape from flexible material with thermal conductivity and electrical insulation properties, both of which are adhered to each other and alternately installed in rows and then pressed and fastened from both ends in the direction of installation rows; and a cooling passage (102) which is formed in contact with one surface of the battery pack member (101) in a tunnel shape allowing refrigerant circulation. At least one part of the thermal conduction member (2) is exposed to the cooling passage (102) for heat transfer, and a partition wall (103) partitioning the cooling passage (102) from the outside is composed of an insulated wall. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、直方体形状をなす単電池セルを複数個列設してなる組電池装置に関する。   The present invention relates to an assembled battery device in which a plurality of unit cells each having a rectangular parallelepiped shape are arranged in a row.

電気自動車の駆動電源として用いられるニッケル・水素二次電池、リチウムイオン二次電池などは、高いエネルギー密度が必要とされ、かつ搭載スペースは極力小さくすることが求められている。そのため単電池セルを複数個集合させた組電池とするのが一般的である。例えば直方体形状をなす数V〜十数Vの単電池セルを数十個直列に接続し、これを1つのパッケージに納めて組電池とされている。この組電池は、たとえば後席下部、トランクルームなどに搭載されている。   Nickel / hydrogen secondary batteries, lithium ion secondary batteries, and the like used as drive power sources for electric vehicles are required to have a high energy density and are required to have a small mounting space. Therefore, it is common to use a battery pack in which a plurality of single battery cells are assembled. For example, several tens to several tens of V single battery cells having a rectangular parallelepiped shape are connected in series, and these are put in one package to form an assembled battery. This assembled battery is mounted, for example, in the lower part of the rear seat, the trunk room, or the like.

ところで組電池の性能や寿命は温度環境に大きく依存し、高温になると劣化が著しい。そこで、単電池セルの表面に大気と連通する冷却通路を形成し、冷却通路に車室内空気を導入したり、エアコンの風を強制的に導入することが行われている。   By the way, the performance and life of the assembled battery greatly depend on the temperature environment, and the deterioration is remarkable at a high temperature. Therefore, a cooling passage communicating with the atmosphere is formed on the surface of the single battery cell, and air in the passenger compartment is introduced into the cooling passage, or the air from the air conditioner is forcibly introduced.

一方、ニッケル・水素二次電池などにおいては、充電時などに直方体形状をなす単電池セルが膨張し、最も広い側面が円弧状に外側へ膨らむという現象が避けられない。このようになると、直方体形状をなす単電池セルを複数個集合させた組電池では、対向する壁面どうしが小さな接触面積で接触して接触部分に大きな応力が集中する可能性がある。   On the other hand, in a nickel-hydrogen secondary battery or the like, it is inevitable that the unit cell having a rectangular parallelepiped shape expands during charging and the widest side surface expands outward in an arc shape. If it becomes like this, in the assembled battery which assembled | stacked the single battery cell which makes a rectangular parallelepiped shape, the wall surfaces which oppose may contact in a small contact area, and a big stress may concentrate on a contact part.

そこで、各単電池セルの内圧を均一にして各単電池セルの充放電特性を均一にする目的で、単電池セルに所定の荷重を負荷して加圧拘束した状態で配列することが行われている。例えば特開2001−313018号公報に紹介されている組電池装置では、複数の単電池セルを厚さ方向に配列し、厚さ方向の両端にそれぞれ一つずつの拘束板を重ねた上で、2つの拘束板を拘束ロッドにて互いに接近する方向に締め付けている。2つの拘束板を互いに接近する方向に締め付けることで、複数の単電池セルを互いに密着させ、各単電池セルに荷重を負荷することで膨張を規制することができる。   Therefore, for the purpose of uniforming the internal pressure of each single battery cell and making the charge / discharge characteristics of each single battery cell uniform, the single battery cells are arranged in a state in which a predetermined load is applied and restrained under pressure. ing. For example, in the assembled battery device introduced in Japanese Patent Application Laid-Open No. 2001-313018, a plurality of unit cells are arranged in the thickness direction, and one constraining plate is stacked on each end in the thickness direction. The two restraining plates are tightened in the direction approaching each other by the restraining rod. By tightening the two restraining plates in a direction approaching each other, the plurality of single battery cells are brought into close contact with each other, and the expansion can be regulated by applying a load to each single battery cell.

しかし上記組電池装置では、中央部の単電池セルは端部の単電池セルに比べて放熱しにくいという問題がある。このように各単電池セル間の冷却特性に差が生じると、各単電池セルの出力、寿命などにばらつきが生じ、結果的に組み電池装置の出力が不安定となるとともに寿命が短くなってしまう。   However, in the above assembled battery device, there is a problem that the single unit cell at the center part is less likely to dissipate heat than the single unit cell at the end. Thus, if there is a difference in the cooling characteristics between the single battery cells, the output and life of each single battery cell will vary, resulting in the output of the assembled battery device becoming unstable and shortening the life. End up.

そこで特開2007−012486号公報には、複数の単電池セルの上部を密閉構造の電池室に収納し、各単電池セルの下部が冷却室に表出した組電池装置が提案されている。この組電池装置によれば、冷却室に冷却空気などを流通させることで各単電池セルを均一に冷却することができる。   Japanese Patent Laid-Open No. 2007-012486 proposes an assembled battery device in which the upper part of a plurality of single battery cells is housed in a sealed battery chamber and the lower part of each single battery cell is exposed to a cooling chamber. According to this assembled battery device, each single battery cell can be uniformly cooled by circulating cooling air or the like in the cooling chamber.

また特開平07−045310号公報には、各単電池セルに近接してヒートパイプを配置し、ヒートパイプの端部を放熱板に係合することで、単電池セルの熱を外部に放熱するようにした組電池装置が提案されている。   Japanese Patent Application Laid-Open No. 07-045310 discloses that a heat pipe is disposed in the vicinity of each single battery cell, and an end portion of the heat pipe is engaged with a heat radiating plate to radiate heat of the single battery cell to the outside. An assembled battery device as described above has been proposed.

しかしながら、これらの組電池装置では、構造が複雑となるために大型化し、スペース面あるいはコスト面で不具合がある。   However, these assembled battery devices have a complicated structure and thus become large and have problems in terms of space and cost.

そこで、図8に示すように、単電池セル 900どうしの間にスペーサ 901を介在させ、隣接する単電池セル 900の最も広い側面どうしがスペーサ 901を介して互いに対向するように交互に複数個列設し、両端に拘束板 902を配置して拘束ロッドなどによって列設方向に拘束することが行われている(例えば特開2006−048996号公報参照)。この組電池装置においては、スペーサ 901にリブ 903を形成することで、単電池セル 900とスペーサ 901との間に高さ1〜2mmの空間 904が形成される。したがって、単電池セル 900が膨張した場合にも対向する壁面どうしの干渉を防止することができる。またこの空間 904に空気などの冷却媒体を流通させることによって、単電池セル 900を冷却することができる。これにより各単電池セル 900間の冷却特性を均一化でき、寿命を長くすることができる。
特開2001−313018公報 特開平07−045310号公報 特開2007−012486号公報 特開2006−048996号公報
Therefore, as shown in FIG. 8, spacers 901 are interposed between the single battery cells 900, and a plurality of rows are alternately arranged so that the widest side surfaces of the adjacent single battery cells 900 face each other via the spacers 901. In other words, a restraint plate 902 is disposed at both ends and restrained in the row direction by a restraint rod or the like (see, for example, JP-A-2006-048996). In this assembled battery device, a space 904 having a height of 1 to 2 mm is formed between the single battery cell 900 and the spacer 901 by forming the rib 903 on the spacer 901. Therefore, even when the unit cell 900 is expanded, it is possible to prevent interference between the opposing wall surfaces. Further, the battery cell 900 can be cooled by circulating a cooling medium such as air in the space 904. Thereby, the cooling characteristic between each single battery cell 900 can be equalize | homogenized, and lifetime can be lengthened.
JP 2001-313018 Japanese Patent Laid-Open No. 07-045310 JP 2007-012486 A JP 2006-048996 A

ところが特許文献4に記載の組電池装置においては、空間 904に埃などが堆積する場合があり、そうなると均一な冷却が困難となり、各単電池セルの冷却特性に差が生じる。また冷却媒体としては一般にエアコンからの風が用いられるが、外気との温度差によって空間 904に結露が生じる場合があり、水滴が電極部にまで移動することで漏電する可能性が無いとは云えない。   However, in the assembled battery device described in Patent Document 4, dust or the like may accumulate in the space 904, which makes uniform cooling difficult and causes a difference in the cooling characteristics of the individual battery cells. In addition, air from an air conditioner is generally used as the cooling medium, but condensation may occur in the space 904 due to a temperature difference from the outside air, and it can be said that there is no possibility of leakage due to water droplets moving to the electrode part. Absent.

そこで本願出願人は、特願2007−219812において、シリコーンゴムなど、熱伝導性の高い軟質材からなるシートを単電池セル間に挟持した組電池装置を提案している。この電池装置によれば、列設方向の両端から加圧拘束されたときに、軟質のシートが両側の単電池セルによって圧縮され、単電池セルの最も広い表面に密着する。これにより単電池セルの熱は、シートから放熱表面に伝導され、放熱空間へ放熱される。   Therefore, the applicant of the present application has proposed an assembled battery device in which a sheet made of a soft material having high thermal conductivity, such as silicone rubber, is sandwiched between single battery cells in Japanese Patent Application No. 2007-219812. According to this battery device, when the pressure is restrained from both ends in the row direction, the soft sheet is compressed by the single battery cells on both sides and is in close contact with the widest surface of the single battery cells. Thereby, the heat of the single battery cell is conducted from the sheet to the heat radiating surface and radiated to the heat radiating space.

すなわち単電池セルとシートとの間には隙間が無いので、従来の空間 904への埃の堆積の問題は生じない。したがって長期使用後においても各単電池セル毎の冷却条件はほとんど同一となるので、各単電池セル間の冷却特性を均一とすることができ、寿命が長くなる。   That is, since there is no gap between the single battery cell and the sheet, the problem of dust accumulation in the conventional space 904 does not occur. Therefore, even after long-term use, the cooling conditions for each single battery cell are almost the same, so that the cooling characteristics between the single battery cells can be made uniform, and the life is prolonged.

さらに単電池セルどうしの間に、特許文献3に記載のような冷却風が流通するための空間を形成する必要がない。したがって単電池セル間距離を縮小でき、全体がコンパクトな形状となり搭載スペースを縮小することができる。また放熱表面を電極から遠い位置に形成しておけば、結露による漏電も防止することができる。   Furthermore, it is not necessary to form a space for circulating cooling air as described in Patent Document 3 between the single battery cells. Therefore, the distance between single battery cells can be reduced, and the whole becomes a compact shape, and the mounting space can be reduced. Further, if the heat dissipating surface is formed at a position far from the electrode, it is possible to prevent leakage due to condensation.

ところが、単電池セルの熱は、シートから放熱表面に伝導され、放熱空間へ放出される。しかし、放熱空間は、単電池セルを収納するケーシングにより区画されており、外部環境(例えば、自動車の排気管等からの排熱を含む環境)と熱的に接続されている。このため、外部環境からの熱が放熱空間内に流入することにより、放熱空間内の温度が上昇し、放熱表面と放熱環境との間の温度差が小さく或いは不安定になりやすくなる。従って、単電池セルの放熱性(冷却効率)が低下しやすい。   However, the heat of the single battery cell is conducted from the sheet to the heat radiating surface and released to the heat radiating space. However, the heat radiating space is partitioned by a casing that houses the unit cells, and is thermally connected to an external environment (for example, an environment including exhaust heat from an automobile exhaust pipe or the like). For this reason, when the heat from the external environment flows into the heat dissipation space, the temperature in the heat dissipation space rises, and the temperature difference between the heat dissipation surface and the heat dissipation environment tends to be small or unstable. Therefore, the heat dissipation (cooling efficiency) of the single battery cell is likely to decrease.

本発明は上記事情に鑑みてなされたものであり、単電池セルを列設した組電池装置において、各単電池セルの冷却特性を均一とするとともに、埃の堆積や結露による漏電などの不具合を防止し、かつコンパクトで高い冷却効率を持つ組電池装置とすることを解決すべき課題とする。   The present invention has been made in view of the above circumstances, and in an assembled battery device in which unit cells are arranged in a row, the cooling characteristics of each unit cell are made uniform, and problems such as electric leakage due to dust accumulation and condensation are prevented. An object to be solved is to provide a battery pack device that is compact and has high cooling efficiency.

(1)本発明の組電池装置は、直方体形状をなす単電池セル(1)と、熱伝導性と電気絶縁性を有する軟質材から板状に形成された熱伝導部材(2)と、が互いに密着して交互に複数個列設されてなり、該列設方向の両端から加圧拘束されてなる組電池部材(101)と、前記組電池部材(101)の一表面と接して形成され冷媒が流通するトンネル状の冷却通路(102)と、からなり、前記冷却通路(102)の内部には前記熱伝導部材(2)の少なくとも一部が伝熱可能に表出し、前記冷却通路(102)を外部から区画する区画壁(103)は断熱壁からなることを特徴とする。 (1) The assembled battery device of the present invention includes a unit cell (1) having a rectangular parallelepiped shape, and a heat conductive member (2) formed in a plate shape from a soft material having thermal conductivity and electrical insulation. A plurality of battery packs (101), which are alternately arranged in close contact with each other and are pressed and restrained from both ends in the arrangement direction, are formed in contact with one surface of the battery pack member (101). A tunnel-shaped cooling passage (102) through which a refrigerant flows, and at least a part of the heat conducting member (2) is exposed to the inside of the cooling passage (102) so that heat can be transferred to the cooling passage (102). The partition wall (103) partitioning 102) from the outside is formed of a heat insulating wall.

本発明の組電池装置によれば、組電池部材の一表面と接して形成された冷却通路を備えることにより、単電池セルから発する熱は、有効に冷却通路を通じて外部へ放出することができる。つまり、冷却通路は、断熱壁からなる区画壁で外部と熱絶縁的に区画されているため、外部環境の熱(温度)は、冷却通路内の冷媒に影響し難くなり、冷却通路内の冷媒を常に所定の冷却温度で保つことができる。よって、組電池部材と接する一表面の温度と、冷却通路内の冷却冷媒の温度との間における温度差を大きく、かつ安定的に維持することができ、単電池セルの冷却効率が向上する。
(2)本発明の組電池装置の前記熱伝導部材(2)は、マトリックス基材(20)と、該マトリックス基材(20)中に含まれ繊維の長さ方向の熱伝導率が10W/m・K以上の繊維部材(21)と、からなることが好ましい。
According to the assembled battery device of the present invention, by providing the cooling passage formed in contact with one surface of the assembled battery member, the heat generated from the single battery cell can be effectively released to the outside through the cooling passage. That is, since the cooling passage is partitioned by a partition wall made of a heat insulating wall from the outside, the heat (temperature) of the external environment hardly affects the refrigerant in the cooling passage, and the refrigerant in the cooling passage Can always be kept at a predetermined cooling temperature. Therefore, the temperature difference between the temperature of the one surface in contact with the assembled battery member and the temperature of the cooling refrigerant in the cooling passage can be maintained large and stably, and the cooling efficiency of the single battery cell is improved.
(2) The heat conductive member (2) of the assembled battery device of the present invention includes a matrix base material (20) and a thermal conductivity in the length direction of the fibers contained in the matrix base material (20) of 10 W / It is preferable that it consists of a fiber member (21) of m · K or more.

マトリックス基材は一定の変形性を持ち、繊維部材は、マトリックス基材より剛性が高い。したがって繊維部材の介在によって熱伝導部材の変形(薄肉化)を防止するでき、単電池セルの膨張を確実に規制することができる。これにより、各単電池セルの内圧を均一にして各単電池セルの充放電特性を均一にすることができる。また、繊維部材によって硬質スペーサが不要となり、単電池セル間距離を縮小できる。そのため、全体がコンパクトな形状となり搭載スペースを縮小することができる。
(3)本発明の組電池装置の前記繊維部材(21)を構成する繊維は、前記単電池セル(1)の最も広い表面と略平行に、かつ前記冷却通路(102)側に向かう方向に配向していることが好ましい。
The matrix substrate has a certain degree of deformability, and the fiber member is more rigid than the matrix substrate. Therefore, the deformation (thinning) of the heat conducting member can be prevented by the interposition of the fiber member, and the expansion of the single battery cell can be reliably regulated. Thereby, the internal pressure of each single battery cell can be made uniform, and the charge / discharge characteristics of each single battery cell can be made uniform. Moreover, a hard spacer becomes unnecessary by a fiber member, and the distance between single battery cells can be reduced. Therefore, the whole becomes a compact shape, and the mounting space can be reduced.
(3) The fibers constituting the fiber member (21) of the assembled battery device of the present invention are substantially parallel to the widest surface of the unit cell (1) and in a direction toward the cooling passage (102). It is preferably oriented.

繊維部材を構成する繊維が単電池セルの最も広い表面と略平行に、かつ冷却通路側に向かう方向に配向していれば、単電池セルからの排熱は熱伝導部材の繊維部材を介して、冷却通路側に向かう方向に効率よく伝熱され、冷却通路から放熱されるので、放熱性がさらに向上する。
(4)本発明の組電池装置の前記繊維部材(21)の表面と前記熱伝導部材(2)の表面との間には、長さ方向の熱伝導率が10W/m・K以上の短繊維(21c)が前記熱伝導部材(2)の厚さ方向に配向して埋設されていることが好ましい。
If the fibers constituting the fiber member are oriented substantially parallel to the widest surface of the single battery cell and in the direction toward the cooling passage, the exhaust heat from the single battery cell passes through the fiber member of the heat conducting member. Since the heat is efficiently transferred in the direction toward the cooling passage and is radiated from the cooling passage, the heat dissipation is further improved.
(4) Between the surface of the said fiber member (21) and the surface of the said heat conductive member (2) of the assembled battery apparatus of this invention, the heat conductivity of a length direction is short of 10 W / m * K or more. It is preferable that the fibers (21c) are embedded while being oriented in the thickness direction of the heat conducting member (2).

熱伝導部材の厚さ方向に短繊維を配向して埋設することにより、熱伝導部材の表面から繊維部材の表面との間に熱伝導性が向上し、よって、単電池セルの排熱が熱伝導部材の表面から繊維部材へ伝わりやすくなり、放熱が促進される。このため、単電池セルの放熱効率がさらに向上する。
(5)本発明の組電池装置の前記冷媒は、空気であることが好ましい。
(6)本発明の組電池装置の前記冷却通路(102)には複数の放熱板が列設されてなるヒートシンク(4)が配置され、前記熱伝導部材(2)の一部は前記ヒートシンク(4)に密着することで伝熱可能に表出していることが好ましい。
By aligning and embedding short fibers in the thickness direction of the heat conducting member, the thermal conductivity is improved between the surface of the heat conducting member and the surface of the fiber member, so that the exhaust heat of the single battery cell is heated. It becomes easy to be transmitted from the surface of the conductive member to the fiber member, and heat dissipation is promoted. For this reason, the heat dissipation efficiency of the single battery cell is further improved.
(5) It is preferable that the said refrigerant | coolant of the assembled battery apparatus of this invention is air.
(6) A heat sink (4) in which a plurality of heat radiating plates are arranged in a row is arranged in the cooling passage (102) of the assembled battery device of the present invention, and a part of the heat conducting member (2) is the heat sink ( It is preferable that it is exposed so that heat can be transferred by being in close contact with 4).

冷却通路内にヒートシンクを配置することにより、単電池セルからの排熱がヒートシンクを介して冷却通路内の冷媒と熱交換を行うため、単電池セルの放熱効率がさらに向上する。
(7)本発明の組電池装置の前記断熱壁は、熱伝導率が0.5W/m・K以下の断熱材からなることが好ましい。
By disposing the heat sink in the cooling passage, the exhaust heat from the single battery cell exchanges heat with the refrigerant in the cooling passage through the heat sink, so that the heat dissipation efficiency of the single battery cell is further improved.
(7) It is preferable that the said heat insulation wall of the assembled battery apparatus of this invention consists of heat insulating materials whose heat conductivity is 0.5 W / m * K or less.

これにより、外部環境から冷却通路内の冷媒温度を有効に保護することができ、単電池セルの冷却効率が向上する。
(8)本発明の組電池装置の前記断熱材は、樹脂或いは樹脂発泡体であることが好ましい。
Thereby, the refrigerant temperature in the cooling passage can be effectively protected from the external environment, and the cooling efficiency of the single battery cell is improved.
(8) It is preferable that the said heat insulating material of the assembled battery apparatus of this invention is resin or a resin foam.

なお、[請求項]や[課題を解決するための手段]に用いられる符号は、本発明の構成を理解しやすくするためのものであって、実施例に限定されるものではない。   The symbols used in [Claims] and [Means for Solving the Problems] are for easy understanding of the configuration of the present invention, and are not limited to the embodiments.

本発明の組電池装置によれば、単電池セルから発する熱は、有効に冷却通路を通じて外部へ放出することができる。断熱壁からなる区画壁で冷却通路が外部と熱絶縁的に区画されているため、外部環境の熱(温度)は、冷却通路内の冷媒に影響し難くなり、冷却通路内の冷媒を常に所定の冷却温度で保つことができる。よって、組電池部材と接する一表面の温度と、冷却通路内部に流通する冷却冷媒の温度との間における温度差を大きく、かつ安定的に維持することができ、単電池セルの冷却効率が向上する。   According to the assembled battery device of the present invention, the heat generated from the single battery cell can be effectively released to the outside through the cooling passage. Since the cooling passage is partitioned from the outside by a partition wall consisting of heat insulating walls, the heat (temperature) of the external environment is unlikely to affect the refrigerant in the cooling passage, and the refrigerant in the cooling passage is always set to a predetermined level. Can be kept at the cooling temperature. Therefore, the temperature difference between the temperature of the one surface in contact with the assembled battery member and the temperature of the cooling refrigerant flowing inside the cooling passage can be maintained large and stably, and the cooling efficiency of the single battery cell is improved. To do.

また、単電池セルと熱伝導部材との間には隙間が無いので、従来の空間 904への埃の堆積の問題は生じない。したがって長期使用後においても各単電池セル毎の冷却条件はほとんど同一となるので、各単電池セル間の冷却特性を均一とすることができ、寿命が長くなる。   Further, since there is no gap between the single battery cell and the heat conducting member, the problem of dust accumulation in the conventional space 904 does not occur. Therefore, even after long-term use, the cooling conditions for each single battery cell are almost the same, so that the cooling characteristics between the single battery cells can be made uniform, and the life is prolonged.

さらに、熱伝導部材及び冷却通路を設けることによって、単電池セルの排熱が効率的に放出できるため、単電池セル間距離を縮小することできる。よって、全体がコンパクトな形状となり搭載スペースを縮小することができる。また、組電池部材の一部が伝熱可能に冷却通路に表出して設置されており、熱交換が冷却通路内にて行われるため、結露しやすい位置が単電池セルの電極から遠くなり、結露による漏電も防止することができる。   Furthermore, by providing the heat conducting member and the cooling passage, the exhaust heat of the single battery cells can be efficiently released, and thus the distance between the single battery cells can be reduced. Therefore, the whole becomes a compact shape and the mounting space can be reduced. In addition, a part of the assembled battery member is exposed and installed in the cooling passage so that heat can be transferred, and since heat exchange is performed in the cooling passage, the position where condensation easily occurs is far from the electrode of the unit cell, Electric leakage due to condensation can also be prevented.

本発明の組電池装置は、電気自動車やハイブリッド車などの電源装置として好適に用いられる。   The assembled battery device of the present invention is suitably used as a power supply device for electric vehicles, hybrid vehicles, and the like.

本発明の組電池装置は、組電池部材と、冷却通路とからなる。   The assembled battery device of the present invention includes an assembled battery member and a cooling passage.

組電池部材は、単電池セルと板状の熱伝導部材とを備え、単電池セルと熱伝導部材とが互いに密着して交互に複数個列設されてなり、列設方向の両端から加圧拘束されてなる。   The assembled battery member includes a single battery cell and a plate-like heat conduction member, and the battery cells and the heat conduction member are in close contact with each other and are alternately arranged in a row, and are pressed from both ends in the row direction. Be bound.

冷却通路は、組電池部材の一表面と接してトンネル状に形成され、内部に冷媒が流通される。熱伝導部材の少なく一部が冷却通路の内部に表出しており、熱伝導部材がこの表出部位を介して、冷却通路内の冷媒と熱交換を行う。また、冷却通路を外部から区画する区画壁は断熱壁である。   The cooling passage is formed in a tunnel shape in contact with one surface of the assembled battery member, and the refrigerant is circulated therein. At least a part of the heat conducting member is exposed inside the cooling passage, and the heat conducting member exchanges heat with the refrigerant in the cooling passage through the exposed portion. The partition wall that partitions the cooling passage from the outside is a heat insulating wall.

断熱壁は、熱伝導率が0.5W/m・K以下の断熱材を用いることが望ましい。断熱材のなかでも、一般的に熱伝導率が0.2W/m・K以下の樹脂(例えば、ポリエチレン樹脂、ポリプロピレン樹脂)、或いは熱伝率がさらに低い0.02W/m・K以下の樹脂発泡体(例えば、ポリエチレン樹脂発泡体、ポリプロピレン樹脂発泡体)などが好適に用いられる。   As the heat insulating wall, it is desirable to use a heat insulating material having a thermal conductivity of 0.5 W / m · K or less. Among heat insulating materials, generally a resin having a thermal conductivity of 0.2 W / m · K or less (for example, a polyethylene resin or a polypropylene resin), or a resin having a lower thermal conductivity of 0.02 W / m · K or less. A foam (for example, a polyethylene resin foam, a polypropylene resin foam) or the like is preferably used.

冷却通路の区画壁は断熱性を有するため、冷却通路内を流通する冷媒は、外部から熱的に保護される。よって、外部の熱源(例えば自動車の排熱)からの影響が低減される。冷却通路内の冷媒温度が管理しやすくなる。熱交換時の温度差を大きくそして、安定的に維持することができるので、単電池セルからの熱を効率的に放出することができる。   Since the partition wall of the cooling passage has heat insulation properties, the refrigerant flowing through the cooling passage is thermally protected from the outside. Therefore, the influence from an external heat source (for example, exhaust heat of a car) is reduced. It becomes easy to manage the refrigerant temperature in the cooling passage. Since the temperature difference during heat exchange can be kept large and stable, the heat from the single battery cell can be efficiently released.

また、本発明の組電池装置では、冷媒として、エアコンからの冷却風(冷却空気)を使用することができる。冷却空気の他には、電気絶縁性を有する冷却オイルなども使用できる。   In the assembled battery device of the present invention, cooling air (cooling air) from an air conditioner can be used as the refrigerant. In addition to the cooling air, it is also possible to use a cooling oil having electrical insulation.

本発明の組電池装置において、単電池セルとしては一般的な所謂角型電池セルを用いることができる。樹脂製の筐体をもつもの、あるいは表面に絶縁被膜がコーティングされたものを用いてもよいが、熱伝導性が高い鉄やアルミニウムなどの金属製の筐体が表出する単電池セルを用いることが好ましい。単電池セルの上部には、一対の電極が突出形成されているのが一般的である。通常は、電極をもつ側が全て同じ側となるように、複数の単電池セルが列設される。   In the assembled battery device of the present invention, a general so-called prismatic battery cell can be used as the single battery cell. You may use one with a resin casing, or one with an insulating coating on the surface, but use a single battery cell that exposes a metal casing such as iron or aluminum with high thermal conductivity. It is preferable. In general, a pair of electrodes project from the upper part of the unit cell. Usually, a plurality of unit cells are arranged in a row so that the sides having the electrodes are all the same side.

熱伝導部材は、熱伝導性と電気絶縁性とを有する軟質材からなる。   A heat conductive member consists of a soft material which has heat conductivity and electrical insulation.

熱伝導部材は、マトリックス基材と、マトリックス基材中に含まれた繊維部材とからなることができる。なお、マトリックス基材が軟質材に相当する。熱伝導部材は板状に形成される。ここで熱伝導部材を構成するマトリックス基材における軟質の程度は、アスカーC硬度で50以下のものが望ましい。アスカーC硬度で50以下の軟質度とすることで、単電池セルの最も広い側面との密着性を十分に確保することができ、単電池セルの熱を効率よく放熱することができる。なおアスカーC硬度とは、日本ゴム協会標準規格SRIS 0101 で規定されるゴム硬度であり、JIS K 6253で規定されるショア硬度Eに相当する。またマトリックス基材は、熱伝導率が5W/m・K以上の熱伝導性を備えることが望ましい。熱伝導率がこれより低いと、放熱性が低くなって好ましくない。   A heat conductive member can consist of a matrix base material and the fiber member contained in the matrix base material. The matrix base material corresponds to a soft material. The heat conducting member is formed in a plate shape. Here, the degree of softness in the matrix base material constituting the heat conducting member is desirably 50 or less in Asker C hardness. By setting the Asker C hardness to a softness of 50 or less, sufficient adhesion with the widest side surface of the single battery cell can be secured, and the heat of the single battery cell can be efficiently radiated. The Asker C hardness is a rubber hardness defined by the Japan Rubber Association standard SRIS 0101 and corresponds to a Shore hardness E defined by JIS K 6253. The matrix base material preferably has a thermal conductivity of 5 W / m · K or more. If the thermal conductivity is lower than this, the heat dissipation becomes low, which is not preferable.

上記した特性を備えるマトリックス基材の材料としては、例えばシリコーンゴムなどの熱可塑性エラストマを用いることができる。シリコーンゴムは熱伝導性と高い電気絶縁性を兼ね備え、アスカーC硬度で2〜45程度と軟質である。また一般のゴムや熱可塑性エラストマは、そのままでは熱伝導性が低すぎて使用できないが、例えばアルミナ、窒化ホウ素、窒化ケイ素、シリカなどの高熱伝導材を混合することで用いることができる可能性がある。   As a material for the matrix base material having the above-described properties, for example, a thermoplastic elastomer such as silicone rubber can be used. Silicone rubber has both thermal conductivity and high electrical insulation, and is soft with an Asker C hardness of about 2-45. General rubber and thermoplastic elastomers cannot be used because they are too low in thermal conductivity as they are, but there is a possibility that they can be used by mixing high thermal conductive materials such as alumina, boron nitride, silicon nitride, and silica. is there.

繊維部材は、繊維の長さ方向の熱伝導率が10W/m・K以上のものが望ましい。このような繊維部材の材料としては、繊維の長さ方向の熱伝導率が約60W/m・Kの超高分子量ポリエチレン繊維、同熱伝導率が約 540W/m・Kのカーボン繊維、同熱伝導率が約 240W/m・Kのアルミニウム繊維、同熱伝導率が約1015W/m・Kのアルミナ繊維、同熱伝導率が約 400W/m・Kの銅繊維、同熱伝導率が約 300〜 400W/m・Kの窒化アルミニウム繊維、同熱伝導率が約22W/m・Kのチタン繊維、同熱伝導率が約 250W/m・Kの窒化ホウ素などが例示される。中でも、同熱伝導率が約60W/m・Kの超高分子量ポリエチレン繊維は電気絶縁性も併せ持つので、特に好ましい材料である。   The fiber member preferably has a thermal conductivity of 10 W / m · K or more in the longitudinal direction of the fiber. The material of such a fiber member includes an ultrahigh molecular weight polyethylene fiber having a thermal conductivity of about 60 W / m · K in the longitudinal direction of the fiber, a carbon fiber having the same thermal conductivity of about 540 W / m · K, and the same heat. Aluminum fiber with a conductivity of about 240 W / m · K, alumina fiber with a thermal conductivity of about 1015 W / m · K, copper fiber with a thermal conductivity of about 400 W / m · K, and a thermal conductivity of about 300 Examples include aluminum nitride fibers of up to 400 W / m · K, titanium fibers having the same thermal conductivity of about 22 W / m · K, and boron nitride having the same thermal conductivity of about 250 W / m · K. Among them, an ultrahigh molecular weight polyethylene fiber having the same thermal conductivity of about 60 W / m · K is also a particularly preferable material because it has an electrical insulating property.

また、繊維部材は、単繊維の集合体で構成することができる。また、単繊維の集合体の配向方向として、冷却通路側に向かう方向に沿う方向が好ましい。つまり、単繊維の熱伝導率は、繊維の長さ方向で10W/m・K以上であったとしても、繊維の径方向では10W/m・Kに満たない場合がある。単繊維の集合体からなる繊維部材をマトリックス基材の中に埋設した際、冷却通路側に向かう方向に沿って単繊維の集合体を配向することにより、熱伝導部材の表面から伝導してきた単電池セルの排熱は、繊維部材の配向方向に沿って伝導しやすくなっており、冷却通路側に向かう方向以外の方向における熱の伝導(流出)を抑制しながら、冷却通路側に集中して伝熱することができる。これにより、単電池セルを囲む環境の温度上昇を抑えつつ、効率的に冷却通路側に熱を移送し、そして冷却通路を介して放熱を実現している。一方、冷却通路側に向かう方向以外の方向に、単電池セルからの熱が大量に流出した場合、単電池セルの周辺環境の温度が上昇し、単電池セルの劣化に繋がる。   Further, the fiber member can be composed of an aggregate of single fibers. Moreover, the direction along the direction toward the cooling passage is preferable as the orientation direction of the aggregate of single fibers. That is, even if the thermal conductivity of the single fiber is 10 W / m · K or more in the fiber length direction, it may be less than 10 W / m · K in the fiber radial direction. When a fiber member composed of an aggregate of single fibers is embedded in a matrix substrate, the single fiber aggregate that is conducted from the surface of the heat conducting member is oriented by orienting the aggregate of single fibers along the direction toward the cooling passage side. The exhaust heat of the battery cell is easily conducted along the orientation direction of the fiber member, and is concentrated on the cooling passage side while suppressing heat conduction (outflow) in directions other than the direction toward the cooling passage side. Heat can be transferred. Thereby, heat is efficiently transferred to the cooling passage side while suppressing the temperature rise in the environment surrounding the single battery cell, and heat dissipation is realized through the cooling passage. On the other hand, when a large amount of heat from the single battery cell flows in a direction other than the direction toward the cooling passage side, the temperature of the surrounding environment of the single battery cell rises, leading to deterioration of the single battery cell.

また、マトリックス基材に繊維部材を埋設することにより、熱伝導部材の面剛性が高くなり、単電池セルの膨張をより抑制することが可能となる。   Moreover, by embedding the fiber member in the matrix base material, the surface rigidity of the heat conducting member is increased, and the expansion of the single battery cell can be further suppressed.

また、繊維部材は、熱伝導部材中に20〜80体積%の範囲で含まれていることが望ましい。繊維部材の含有量が20体積%より少ないと放熱性が不十分となり、80体積%より多く含有すると熱伝導部材の軟質度が低下して単電池セルとの密着性が低下するため放熱性が低下する。   Moreover, it is desirable that the fiber member is contained in the heat conductive member in a range of 20 to 80% by volume. When the content of the fiber member is less than 20% by volume, the heat dissipation becomes insufficient. When the content is more than 80% by volume, the softness of the heat conducting member is lowered and the adhesiveness with the single battery cell is lowered. descend.

熱伝導部材を形成するには、繊維部材を型内に配置した状態で溶融状態にあるシリコーンゴムなどの軟質材を注入してプレス成形することで、容易に形成することができる。この場合、繊維部材を形成する際に、長さ方向の熱伝導率が10W/m・K以上の単繊維と単繊維の表面に被覆された軟質熱伝導樹脂層とからなる複合糸を用いることも好ましい。そして軟質熱伝導樹脂層としてマトリックス基材との親和性に富むものを用いれば、マトッリクス基材と繊維部材との密着性が高まり放熱性が向上する。また単繊維と単繊維の表面に被覆された軟質熱伝導樹脂層とからなる複合糸のみを型内に配置してプレス成形すれば、軟質熱伝導樹脂層をマトリックス基材とすることも可能である。   In order to form the heat conducting member, it can be easily formed by injecting and press-molding a soft material such as silicone rubber in a molten state with the fiber member disposed in the mold. In this case, when forming the fiber member, a composite yarn composed of a single fiber having a thermal conductivity of 10 W / m · K or more in the length direction and a soft heat conductive resin layer coated on the surface of the single fiber is used. Is also preferable. If a soft heat conductive resin layer having high affinity with the matrix base material is used, the adhesion between the matrix base material and the fiber member is increased, and the heat dissipation is improved. In addition, if only a composite yarn consisting of a single fiber and a soft heat conductive resin layer coated on the surface of the single fiber is placed in a mold and press-molded, the soft heat conductive resin layer can be used as a matrix substrate. is there.

しかし上記したように、シリコーンゴムなどの軟質材を注入するプレス成形にて熱伝導部材を形成した場合、シリコーンゴムの熱伝導性が繊維部材より低い場合には、シリコーンゴムの表面から繊維部材への伝熱量が不足する可能性がある。   However, as described above, when the heat conductive member is formed by press molding in which a soft material such as silicone rubber is injected, if the thermal conductivity of the silicone rubber is lower than that of the fiber member, the surface of the silicone rubber is transferred from the surface of the silicone rubber to the fiber member. There is a possibility that the amount of heat transfer is insufficient.

そこで、繊維部材の表面と熱伝導部材の表面との間(或いは、熱伝導部材の厚さ方向の両側の表面の間)には、長さ方向の熱伝導率が10W/m・K以上の短繊維の繊維長さ方向が熱伝導部材の厚さ方向に配向して埋設されていることが望ましい。このようにすれば、単電池セルから密着表面に伝えられた熱を、厚さ方向に配向した短繊維を介して効率よく繊維部材に伝熱することができ、放熱性がさらに向上する。   Therefore, between the surface of the fiber member and the surface of the heat conducting member (or between the surfaces on both sides in the thickness direction of the heat conducting member), the thermal conductivity in the length direction is 10 W / m · K or more. It is desirable that the fiber length direction of the short fiber is embedded so as to be oriented in the thickness direction of the heat conducting member. If it does in this way, the heat transmitted from the single battery cell to the contact | adherence surface can be efficiently transferred to a fiber member via the short fiber oriented in the thickness direction, and heat dissipation is further improved.

このように短繊維が配向した状態の熱伝導部材を形成するには、シリコーンゴムなどの軟質材に短繊維を混合した複合材を形成しておく。そして繊維部材を型内に配置し、溶融状態とした複合材を注入して成形する際に、熱伝導部材の厚さ方向に磁場を印加しながら成形を行う。これにより短繊維は繊維長さ方向が磁場方向と平行に配向し、熱伝導部材の厚さ方向に配向させることができる。   In order to form a heat conducting member with short fibers oriented in this way, a composite material in which short fibers are mixed with a soft material such as silicone rubber is formed. Then, when the fiber member is placed in the mold and the molten composite material is injected and molded, the molding is performed while applying a magnetic field in the thickness direction of the heat conducting member. Accordingly, the short fibers can be oriented in the fiber length direction parallel to the magnetic field direction and in the thickness direction of the heat conducting member.

短繊維の材料は、繊維部材と同一であってもよいし、繊維部材とは異なり磁場方向に配向しやすい窒化ホウ素などの別材料を用いてもよい。また短繊維の形状は、繊維状ばかりでなく鱗片状のものを用いることもできる。厚さ方向に配向した短繊維の含有量は、熱伝導部材中に20〜60体積%の範囲とすることが望ましい。厚さ方向に配向した短繊維の含有量が20体積%より少ないと上記した効果の発現が困難となり、60体積%より多く含有しても効果が飽和するとともに熱伝導部材の剛性が高くなり過ぎて単電池セルとの密着性が低下して放熱性が低下する。   The material of the short fiber may be the same as that of the fiber member, or another material such as boron nitride that is easily oriented in the magnetic field direction may be used unlike the fiber member. Moreover, the shape of a short fiber can use not only a fibrous form but a scale-like thing. The content of the short fibers oriented in the thickness direction is preferably in the range of 20 to 60% by volume in the heat conducting member. If the content of the short fibers oriented in the thickness direction is less than 20% by volume, the above-mentioned effect is difficult to be obtained. Even if the content is more than 60% by volume, the effect is saturated and the rigidity of the heat conducting member becomes too high. As a result, the adhesiveness with the single battery cell is lowered and the heat dissipation is lowered.

また熱伝導部材は、単電池セルを収納可能な袋形状に形成してもよい。このようにすれば、袋状の熱伝導部材に単電池セルを投入するだけで、単電池セルと熱伝導部材との積層体を容易に形成することができる。   Moreover, you may form a heat conductive member in the bag shape which can accommodate a battery cell. If it does in this way, the laminated body of a single battery cell and a heat conductive member can be easily formed only by throwing a single battery cell in a bag-like heat conductive member.

また、熱伝導部材は、単電池セルに対向し密着する表面が単電池セルに向かって凸の球面とすることもできる。このようにすれば、加圧拘束時には球面の中心部が先ず単電池セルに当接し、圧縮されるに従って中心から外側へ向かって単電池セルと接触する面積が増大していくので、単電池セルと密着する表面との間に空気が残留するのが防止され放熱性が向上する。   In addition, the surface of the heat conducting member that faces and closely contacts the single battery cell may be a convex spherical surface toward the single battery cell. In this way, when the pressure is restrained, the central portion of the spherical surface first comes into contact with the single battery cell, and as the area is compressed, the area of contact with the single battery cell increases from the center toward the outside. Air is prevented from remaining between the contact surface and the surface to be in close contact with, and heat dissipation is improved.

本発明の組電池装置では、冷却通路の内部に伝熱可能に表出する熱伝導部材の一部(放熱表面)から延出するタブ部を形成し、そのタブ部を同一方向に配置して冷却通路の内部に突出させてもよい。   In the assembled battery device of the present invention, a tab portion extending from a part (heat radiation surface) of the heat conducting member that is exposed in the cooling passage is formed, and the tab portions are arranged in the same direction. You may protrude in the inside of a cooling channel.

上記の場合には、単電池セルと熱伝導部材とを交互に列設して加圧拘束したものをケーシング中に収納し、上記の放熱表面(冷却通路の内部に伝熱可能に表出する熱伝導部材の一部)又はタブ部が突出する側の表面は冷却通路内の冷媒と接触し、熱交換ができる。つまり、トンネル状の冷却通路の内部空間が単電池セルの放熱空間とされており、エアコンの冷風を流通させるなどすれば、各単電池セルの熱を上記の放熱表面(熱伝導部材の冷却通路の内部に表出する一部)又はタブ部を介して均一に放熱することができる。   In the above case, the battery cells and the heat conducting members that are alternately arranged and restrained under pressure are accommodated in the casing, and are exposed to the above heat radiating surface (inside the cooling passage so that heat can be transferred). A part of the heat conducting member) or the surface on which the tab portion protrudes comes into contact with the refrigerant in the cooling passage, and heat exchange can be performed. That is, the internal space of the tunnel-shaped cooling passage is used as a heat radiating space of the single battery cell. If the cool air of the air conditioner is circulated, the heat of each single battery cell is transferred to the heat radiating surface (the cooling passage of the heat conducting member). The heat can be evenly dissipated through the part) or the tab portion.

さらに、複数の放熱板が列設されてなるヒートシンクを放熱空間(冷却通路の内部空間)に配置し、ヒートシンクに熱伝導部材の放熱表面(熱伝導部材の冷却通路の内部に表出する一部)を当接させることが好ましい。ヒートシンクにエアコンの冷風を接触させるようにすれば、ヒートシンク及び熱伝導部材を介して各単電池セルの熱をより均一に放出することができる。   Furthermore, a heat sink in which a plurality of heat radiating plates are arranged is arranged in a heat radiating space (inner space of the cooling passage), and a heat radiating surface of the heat conducting member (a part of the heat conducting member exposed inside the cooling passage) ) Is preferably brought into contact. If the cool air of the air conditioner is brought into contact with the heat sink, the heat of each single battery cell can be released more uniformly through the heat sink and the heat conducting member.

なおヒートシンクを用いる場合には、単電池セルと熱伝導部材とを交互に列設して加圧拘束したものの下方にヒートシンクを配置することが望ましい。このようにすれば、万一ヒートシンクに結露が発生した場合でも、水滴が単電池セルと接触することを防止することができ、漏電を確実に防止できる。   In the case of using a heat sink, it is desirable to dispose the heat sink below the ones in which the battery cells and the heat conducting members are alternately arranged and restrained by pressure. In this way, even if dew condensation occurs in the heat sink, it is possible to prevent water droplets from coming into contact with the single battery cells, and it is possible to reliably prevent leakage.

また、熱伝導部材は、板状に形成され、隣接する単電池セルどうしの間に介在させることができる。しかしこの場合は、熱伝導部材の圧縮量を規制することが困難であり、熱伝導部材の両側の単電池セルで膨張量が異なる場合が生じる可能性がある。また、(列設により)積層してなる単電池セルの集合体を整列する(位置決める)必要もある。   Moreover, a heat conductive member is formed in plate shape, and can be interposed between adjacent single battery cells. However, in this case, it is difficult to regulate the amount of compression of the heat conducting member, and there is a possibility that the amount of expansion differs between the battery cells on both sides of the heat conducting member. In addition, it is necessary to align (position) the assembly of single battery cells formed by stacking (by arrangement).

そこで、電気絶縁性を持ち、熱伝導部材を収納する空間を形成可能な硬質スペーサを持つことが好ましい。また、硬質スペーサには、整列(位置決め)できる係合部を備えることができる。硬質スペーサが介在することで、熱伝導部材の圧縮量を規制することができる。さらに、積層してなる単電池セルの集合体を整列することができ、単電池セルの組み立てまたは電極の配線等がより容易に行える。   Therefore, it is preferable to have a hard spacer having electrical insulation and capable of forming a space for storing the heat conducting member. Further, the hard spacer can be provided with an engaging portion that can be aligned (positioned). By interposing the hard spacer, it is possible to regulate the amount of compression of the heat conducting member. Furthermore, it is possible to align a stack of unit cells, and to assemble the unit cells or wire electrodes more easily.

また、硬質スペーサは、一対の略同形状のキャップ状の保持部材で構成することができる。保持部材は、例えばポリプロピレン(PP)などの電気絶縁性樹脂から形成することができる。硬質スペーサをキャップ状の保持部材を用いることにより、直方形の単電池セルを両側から挟持して保持することができる。そして、保持部材の厚さにより隣接する単電池セルどうしの間に熱伝導部材の収容空間を形成することができる。従って、硬質スペーサの壁部の厚さにより、熱伝導部材の圧縮量を規制することができる。   Further, the hard spacer can be formed of a pair of cap-shaped holding members having substantially the same shape. The holding member can be formed of an electrically insulating resin such as polypropylene (PP). By using the cap-shaped holding member for the hard spacer, the rectangular unit cell can be held and held from both sides. And the accommodation space of a heat conductive member can be formed between the adjacent battery cells by the thickness of a holding member. Therefore, the amount of compression of the heat conducting member can be regulated by the thickness of the wall portion of the hard spacer.

また、キャップ状の他には、硬質スペーサを板状に形成することもできる。例えば、板状のスペーサに厚さ方向に貫通する窓部を形成し、この窓部に熱伝導部材を保持することができる。この保持方法としては、凹凸係合などにより保持してもよいし、熱伝導部材を金型内に配置してスペーサを成形するインサート成形にて保持することもできる。なお熱伝導部材の厚さは、周囲の硬質スペーサの壁部の厚さよりも 0.2mm〜2mm程度厚くし、加圧拘束時に単電池セルによって圧縮されることでスペーサと同等の厚さとなるように構成することが望ましい。   In addition to the cap shape, a hard spacer can be formed in a plate shape. For example, a window portion penetrating in the thickness direction can be formed in a plate-like spacer, and the heat conducting member can be held in the window portion. As this holding method, it may be held by uneven engagement or the like, or may be held by insert molding in which a heat conductive member is placed in a mold and a spacer is formed. The thickness of the heat conducting member is about 0.2 mm to 2 mm thicker than the wall thickness of the surrounding hard spacer, and it is compressed by the single battery cell when restrained by pressure so that it becomes the same thickness as the spacer. It is desirable to configure.

熱伝導部材には、隣接する単電池セルの最も広い側面どうしの近接を規制する電気絶縁性の規制手段が配置されていることが好ましい。このようにすることで単電池セルの膨張を確実に規制することができ、各単電池セルの内圧を均一にして各単電池セルの充放電特性を均一にすることができる。この規制手段は、スペーサと一体に形成してもよいし、硬質樹脂を熱伝導部材中に埋設させることで形成してもよい。   It is preferable that an electrical insulating regulating means for regulating the proximity of the widest side surfaces of adjacent unit cells is disposed on the heat conducting member. By doing in this way, expansion of a single battery cell can be controlled reliably, the internal pressure of each single battery cell can be made uniform, and the charge / discharge characteristics of each single battery cell can be made uniform. This regulating means may be formed integrally with the spacer, or may be formed by embedding a hard resin in the heat conducting member.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

(実施例1)
図1は、本実施例に係る組電池装置の分解斜視概念図を示す。図2は、本実施例に係る組電池装置の要部縦断面概念図を示す。図3は、図2に示すI−I位置の縦断面概念図を示す。
(Example 1)
FIG. 1 is an exploded perspective conceptual diagram of an assembled battery device according to the present embodiment. FIG. 2: shows the principal part longitudinal cross-section conceptual diagram of the assembled battery apparatus which concerns on a present Example. FIG. 3 is a conceptual diagram of a longitudinal section at the II position shown in FIG.

図に示すように、本実施例の組電池装置は、主に上方に位置する組電池部材101と、下方に位置し、組電池部材101の下部の一表面に接して形成された冷却通路102とからなる。また、冷却通路102にはヒートシンク4が設けられている。   As shown in the figure, an assembled battery device according to the present embodiment mainly includes an assembled battery member 101 positioned above, and a cooling passage 102 positioned below and formed in contact with a lower surface of the assembled battery member 101. It consists of. A heat sink 4 is provided in the cooling passage 102.

(組電池部材)
組電池部材101は、直方体形状をなす単電池セル1と、板状に形成された熱伝導部材2とを、互いに密着して交互に複数個列設して積層体として構成される。
(Battery material)
The assembled battery member 101 is configured as a laminated body in which a plurality of unit cells 1 each having a rectangular parallelepiped shape and a heat conductive member 2 formed in a plate shape are arranged in close contact with each other.

具体的には、図2に示すように、単電池セル1の短辺を構成する端部130(側面13)には、PPから形成される一対の保持部材6が設置されている。   Specifically, as shown in FIG. 2, a pair of holding members 6 formed of PP are installed on the end portion 130 (side surface 13) that forms the short side of the single battery cell 1.

保持部材6は、容器状(キャップ状)に形成され、キャップの開口側から単電池セル1の端部130を挿入して収容する収容凹部62を備えている。即ち、キャップ状の保持部材は、単電池セル1の端部130を被覆するように取り付けられる。   The holding member 6 is formed in a container shape (cap shape), and includes a housing recess 62 for inserting and housing the end portion 130 of the unit cell 1 from the opening side of the cap. That is, the cap-shaped holding member is attached so as to cover the end portion 130 of the unit cell 1.

収容凹部62は単電池セル1の端部130と略同じ形成とされている。これにより、単電池セル1が両側から保持部材6によって挟持して保持される。   The housing recess 62 is formed substantially the same as the end portion 130 of the single battery cell 1. Thereby, the unit cell 1 is sandwiched and held by the holding member 6 from both sides.

保持部材6は、列設される単電池セル1どうしの相対位置を決めるための第1係合部63、第2係合部64を備えている。また、第1係合部63は凸形に形成され、第2係合部64は第1係合部63と咬合するように凹形に形成されている。これにより、保持部材6で保持された単電池セル1を列設する際、隣接する一方の保持部材6の第1係合部63が、隣接する他方の保持部材6の第2係合部64と係合することで、一体に並列することができる。また、保持部材6の係合関係によって列設された単電池セル1どうしの相対位置のずれを防ぐことができる。   The holding member 6 includes a first engaging portion 63 and a second engaging portion 64 for determining the relative positions of the unit cells 1 arranged in a row. The first engaging portion 63 is formed in a convex shape, and the second engaging portion 64 is formed in a concave shape so as to be engaged with the first engaging portion 63. Thereby, when arranging the battery cells 1 held by the holding member 6, the first engaging portion 63 of the adjacent holding member 6 is connected to the second engaging portion 64 of the other adjacent holding member 6. By engaging with each other, it can be arranged in parallel. Moreover, the shift | offset | difference of the relative position of the single battery cells 1 arranged by the engagement relationship of the holding member 6 can be prevented.

また、組電池部材101では、保持部材6により保持された単電池セル1と、熱伝導部材2とが、隣接する単電池セル1の最も広い表面10どうしが熱伝導部材2を介して互いに対向するように交互に数10個(図3では3個に省略して示している)ずつ列設され、その列が二列平行に形成されている。保持部材6の側壁の厚さにより、列設方向に隣接する単電池セル1どうしの間に熱伝導部材2を収容する空間が形成される。   In the assembled battery member 101, the single battery cell 1 held by the holding member 6 and the heat conducting member 2 are opposed to each other with the widest surfaces 10 of the adjacent single battery cells 1 facing each other through the heat conducting member 2. In this way, several tens of rows are alternately arranged (in FIG. 3, abbreviated to three), and the rows are formed in parallel. Depending on the thickness of the side wall of the holding member 6, a space for accommodating the heat conducting member 2 is formed between the battery cells 1 adjacent in the row direction.

列設された組電池部材101の両端には、樹脂製の拘束プレート3が配置され、さらに図示しない拘束ロッドによって単電池セル1と熱伝導部材2とが互いに密着するように加圧された状態で拘束されている。その状態で、組電池部材101全体が図示しない電気絶縁性樹脂製のケーシングに収納されている。   Resin constraining plates 3 are arranged at both ends of the assembled battery members 101 arranged in a row, and the unit cell 1 and the heat conducting member 2 are pressed so as to be in close contact with each other by a constraining rod (not shown). It is restrained by. In this state, the entire assembled battery member 101 is housed in a casing made of an electrically insulating resin (not shown).

単電池セル1では、極板、セパレータ、電解液などの電池要素がアルミニウム製の筐体内に収納されている。筐体の上部には、正極及び負極の一対の電極12が突出している。また筐体は6個の表面をもち、最も広い表面10どうしが互いに対向するように列設されている。   In the unit cell 1, battery elements such as an electrode plate, a separator, and an electrolytic solution are housed in an aluminum casing. A pair of positive and negative electrodes 12 protrudes from the top of the housing. The housing has six surfaces, and the widest surfaces 10 are lined up so that they face each other.

図4は、単電池セル1に熱伝導部材2を密着して設置された状態を示す概念図である。図4に示すように、熱伝導部材2は、マットリスク基材20と、繊維部材21とからなる。   FIG. 4 is a conceptual diagram showing a state where the heat conducting member 2 is installed in close contact with the single battery cell 1. As shown in FIG. 4, the heat conducting member 2 includes a mat risk base material 20 and a fiber member 21.

具体的には、マトリックス基材20は、アスカーC硬度が45、熱伝導率が5W/m・Kのシリコーンゴムからなる。   Specifically, the matrix substrate 20 is made of silicone rubber having an Asker C hardness of 45 and a thermal conductivity of 5 W / m · K.

繊維部材21は、単繊維21bからなり、マトリックス基材20に埋設されている。単繊維21bは、超高分子量ポリエチレン繊維(「ダイニーマ」東洋紡製)から形成される。   The fiber member 21 is composed of a single fiber 21 b and is embedded in the matrix substrate 20. The single fiber 21b is formed from ultra high molecular weight polyethylene fiber ("Dyneema" manufactured by Toyobo).

具体的には、繊維部材21を構成する単繊維21bは、マットリスク基材20の厚み方向の略中央部に埋設されている。なお、繊維部材21は、熱伝導部材2中に50体積%の量で埋設されている。   Specifically, the single fiber 21 b constituting the fiber member 21 is embedded in a substantially central portion in the thickness direction of the mat risk base material 20. The fiber member 21 is embedded in the heat conducting member 2 in an amount of 50% by volume.

図4に示すように、繊維部材21を含んだ熱伝導部材2は、列設方向における単電池セル1どうしの間、及び組電池部材101(単電池セル1)と冷却通路102との間に設けられる。つまり、熱伝導部材2は、水平方向に配置された第1部材201aと縦方向に配置された複数枚の第2部材201bにより構成されている。第1部材201aと第2部材201bは互い直交して配置されている。   As shown in FIG. 4, the heat conducting member 2 including the fiber member 21 is provided between the unit cells 1 in the arrangement direction and between the assembled battery member 101 (unit cell 1) and the cooling passage 102. Provided. In other words, the heat conducting member 2 includes a first member 201a arranged in the horizontal direction and a plurality of second members 201b arranged in the vertical direction. The first member 201a and the second member 201b are arranged orthogonal to each other.

第2部材201bは、単繊維21bが単電池セル1の最も広い表面(側面10)と略平行に、かつ前記冷却通路(102)に向かう方向に配向している。   In the second member 201b, the single fibers 21b are oriented in a direction substantially parallel to the widest surface (side surface 10) of the single battery cell 1 and toward the cooling passage (102).

第1部材201aは、短繊維21cが第1部材201aの厚さ方向に沿って配置されている。   As for the 1st member 201a, the short fiber 21c is arrange | positioned along the thickness direction of the 1st member 201a.

なお、第1部材201aに、さらに単繊維(図示しない)を配合してもよい。つまり、単繊維が単電池セル1の長辺を構成する側面11と略平行に配向して設置してもよい。具体的には、単繊維は、横糸(図示しない)と縦糸(図示しない)により形成された織布で構成され、マトリックス基材20の厚さ方向の略中央部に埋設されていることができる。第1部材201aに横糸及び縦糸を備えることにより、面方向に熱を均一に分散してヒートシンク4に伝熱することができ、放熱性がさらに向上する。   In addition, you may further mix | blend a single fiber (not shown) with the 1st member 201a. That is, the single fibers may be installed so as to be oriented substantially parallel to the side surface 11 constituting the long side of the single battery cell 1. Specifically, the monofilament is composed of a woven fabric formed by weft yarn (not shown) and warp yarn (not shown), and can be embedded in a substantially central portion of the matrix base material 20 in the thickness direction. . By providing the first member 201a with the weft and the warp, the heat can be uniformly distributed in the surface direction and can be transferred to the heat sink 4 to further improve the heat dissipation.

図5は、図3に示すII―II位置における単電池セル1どうしの間に熱伝導部材2(第1部材201a)を密着して設置された状態を示す横断面概念図である。   FIG. 5 is a conceptual cross-sectional view showing a state in which the heat conducting member 2 (first member 201a) is installed in close contact between the single battery cells 1 at the II-II position shown in FIG.

図6は、図3に示すIII−III位置における単電池セル1(組電池部材101)とヒートシンク4との間に熱伝導部材2(第2部材201b)を密着して設置された状態を示す縦断面概念図である。   6 shows a state in which the heat conducting member 2 (second member 201b) is installed in close contact between the single battery cell 1 (battery member 101) and the heat sink 4 at the position III-III shown in FIG. It is a longitudinal cross-sectional conceptual diagram.

図5、図6に示すように、本実施例の組電池装置の熱伝導部材2には、マトリックス基材20に、単繊維21bと同様の超高分子量ポリエチレン繊維(「ダイニーマ」東洋紡製)からなる短繊維21c が埋設保持されている。短繊維21c は、その繊維長さ方向が熱伝導部材2の厚さ方向に平行に配向している。なお短繊維21c は、熱伝導部材2中に30〜40体積%含有されている。   As shown in FIGS. 5 and 6, the heat conductive member 2 of the assembled battery device of the present example is made of a matrix base material 20 and an ultrahigh molecular weight polyethylene fiber (“Dyneema” manufactured by Toyobo Co., Ltd.) similar to the single fiber 21 b. The short fiber 21c is embedded and held. The short fiber 21c has its fiber length direction oriented parallel to the thickness direction of the heat conducting member 2. The short fibers 21c are contained in the heat conducting member 2 by 30 to 40% by volume.

この熱伝導部材2(例えば第2部材201b)を製造するには、短繊維21c を混合した複合材を形成しておく。そして繊維部材21を型内に配置し、溶融状態とした複合材を注入してプレス成形する際に、熱伝導部材2の厚さ方向に磁場を印加しながら成形を行う。これにより短繊維21c は磁場方向に配向し、熱伝導部材2の厚さ方向に配向させることができる。   In order to manufacture the heat conducting member 2 (for example, the second member 201b), a composite material in which the short fibers 21c are mixed is formed. Then, when the fiber member 21 is placed in the mold and the composite material in a molten state is injected and press-molded, molding is performed while applying a magnetic field in the thickness direction of the heat conducting member 2. Thereby, the short fibers 21c can be oriented in the magnetic field direction and in the thickness direction of the heat conducting member 2.

また、図4に示すように、板状をなす第2部材201bは、最も広い表面が密着表面22を構成し、密着表面22に直交し密着表面22の長辺を含む表面が放熱表面23を構成している。第2部材201bには、単繊維21bが冷却通路102側に配向し、端面が放熱表面23に表出している。   As shown in FIG. 4, the plate-shaped second member 201 b has the widest surface constituting the contact surface 22, and the surface perpendicular to the contact surface 22 and including the long side of the contact surface 22 serves as the heat dissipation surface 23. It is composed. In the second member 201 b, the single fiber 21 b is oriented toward the cooling passage 102, and the end surface is exposed to the heat dissipation surface 23.

一方、第1部材201aは、最も広い表面が密着表面22を構成している。   On the other hand, the widest surface of the first member 201 a constitutes the contact surface 22.

図4から理解できるように、第2部材201bの放熱表面23は、第1部材201aの一方の密着表面22に接している。そして、第1部材201aの他方の密着表面22は、冷却通路102側にも接している。よって、単電池セル1の最も広い表面10から放出された熱は、第2部材201bにおいて、短繊維21c によって効率よく単繊維21bに伝熱され、単繊維21bの配向に沿って第1部材201a側に伝導し、さらに第1部材201aの密着表面22からヒートシンク4へ熱伝導される。そして、ヒートシンク4を介して冷却通路102に伝熱される。   As can be understood from FIG. 4, the heat radiating surface 23 of the second member 201b is in contact with one contact surface 22 of the first member 201a. The other contact surface 22 of the first member 201a is also in contact with the cooling passage 102 side. Therefore, the heat released from the widest surface 10 of the single battery cell 1 is efficiently transferred to the single fibers 21b by the short fibers 21c in the second member 201b, and the first members 201a along the orientation of the single fibers 21b. The heat is conducted to the heat sink 4 from the contact surface 22 of the first member 201a. Then, heat is transferred to the cooling passage 102 via the heat sink 4.

このように、熱伝導部材2に短繊維21cを加えることにより、単繊維21b方向に直交する方向の熱伝導が促進される。単繊維21bと短繊維21cの熱的な連結より、有効に単電池セル1からの放熱を均一かつ効率的に放出することができる。   Thus, by adding the short fibers 21c to the heat conducting member 2, heat conduction in the direction orthogonal to the direction of the single fibers 21b is promoted. Due to the thermal connection between the single fiber 21b and the short fiber 21c, the heat radiation from the single battery cell 1 can be effectively and uniformly released.

また、図示しない拘束ロッドにて両側から所定の荷重にて押圧した状態で加圧拘束すると、熱伝導部材2の厚みは隣接する一対の単電池セル1の最も広い側面10によって圧縮される。第2部材201bはアスカーC硬度が45と軟質であるために、圧縮によって容易に変形して単電池セル1の最も広い側面10及び単電池セル1の底部に位置する第1部材201aの密着面22と密着するとともに厚さが薄くなる。厚さが薄くなった部分の余肉は、単電池セル1の上方の空間へさらに膨出することで吸収される。   Further, when pressure restraining is performed with a restraining rod (not shown) pressed from both sides with a predetermined load, the thickness of the heat conducting member 2 is compressed by the widest side surface 10 of the pair of adjacent unit cells 1. Since the second member 201b is soft with an Asker C hardness of 45, it is easily deformed by compression, and the contact surface of the first member 201a located at the widest side surface 10 of the unit cell 1 and the bottom of the unit cell 1 The thickness is reduced while being in close contact with 22. The surplus portion of the thinned portion is absorbed by further swelling into the space above the single battery cell 1.

そして単電池セル1が熱膨張しようとしても、熱伝導部材2及び保持部材6によって膨張が規制されているため膨張を確実に規制することができる。また単電池セル1どうしの間隔は保持部材6の側壁の厚さによって決まり、従来のリブをもつスペーサを介在させる場合に比べて単電池セル1どうしの間隔を狭くすることができる。したがって搭載スペースを縮小することが可能となる。   Even if the single battery cell 1 is about to thermally expand, the expansion can be reliably regulated because the expansion is regulated by the heat conducting member 2 and the holding member 6. Further, the interval between the unit cells 1 is determined by the thickness of the side wall of the holding member 6, and the interval between the unit cells 1 can be made narrower than in the case where a spacer having a conventional rib is interposed. Therefore, the mounting space can be reduced.

(冷却通路)
冷却通路102は、断熱壁からなる区画壁103でトンネル状に形成されている。冷却通路102の両端には開口部1022が形成されている。一方の開口部1022から他方の開口部1022へエアコンからの冷却空気(冷媒)が冷却通路102を流通する。このように、冷却通路102は、外部から熱的に保護(断熱)されている。
(Cooling passage)
The cooling passage 102 is formed in a tunnel shape with a partition wall 103 made of a heat insulating wall. Openings 1022 are formed at both ends of the cooling passage 102. Cooling air (refrigerant) from the air conditioner flows through the cooling passage 102 from one opening 1022 to the other opening 1022. Thus, the cooling passage 102 is thermally protected (insulated) from the outside.

また、組電池部材101側に、区画壁103に開口部1021が形成されており、開口部1021を介して、ヒートシンク4が冷却通路102の内部に設置(挿入)される。   Further, an opening 1021 is formed in the partition wall 103 on the assembled battery member 101 side, and the heat sink 4 is installed (inserted) inside the cooling passage 102 through the opening 1021.

また、図2に示すように、単電池セル1の最も広い表面10に直交し、最も広い表面10の長辺を含む側面(底面)11には、板状の熱伝導部材2(第1部材201a)を隔ててヒートシンク4が配置されている。なお、第1部材201aの上面には、単電池セル1の側面11(底面)が密着して当接され、第1部材201aの下面は、ヒートシンク4の表面に密着している。   Further, as shown in FIG. 2, a plate-like heat conducting member 2 (first member) is formed on a side surface (bottom surface) 11 that is orthogonal to the widest surface 10 of the unit cell 1 and includes the long side of the widest surface 10. A heat sink 4 is arranged with 201a) therebetween. The side surface 11 (bottom surface) of the single battery cell 1 is in close contact with the upper surface of the first member 201 a, and the lower surface of the first member 201 a is in close contact with the surface of the heat sink 4.

ヒートシンク4は、複数の放熱板が列設されてなる金属製のものであり、本実施例では第1部材201aの密着表面22がヒートシンク4に密着している。   The heat sink 4 is made of metal in which a plurality of heat radiating plates are arranged, and in this embodiment, the close contact surface 22 of the first member 201 a is in close contact with the heat sink 4.

このように、ヒートシンク4は、単電池部材101と密着しながら、外部から断熱された冷却通路102に挿入され、冷媒と接触している。   Thus, the heat sink 4 is inserted into the cooling passage 102 thermally insulated from the outside while being in close contact with the single cell member 101, and is in contact with the refrigerant.

また、図1に示すように、冷却通路102の底部には、底部より突出し冷媒の流れ方向に直交する方向に沿ってリブ部1023が形成される。ヒートシンク4は、リブ部1023に当接して配置される。これにより、ヒートシンク4が安定に冷却通路102に配置されると同時に、冷却空気の流れを調整することができ、ヒートシンク4での熱交換性がさらに向上する。   Further, as shown in FIG. 1, a rib 1023 is formed at the bottom of the cooling passage 102 along a direction that protrudes from the bottom and is orthogonal to the flow direction of the refrigerant. The heat sink 4 is disposed in contact with the rib portion 1023. As a result, the heat sink 4 can be stably disposed in the cooling passage 102, and at the same time, the flow of the cooling air can be adjusted, and the heat exchange performance in the heat sink 4 is further improved.

なお、本実施例では熱伝導部材2に密着するヒートシンク4を用いているが、ヒートシンク4に代えて、熱伝導部材2の一部を冷却通路102に表出し、直接冷風により熱交換(放熱)をすることもできる。   In this embodiment, the heat sink 4 that is in close contact with the heat conducting member 2 is used. However, instead of the heat sink 4, a part of the heat conducting member 2 is exposed to the cooling passage 102, and heat exchange (heat radiation) is directly performed by cold air. You can also

本実施例では、区画壁103は、断熱性の高いポリエチレン樹脂から構成されているが、より高い断熱性の材料、例えば樹脂発泡体(ポリエチレン樹脂発泡体など)がより好ましい。   In this embodiment, the partition wall 103 is made of a highly heat-insulating polyethylene resin, but a higher heat-insulating material such as a resin foam (polyethylene resin foam or the like) is more preferable.

また、本実施例では、単電池セル1どうしの間に、特許文献4に記載のような冷却風が流通するための空間を形成する必要がなく、硬質スペーサを介在させる必要もなく、熱伝導部材2の厚さも薄くてよい。したがって単電池セル1間距離を縮小でき、全体がコンパクトな形状となるので搭載スペースを縮小することができる。   Further, in this embodiment, it is not necessary to form a space for circulating cooling air as described in Patent Document 4 between the single battery cells 1, it is not necessary to interpose a hard spacer, and heat conduction is performed. The thickness of the member 2 may be thin. Therefore, the distance between the single battery cells 1 can be reduced, and the entire space becomes compact, so that the mounting space can be reduced.

また、本実施例の組電池装置では、図に示すように、ヒートシンク4の位置を、単電池セル1の下方としている。このため、万一ヒートシンク4に結露が発生した場合でも、水滴が単電池セル1と接触することを防止することができ、漏電を確実に防止できる。   Moreover, in the assembled battery apparatus of a present Example, the position of the heat sink 4 is made into the downward direction of the single battery cell 1, as shown in a figure. For this reason, even if dew condensation occurs in the heat sink 4, it is possible to prevent water droplets from coming into contact with the single battery cell 1, and it is possible to reliably prevent leakage.

(熱伝導部材)
熱伝導部材2中に繊維部材21を厚さ方向で、単層でも複数層(図5に示す)で積層することができる。なお、複数層積層することが好ましい。このようにすれば、放熱表面23に表出する単繊維21b の端面の合計面積をより大きくすることができる。また密着表面22から繊維部材21までの距離が短くなる。したがって放熱性がさらに向上する。
(Heat conduction member)
The fiber member 21 can be laminated in the thickness direction in the heat conductive member 2 with a single layer or multiple layers (shown in FIG. 5). Note that it is preferable to stack a plurality of layers. In this way, the total area of the end faces of the single fibers 21b exposed on the heat dissipation surface 23 can be further increased. Moreover, the distance from the contact | adherence surface 22 to the fiber member 21 becomes short. Therefore, heat dissipation is further improved.

本実施例の組電池装置によれば、マトリックス基材20の熱伝導率は5W/m・Kであり、繊維部材21の繊維の長手方向の熱伝導率は60W/m・Kであり、繊維部材21の繊維の短手方向の熱伝導率は3W/m・Kである。したがって単電池セル1の熱は、先ず密着表面22からマトリックス基材20に伝熱され、マトリックス基材20の内部を伝わって繊維部材21に伝熱される。そして繊維の長手方向の熱伝導率がきわめて高いため、熱は繊維部材21の単繊維21b から冷却通路側102のヒートシンク4に伝熱され、ヒートシンク4から効率よく放熱される。   According to the assembled battery device of this example, the thermal conductivity of the matrix base material 20 is 5 W / m · K, the thermal conductivity in the longitudinal direction of the fibers of the fiber member 21 is 60 W / m · K, and the fibers The thermal conductivity in the short direction of the fibers of the member 21 is 3 W / m · K. Therefore, the heat of the single battery cell 1 is first transferred from the adhesion surface 22 to the matrix base material 20, and then transferred to the fiber member 21 through the inside of the matrix base material 20. And since the thermal conductivity in the longitudinal direction of the fiber is extremely high, heat is transferred from the single fiber 21b of the fiber member 21 to the heat sink 4 on the cooling passage side 102 and efficiently radiated from the heat sink 4.

すなわち本実施例の組電池装置によれば、それぞれの熱伝導部材2からほとんど同じ条件で放熱が行われるので、それぞれの単電池セル1はほとんど同じ条件で冷却され、各単電池セル1の放熱性を均一とすることができる。   That is, according to the assembled battery device of the present embodiment, heat is radiated from the respective heat conducting members 2 under almost the same conditions. Can be made uniform.

また単電池セル1と熱伝導部材2との間には隙間が無いので、従来の空間 104への埃の堆積の問題は生じない。したがって長期使用後においても各単電池セル1毎の放熱性はほとんど同一となるので、各単電池セル間の冷却特性を均一とすることができ、寿命が長くなる。   Further, since there is no gap between the single battery cell 1 and the heat conducting member 2, the problem of dust accumulation in the conventional space 104 does not occur. Therefore, even after long-term use, the heat dissipation of each single battery cell 1 is almost the same, so that the cooling characteristics between the single battery cells can be made uniform, and the life is extended.

(実施例2)
本実施例の組電池装置は、基本的に第1実施例と同様であり、以下異なる部分について説明する。
(Example 2)
The assembled battery device of the present embodiment is basically the same as that of the first embodiment, and different parts will be described below.

図7は、本実施例の組電池装置の熱伝導部材の断面図を示す。図7に示すように、単繊維21b のみからなる繊維部材21をマトリックス基材20中に埋設した熱伝導部材2を用いたこと以外は実施例1と同様である。以下、その製造方法を説明する。   FIG. 7 shows a cross-sectional view of the heat conducting member of the assembled battery device of this example. As shown in FIG. 7, it is the same as that of Example 1 except that the heat conductive member 2 in which the fiber member 21 composed only of the single fiber 21b is embedded in the matrix substrate 20 is used. The manufacturing method will be described below.

先ず実施例1と同様の超高分子量ポリエチレン繊維(「ダイニーマ」東洋紡製)からなる単繊維21b の表面に、熱伝導率が5W/m・Kのシリコーンゴムからなる被覆層50を形成してなる複合糸5を用意した。   First, a coating layer 50 made of silicone rubber having a thermal conductivity of 5 W / m · K is formed on the surface of a single fiber 21b made of ultra-high molecular weight polyethylene fiber (“Dyneema” manufactured by Toyobo Co., Ltd.) similar to Example 1. A composite yarn 5 was prepared.

次に、図7に示すように、この複合糸5を複数束ねて金型内に配置し、熱プレスすることで熱伝導部材2を形成した。   Next, as shown in FIG. 7, a plurality of the composite yarns 5 are bundled and placed in a mold and heat-pressed to form the heat conducting member 2.

本実施例の組電池装置によれば、単繊維21b とマトリックス基材20との密着性がさらに高まるため、放熱性をさらに向上させることができる。   According to the assembled battery device of the present embodiment, the adhesiveness between the single fibers 21b and the matrix base material 20 is further increased, so that the heat dissipation can be further improved.

本発明の第1実施例に係る組電池装置の分解斜視概念図を示すものである。1 is an exploded perspective conceptual diagram of an assembled battery device according to a first embodiment of the present invention. 本発明の第1実施例に係る組電池装置の要部縦断面概念図を示すものである。The principal part longitudinal cross-sectional conceptual diagram of the assembled battery apparatus which concerns on 1st Example of this invention is shown. 本発明の第1実施例に係る組電池装置の図2に示すI−I位置における縦断面概念図を示すものである。The longitudinal cross-sectional conceptual diagram in the II position shown in FIG. 2 of the assembled battery apparatus which concerns on 1st Example of this invention is shown. 本発明の第1実施例に係る組電池装置の単電池セルに熱伝導部材を密着して設置された状態を示す概念図である。It is a conceptual diagram which shows the state by which the heat conductive member was closely_contact | adhered and installed in the single battery cell of the assembled battery apparatus which concerns on 1st Example of this invention. 本発明の第1実施例に係る組電池装置の図3に示すII―II位置における横断面概念図を示すものである。FIG. 3 is a schematic cross-sectional view of the assembled battery device according to the first embodiment of the present invention at the II-II position shown in FIG. 3. 本発明の第1実施例に係る組電池装置の図3に示すIII−III位置における縦断面概念図を示すものである。FIG. 3 is a conceptual diagram of a longitudinal section at the position III-III shown in FIG. 3 of the assembled battery device according to the first embodiment of the present invention. 本発明の第2実施例に係る組電池装置の熱伝導部材の断面概念図を示すものである。The cross-sectional conceptual diagram of the heat conductive member of the assembled battery apparatus which concerns on 2nd Example of this invention is shown. 従来の組電池装置の分解斜視概念図である。It is a disassembled perspective conceptual diagram of the conventional assembled battery apparatus.

符号の説明Explanation of symbols

1:単電池セル 2:熱伝導部材
20:マトリックス 21:繊維部材
101:組電池部材 102:冷却通路
103:区画壁
1: Single battery cell 2: Thermal conduction member
20: Matrix 21: Fiber member
101: assembled battery member 102: cooling passage 103: partition wall

Claims (8)

直方体形状をなす単電池セル(1)と、熱伝導性と電気絶縁性を有する軟質材から板状に形成された熱伝導部材(2)と、が互いに密着して交互に複数個列設されてなり、該列設方向の両端から加圧拘束されてなる組電池部材(101)と、
前記組電池部材(101)の一表面と接して形成され冷媒が流通するトンネル状の冷却通路(102)と、からなり、
前記冷却通路(102)の内部には前記熱伝導部材(2)の少なくとも一部が伝熱可能に表出し、前記冷却通路(102)を外部から区画する区画壁(103)は断熱壁からなることを特徴とする組電池装置。
A single battery cell (1) having a rectangular parallelepiped shape and a plurality of heat conduction members (2) formed in a plate shape from a soft material having thermal conductivity and electrical insulation are alternately arranged in a row. An assembled battery member (101) that is pressure-constrained from both ends in the row direction,
A tunnel-shaped cooling passage (102) formed in contact with one surface of the assembled battery member (101) and through which a refrigerant flows,
At least a part of the heat conducting member (2) is exposed to the inside of the cooling passage (102) so that heat can be transferred, and a partition wall (103) that partitions the cooling passage (102) from the outside is a heat insulating wall. An assembled battery device.
前記熱伝導部材(2)は、マトリックス基材(20)と、該マトリックス基材(20)中に含まれ繊維の長さ方向の熱伝導率が10W/m・K以上の繊維部材(21)と、からなる請求項1に記載の組電池装置。   The heat conducting member (2) includes a matrix base material (20) and a fiber member (21) that is contained in the matrix base material (20) and has a thermal conductivity in the length direction of 10 W / m · K or more. The assembled battery device according to claim 1, comprising: 前記繊維部材(21)を構成する繊維は、前記単電池セル(1)の最も広い表面と略平行に、かつ前記冷却通路(102)に向かう方向に配向している請求項2に記載の組電池装置。   The group according to claim 2, wherein the fibers constituting the fiber member (21) are oriented in a direction substantially parallel to the widest surface of the single battery cell (1) and toward the cooling passage (102). Battery device. 前記繊維部材(21)の表面と前記熱伝導部材(2)の表面との間には、長さ方向の熱伝導率が10W/m・K以上の短繊維(21c)が前記熱伝導部材(2)の厚さ方向に配向して埋設されている請求項2から3のいずれか1項に記載の組電池装置。   Between the surface of the said fiber member (21) and the surface of the said heat conductive member (2), the short fiber (21c) whose heat conductivity of a length direction is 10 W / m * K or more is the said heat conductive member ( The assembled battery device according to any one of claims 2 to 3, wherein the assembled battery device is embedded while being oriented in a thickness direction of 2). 前記冷媒は、空気である請求項1から請求項4のいずれか1項に記載の組電池装置。   The assembled battery device according to any one of claims 1 to 4, wherein the refrigerant is air. 前記冷却通路(102)には複数の放熱板が列設されてなるヒートシンク(4)が配置され、前記熱伝導部材(2)の一部は前記ヒートシンク(4)に密着することで伝熱可能に表出している請求項1から請求項5のいずれか1項に記載の組電池装置。   A heat sink (4) in which a plurality of heat radiating plates are arranged is arranged in the cooling passage (102), and a part of the heat conducting member (2) can transfer heat by being in close contact with the heat sink (4). The assembled battery device according to any one of claims 1 to 5, wherein 前記断熱壁は、熱伝導率が0.5W/m・K以下の断熱材からなる請求項1から請求項6のいずれか1項に記載の組電池装置。   The assembled battery device according to any one of claims 1 to 6, wherein the heat insulating wall is made of a heat insulating material having a thermal conductivity of 0.5 W / m · K or less. 前記断熱材は、樹脂或いは樹脂発泡体である請求項7に記載の組電池装置。   The assembled battery device according to claim 7, wherein the heat insulating material is a resin or a resin foam.
JP2008155266A 2008-06-13 2008-06-13 Battery pack device Withdrawn JP2009301877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008155266A JP2009301877A (en) 2008-06-13 2008-06-13 Battery pack device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155266A JP2009301877A (en) 2008-06-13 2008-06-13 Battery pack device

Publications (1)

Publication Number Publication Date
JP2009301877A true JP2009301877A (en) 2009-12-24

Family

ID=41548578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155266A Withdrawn JP2009301877A (en) 2008-06-13 2008-06-13 Battery pack device

Country Status (1)

Country Link
JP (1) JP2009301877A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093959B1 (en) * 2010-02-04 2011-12-15 에스비리모티브 주식회사 Battery module cooling apparatus
JP2012018915A (en) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd Battery module
WO2012013789A1 (en) * 2010-07-29 2012-02-02 E4V System for cooling an electrical battery, and battery including such a system
WO2012013615A1 (en) * 2010-07-28 2012-02-02 Continental Automotive Gmbh Coolable battery system, method for cooling a battery and automobile comprising a coolable battery system
FR2963486A1 (en) * 2010-07-29 2012-02-03 E4V Electrical battery useful in a motor vehicle, comprises a casing, a set of energy generating cells, a longitudinal arrangement consisting of the energy generating cells, a cooling system, and an electrically insulating plate
US20120171543A1 (en) * 2009-03-30 2012-07-05 Stefan Hirsch Device for the thermal connection of an energy storage
KR101173055B1 (en) 2010-08-23 2012-08-13 현대자동차일본기술연구소 Uniform Cooling Apparatus for Battery
EP2530763A1 (en) * 2011-06-02 2012-12-05 Kabushiki Kaisha Toshiba Secondary battery apparatus and method of manufacturing the same
JP2012243619A (en) * 2011-05-20 2012-12-10 Kobelco Contstruction Machinery Ltd Capacitor
JP2012248299A (en) * 2011-05-25 2012-12-13 Sanyo Electric Co Ltd Battery module, battery system, electric vehicle, mobile object, power storage device and power supply device
AT511541A1 (en) * 2011-05-16 2012-12-15 Avl List Gmbh RECHARGEABLE BATTERY
JP2012252959A (en) * 2011-06-06 2012-12-20 Mitsubishi Motors Corp Battery pack
JP2013016441A (en) * 2011-07-06 2013-01-24 Toshiba Corp Battery module, manufacturing method thereof, vehicle, and electric apparatus
US8403090B2 (en) 2011-06-08 2013-03-26 Honda Motor Co., Ltd. Power supply apparatus for vehicle
JP2013089566A (en) * 2011-10-21 2013-05-13 Toyota Industries Corp Battery module
JP2013113408A (en) * 2011-11-30 2013-06-10 Toyo Tire & Rubber Co Ltd Heat control device and heat control method
JP2013125617A (en) * 2011-12-13 2013-06-24 Sanyo Electric Co Ltd Power supply device and vehicle having the same, and power storage device
US8568913B2 (en) 2011-03-08 2013-10-29 Samsung Sdi Co., Ltd. Battery module
WO2014065007A1 (en) * 2012-10-24 2014-05-01 株式会社オートネットワーク技術研究所 Electrical storage module
DE102014112802A1 (en) 2013-09-27 2015-04-02 Lg Chem, Ltd. Cooling contact for a secondary battery
KR101533992B1 (en) * 2012-09-18 2015-07-06 주식회사 엘지화학 Battery Module
KR20150081319A (en) 2012-11-30 2015-07-13 도요타 지도샤(주) Temperature regulating structure for electrical storage element
KR101538634B1 (en) * 2013-11-06 2015-07-29 인지컨트롤스 주식회사 Battery Module For an Electric Vehicle
CN104981937A (en) * 2013-06-07 2015-10-14 株式会社Lg化学 Battery pack with enhanced safety against leakage of liquid-phase refrigerant
JP2015211013A (en) * 2014-04-30 2015-11-24 株式会社Gsユアサ Power storage device
JP2016081844A (en) * 2014-10-21 2016-05-16 ダイキョーニシカワ株式会社 Vehicle battery cooling structure
JP2016151391A (en) * 2015-02-18 2016-08-22 ダイキョーニシカワ株式会社 Heat generating body cooling structure
EP3070780A1 (en) * 2015-03-16 2016-09-21 Samsung SDI Co., Ltd. Battery cooling body
US9548521B2 (en) 2011-12-05 2017-01-17 Sk Innovation Co., Ltd. Battery module including a flexible member
JP2017062985A (en) * 2015-09-25 2017-03-30 三洋電機株式会社 Cooling device and power supply device having the same
WO2017052194A1 (en) * 2015-09-21 2017-03-30 주식회사 엘지화학 Battery module including array of cooling fins having different thicknesses
WO2017179853A1 (en) * 2016-04-15 2017-10-19 주식회사 엘지화학 Battery system and assembly method thereof
KR101796106B1 (en) * 2011-11-17 2017-11-10 한온시스템 주식회사 Battery assembly for vehicle
KR101796105B1 (en) * 2011-11-17 2017-11-10 한온시스템 주식회사 Battery assembly for vehicle
JP2017212214A (en) * 2013-06-06 2017-11-30 日立オートモティブシステムズ株式会社 Power storage module, and method for manufacturing battery module
EP3316391A1 (en) * 2016-10-26 2018-05-02 Samsung SDI Co., Ltd. Battery system, base plate for a battery system and electric vehicle
US10027002B2 (en) 2014-02-24 2018-07-17 Lg Chem, Ltd. Vehicle battery pack with improved cooling efficiency
CN109328406A (en) * 2016-07-01 2019-02-12 松下知识产权经营株式会社 Heat exchange sheet and the secondary battery for using it
CN109560307A (en) * 2018-02-07 2019-04-02 骆驼集团武汉光谷研发中心有限公司 A kind of fuel cell cooling fin
US10340565B2 (en) 2015-06-26 2019-07-02 Lg Chem, Ltd. Battery cell assembly with improved cooling efficiency
WO2019166241A1 (en) * 2018-02-27 2019-09-06 Gränges Aluminium (Shanghai) Co., Ltd Watercold plate for battery module
JP2019185845A (en) * 2018-03-30 2019-10-24 三菱ケミカル株式会社 Filling member, battery pack and method for controlling heat transfer
JP2019185846A (en) * 2018-03-30 2019-10-24 三菱ケミカル株式会社 Filling member, battery pack and method for controlling heat transfer
KR20190132631A (en) * 2017-02-08 2019-11-28 엘켐 실리콘즈 유에스에이 코포레이션 Secondary battery pack with improved thermal management
CN110808383A (en) * 2019-10-21 2020-02-18 贵州梅岭电源有限公司 Liquid-cooled battery pack and operation method thereof
WO2020060054A1 (en) * 2018-09-19 2020-03-26 주식회사 엘지화학 Battery pack and vehicle including battery pack
CN111146368A (en) * 2018-11-06 2020-05-12 罗伯特·博世有限公司 Housing for a battery cell, battery cell and method for producing a battery cell
WO2020137062A1 (en) * 2018-12-27 2020-07-02 三洋電機株式会社 Separator for insulating adjacent battery cells, and power source device provided with same
EP3823085A2 (en) 2019-11-13 2021-05-19 TDK Corporation Stacked battery pack
WO2021221353A1 (en) * 2020-04-29 2021-11-04 주식회사 엘지에너지솔루션 Battery pack having enhanced efficiency and stability of cooling fluid channel structure and vehicle comprising same
US20210351455A1 (en) * 2018-09-20 2021-11-11 Lg Hausys, Ltd. Battery case for electric car
WO2022060145A1 (en) * 2020-09-17 2022-03-24 주식회사 엘지화학 Battery module
FR3116328A1 (en) * 2020-11-19 2022-05-20 Valeo Systemes Thermiques Compartment for equipment likely to generate heat
WO2023245330A1 (en) * 2022-06-20 2023-12-28 宁德时代新能源科技股份有限公司 Battery and electric device
WO2024022455A1 (en) * 2022-07-29 2024-02-01 比亚迪股份有限公司 Heat exchange plate, battery pack and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148189A (en) * 1994-11-22 1996-06-07 Nissan Motor Co Ltd Battery temperature adjustment device for electric vehicle
JP2006093155A (en) * 2004-09-23 2006-04-06 Samsung Sdi Co Ltd Temperature control system of secondary battery module
JP2007012486A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148189A (en) * 1994-11-22 1996-06-07 Nissan Motor Co Ltd Battery temperature adjustment device for electric vehicle
JP2006093155A (en) * 2004-09-23 2006-04-06 Samsung Sdi Co Ltd Temperature control system of secondary battery module
JP2007012486A (en) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd Power supply device

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120171543A1 (en) * 2009-03-30 2012-07-05 Stefan Hirsch Device for the thermal connection of an energy storage
US9457645B2 (en) * 2009-03-30 2016-10-04 Mahle International Gmbh Device for the thermal connection of an energy storage
KR101093959B1 (en) * 2010-02-04 2011-12-15 에스비리모티브 주식회사 Battery module cooling apparatus
US8377582B2 (en) 2010-02-04 2013-02-19 Samsung Sdi Co., Ltd. Cooling apparatus of a battery module
KR101233318B1 (en) * 2010-07-06 2013-02-14 로베르트 보쉬 게엠베하 Battery module
JP2012018915A (en) * 2010-07-06 2012-01-26 Sb Limotive Co Ltd Battery module
US9196938B2 (en) 2010-07-06 2015-11-24 Samsung Sdi Co., Ltd. Battery module
WO2012013615A1 (en) * 2010-07-28 2012-02-02 Continental Automotive Gmbh Coolable battery system, method for cooling a battery and automobile comprising a coolable battery system
US9865886B2 (en) 2010-07-28 2018-01-09 Continental Automotive Gmbh Coolable battery system, method for cooling a battery and automobile comprising a coolable battery system
WO2012013789A1 (en) * 2010-07-29 2012-02-02 E4V System for cooling an electrical battery, and battery including such a system
FR2963486A1 (en) * 2010-07-29 2012-02-03 E4V Electrical battery useful in a motor vehicle, comprises a casing, a set of energy generating cells, a longitudinal arrangement consisting of the energy generating cells, a cooling system, and an electrically insulating plate
CN103168387A (en) * 2010-07-29 2013-06-19 E4V公司 System for cooling an electrical battery, and battery including such a system
KR101173055B1 (en) 2010-08-23 2012-08-13 현대자동차일본기술연구소 Uniform Cooling Apparatus for Battery
US8568913B2 (en) 2011-03-08 2013-10-29 Samsung Sdi Co., Ltd. Battery module
AT511541A1 (en) * 2011-05-16 2012-12-15 Avl List Gmbh RECHARGEABLE BATTERY
JP2012243619A (en) * 2011-05-20 2012-12-10 Kobelco Contstruction Machinery Ltd Capacitor
JP2012248299A (en) * 2011-05-25 2012-12-13 Sanyo Electric Co Ltd Battery module, battery system, electric vehicle, mobile object, power storage device and power supply device
EP2530763A1 (en) * 2011-06-02 2012-12-05 Kabushiki Kaisha Toshiba Secondary battery apparatus and method of manufacturing the same
JP2012252959A (en) * 2011-06-06 2012-12-20 Mitsubishi Motors Corp Battery pack
US8403090B2 (en) 2011-06-08 2013-03-26 Honda Motor Co., Ltd. Power supply apparatus for vehicle
JP2013016441A (en) * 2011-07-06 2013-01-24 Toshiba Corp Battery module, manufacturing method thereof, vehicle, and electric apparatus
JP2013089566A (en) * 2011-10-21 2013-05-13 Toyota Industries Corp Battery module
KR101796105B1 (en) * 2011-11-17 2017-11-10 한온시스템 주식회사 Battery assembly for vehicle
KR101796106B1 (en) * 2011-11-17 2017-11-10 한온시스템 주식회사 Battery assembly for vehicle
JP2013113408A (en) * 2011-11-30 2013-06-10 Toyo Tire & Rubber Co Ltd Heat control device and heat control method
US9548521B2 (en) 2011-12-05 2017-01-17 Sk Innovation Co., Ltd. Battery module including a flexible member
JP2013125617A (en) * 2011-12-13 2013-06-24 Sanyo Electric Co Ltd Power supply device and vehicle having the same, and power storage device
KR101533992B1 (en) * 2012-09-18 2015-07-06 주식회사 엘지화학 Battery Module
WO2014065007A1 (en) * 2012-10-24 2014-05-01 株式会社オートネットワーク技術研究所 Electrical storage module
US9543624B2 (en) 2012-10-24 2017-01-10 Autonetworks Technologies, Ltd. Electrical storage module
JP2014086280A (en) * 2012-10-24 2014-05-12 Auto Network Gijutsu Kenkyusho:Kk Power storage module
US10135046B2 (en) 2012-11-30 2018-11-20 Toyota Jidosha Kabushiki Kaisha Temperature regulation structure
KR20150081319A (en) 2012-11-30 2015-07-13 도요타 지도샤(주) Temperature regulating structure for electrical storage element
JP2017212214A (en) * 2013-06-06 2017-11-30 日立オートモティブシステムズ株式会社 Power storage module, and method for manufacturing battery module
CN104981937A (en) * 2013-06-07 2015-10-14 株式会社Lg化学 Battery pack with enhanced safety against leakage of liquid-phase refrigerant
CN104981937B (en) * 2013-06-07 2018-07-17 株式会社Lg 化学 For battery pack of the liquid refrigerant leakage with improved safety
US10084219B2 (en) 2013-06-07 2018-09-25 Lg Chem, Ltd. Battery pack having improved safety against leakage of liquid refrigerant
DE102014112802A1 (en) 2013-09-27 2015-04-02 Lg Chem, Ltd. Cooling contact for a secondary battery
DE102014112802B4 (en) 2013-09-27 2022-01-05 Lg Chem, Ltd. Cooling contact for a secondary battery
KR101538634B1 (en) * 2013-11-06 2015-07-29 인지컨트롤스 주식회사 Battery Module For an Electric Vehicle
US10027002B2 (en) 2014-02-24 2018-07-17 Lg Chem, Ltd. Vehicle battery pack with improved cooling efficiency
JP2015211013A (en) * 2014-04-30 2015-11-24 株式会社Gsユアサ Power storage device
JP2016081844A (en) * 2014-10-21 2016-05-16 ダイキョーニシカワ株式会社 Vehicle battery cooling structure
JP2016151391A (en) * 2015-02-18 2016-08-22 ダイキョーニシカワ株式会社 Heat generating body cooling structure
EP3070780A1 (en) * 2015-03-16 2016-09-21 Samsung SDI Co., Ltd. Battery cooling body
US10340565B2 (en) 2015-06-26 2019-07-02 Lg Chem, Ltd. Battery cell assembly with improved cooling efficiency
US10326185B2 (en) 2015-09-21 2019-06-18 Lg Chem, Ltd. Battery module including array of cooling fins having different thicknesses
WO2017052194A1 (en) * 2015-09-21 2017-03-30 주식회사 엘지화학 Battery module including array of cooling fins having different thicknesses
JP2017062985A (en) * 2015-09-25 2017-03-30 三洋電機株式会社 Cooling device and power supply device having the same
WO2017179853A1 (en) * 2016-04-15 2017-10-19 주식회사 엘지화학 Battery system and assembly method thereof
JP2018530136A (en) * 2016-04-15 2018-10-11 エルジー・ケム・リミテッド Battery system and assembly method thereof
US9865906B2 (en) 2016-04-15 2018-01-09 Lg Chem, Ltd. Battery system and method of assembling the battery system
CN109328406A (en) * 2016-07-01 2019-02-12 松下知识产权经营株式会社 Heat exchange sheet and the secondary battery for using it
CN109845024B (en) * 2016-10-26 2022-06-21 三星Sdi株式会社 Battery system and electric vehicle including the same
CN109845024A (en) * 2016-10-26 2019-06-04 三星Sdi株式会社 Battery system and electric vehicle including it
EP3316391A1 (en) * 2016-10-26 2018-05-02 Samsung SDI Co., Ltd. Battery system, base plate for a battery system and electric vehicle
US11905385B2 (en) 2017-02-08 2024-02-20 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
US11780983B2 (en) 2017-02-08 2023-10-10 Elkem Silicones USA Corp. Secondary battery pack with improved thermal management
KR20190132631A (en) * 2017-02-08 2019-11-28 엘켐 실리콘즈 유에스에이 코포레이션 Secondary battery pack with improved thermal management
KR102318181B1 (en) * 2017-02-08 2021-10-27 엘켐 실리콘즈 유에스에이 코포레이션 Secondary battery pack with improved thermal management
KR102394963B1 (en) * 2017-02-08 2022-05-04 엘켐 실리콘즈 유에스에이 코포레이션 Secondary battery pack with improved thermal management
KR20210130834A (en) * 2017-02-08 2021-11-01 엘켐 실리콘즈 유에스에이 코포레이션 Secondary battery pack with improved thermal management
CN109560307A (en) * 2018-02-07 2019-04-02 骆驼集团武汉光谷研发中心有限公司 A kind of fuel cell cooling fin
WO2019166241A1 (en) * 2018-02-27 2019-09-06 Gränges Aluminium (Shanghai) Co., Ltd Watercold plate for battery module
JP2019185845A (en) * 2018-03-30 2019-10-24 三菱ケミカル株式会社 Filling member, battery pack and method for controlling heat transfer
JP2019185846A (en) * 2018-03-30 2019-10-24 三菱ケミカル株式会社 Filling member, battery pack and method for controlling heat transfer
WO2020060054A1 (en) * 2018-09-19 2020-03-26 주식회사 엘지화학 Battery pack and vehicle including battery pack
US11462782B2 (en) 2018-09-19 2022-10-04 Lg Energy Solution, Ltd. Battery pack and vehicle including battery pack
US20210351455A1 (en) * 2018-09-20 2021-11-11 Lg Hausys, Ltd. Battery case for electric car
CN111146368A (en) * 2018-11-06 2020-05-12 罗伯特·博世有限公司 Housing for a battery cell, battery cell and method for producing a battery cell
CN113228383A (en) * 2018-12-27 2021-08-06 三洋电机株式会社 Separator for insulating adjacent battery cells and power supply device provided with same
WO2020137062A1 (en) * 2018-12-27 2020-07-02 三洋電機株式会社 Separator for insulating adjacent battery cells, and power source device provided with same
CN110808383A (en) * 2019-10-21 2020-02-18 贵州梅岭电源有限公司 Liquid-cooled battery pack and operation method thereof
EP3823085A2 (en) 2019-11-13 2021-05-19 TDK Corporation Stacked battery pack
WO2021221353A1 (en) * 2020-04-29 2021-11-04 주식회사 엘지에너지솔루션 Battery pack having enhanced efficiency and stability of cooling fluid channel structure and vehicle comprising same
WO2022060145A1 (en) * 2020-09-17 2022-03-24 주식회사 엘지화학 Battery module
FR3116328A1 (en) * 2020-11-19 2022-05-20 Valeo Systemes Thermiques Compartment for equipment likely to generate heat
WO2022106247A1 (en) * 2020-11-19 2022-05-27 Valeo Systemes Thermiques Compartment for equipment likely to emit heat
WO2023245330A1 (en) * 2022-06-20 2023-12-28 宁德时代新能源科技股份有限公司 Battery and electric device
WO2024022455A1 (en) * 2022-07-29 2024-02-01 比亚迪股份有限公司 Heat exchange plate, battery pack and vehicle

Similar Documents

Publication Publication Date Title
JP2009301877A (en) Battery pack device
JP5136078B2 (en) Battery assembly
JP5131055B2 (en) Assembled battery device and retaining member for assembled battery device
JP4508221B2 (en) Battery assembly
CN107431259B (en) Battery module including array of cooling fins having different thicknesses
KR101095346B1 (en) Battery Module Having Excellent Heat Dissipation Ability and Battery Pack Employed with the Same
JP3195255U (en) Heat exchange assembly
KR101145719B1 (en) Battery Module Having Excellent Heat Dissipation Ability and Battery Pack Employed with the Same
KR101326086B1 (en) Battery Module with Compact Structure and Excellent Heat Radiation Characteristics and Middle or Large-sized Battery Pack Employed with the Same
KR101205180B1 (en) Cooling Member of Compact Structure and Excellent Stability and Battery Module Employed with the Same
KR101084969B1 (en) Battery Module Having Temperature Sensor and Battery Pack Employed with the Same
KR100944980B1 (en) Battery module having cooling means, and middle or large-sized battery pack containing the same
US8343649B2 (en) Electricity storage device with enhanced heat dissipation
WO2011092773A1 (en) Cell module
KR101854717B1 (en) Battery module including a cooling plate and manufacturing method the same cooling plate
KR101745081B1 (en) Battery Cell Supporter Assembly Integrated Cooling Structure Battery Module and Battery Module thereby
CN209860115U (en) Battery module
KR20130086678A (en) Battery module with novel structure
JP2010165597A (en) Energy storage device
JP2012014938A (en) Battery module
JPH06150963A (en) Storage battery system
KR101545166B1 (en) Cooling Member for Battery Cell
JP2010186715A (en) Heat radiation structure of battery pack, and battery pack
KR101533992B1 (en) Battery Module
JPWO2020054229A1 (en) Power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120717