JP2019185845A - Filling member, battery pack and method for controlling heat transfer - Google Patents

Filling member, battery pack and method for controlling heat transfer Download PDF

Info

Publication number
JP2019185845A
JP2019185845A JP2018070430A JP2018070430A JP2019185845A JP 2019185845 A JP2019185845 A JP 2019185845A JP 2018070430 A JP2018070430 A JP 2018070430A JP 2018070430 A JP2018070430 A JP 2018070430A JP 2019185845 A JP2019185845 A JP 2019185845A
Authority
JP
Japan
Prior art keywords
filling member
unit cell
cell
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018070430A
Other languages
Japanese (ja)
Other versions
JP6954213B2 (en
Inventor
陽子 渡邉
Yoko Watanabe
陽子 渡邉
友博 川井
Tomohiro Kawai
友博 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2018070430A priority Critical patent/JP6954213B2/en
Publication of JP2019185845A publication Critical patent/JP2019185845A/en
Application granted granted Critical
Publication of JP6954213B2 publication Critical patent/JP6954213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

To suitably control heat transfer between single cells via a cooling member.SOLUTION: Disclosed is a filling member having a thickness direction and a surface direction, and a first surface and a second surface along the surface direction, which is in contact with a plurality of single cells constituting a battery pack on the first surface and also in contact with a cooling member capable of cooling the plurality of single cells. When temperature of any one or more of the plurality of single cells exceeds the temperature in an abnormal heat generation state, the heat transfer sensitivity S is 0.5≤S≤ 4.0.SELECTED DRAWING: Figure 1

Description

本発明は、充填部材、組電池及び熱伝達の制御方法に関する。   The present invention relates to a filling member, an assembled battery, and a heat transfer control method.

近年、車両等の電源としての二次電池の使用が急増している。車両等の限られた空間に搭載する際の自由度を向上させること、一度の充電に対して走行可能な航続距離を伸ばすこと等を目的として、二次電池の高エネルギー密度化の検討が進められている。   In recent years, the use of secondary batteries as power sources for vehicles and the like has increased rapidly. The study of increasing the energy density of secondary batteries is underway for the purpose of improving the degree of freedom when mounting in a limited space such as a vehicle and extending the cruising range that can be driven for a single charge. It has been.

二次電池の安全性はエネルギー密度とは相反する傾向にあり、エネルギー密度が高くなるほど二次電池の安全性は低下する傾向にある。例えば、航続距離が数百kmに及ぶような電気自動車に搭載される二次電池では、過充電や内部短絡等により二次電池が損傷した場合の電池表面温度が数百℃を超え、1000℃近くに及ぶ場合もある。   The safety of the secondary battery tends to conflict with the energy density, and the safety of the secondary battery tends to decrease as the energy density increases. For example, in a secondary battery mounted on an electric vehicle having a cruising range of several hundred kilometers, the battery surface temperature when the secondary battery is damaged due to overcharging or internal short circuit exceeds several hundred degrees Celsius, It may be close.

車両等の電源に使用される二次電池は、一般に複数の単電池(以下、「セル」ともいう)から成る組電池として用いられる。このため、組電池を構成する単電池の一つが損傷し上記のような温度域に到達した場合、その発熱により隣接する電池が損傷を受け、連鎖的に組電池全体に損傷が拡がるおそれがある。   A secondary battery used for a power source of a vehicle or the like is generally used as an assembled battery including a plurality of single batteries (hereinafter also referred to as “cells”). For this reason, when one of the cells constituting the assembled battery is damaged and reaches the above temperature range, the adjacent battery may be damaged by the heat generation, and the damage may spread to the entire assembled battery in a chained manner. .

ところで、多数の単電池を連結して構成される組電池は、充放電する電流で発熱する。特に、車両用の電源装置として使用される組電池の発熱量は、充放電の電流が極めて大きいことから大きくなる。発熱による温度上昇は電池の電気特性を低下させる原因となる。また、多数の単電池を連結して出力電圧を高くしている車両用の組電池は、組電池を構成する個々の単電池間の温度差をできる限り小さくすることが極めて大切である。それは、単電池間の温度差が電池の電気特性のバランスを崩して残容量を不均一にし、特定の単電池の寿命を短くするからである。このため、通常、車両用の電源装置では、充放電時の温度上昇を少なくするために電池を冷却する装置を備えている。このような冷却装置について、連結された多数の単電池をできるだけ効率的に、かつ均等に冷却することが重要である。   By the way, an assembled battery configured by connecting a large number of single cells generates heat by a charging / discharging current. In particular, the amount of heat generated by an assembled battery used as a power supply device for a vehicle increases due to the extremely large charge / discharge current. An increase in temperature due to heat generation causes a decrease in the electrical characteristics of the battery. Further, in an assembled battery for a vehicle in which a large number of single cells are connected to increase the output voltage, it is extremely important to minimize the temperature difference between individual single cells constituting the assembled battery. This is because the temperature difference between the single cells breaks the balance of the electric characteristics of the cells, makes the remaining capacity non-uniform, and shortens the life of a specific single cell. For this reason, a power supply device for a vehicle is usually provided with a device for cooling a battery in order to reduce a temperature rise during charging and discharging. In such a cooling device, it is important to cool a large number of connected unit cells as efficiently and evenly as possible.

例えば、特許文献1に記載されているように、通常、冷却装置は熱伝導率の良い金属等で構成される。しかし、電池と冷却装置とが直接に接触すると通電するおそれがあるため、電池と冷却装置の隙間には絶縁性を有する部材が設置される。また、電池と冷却装置の間に隙間ができ冷却効率が低下することを防ぐため、電池と冷却装置を密着させる目的においても充填材が設置される。   For example, as described in Patent Document 1, the cooling device is usually made of a metal having good thermal conductivity. However, if the battery and the cooling device are in direct contact with each other, there is a risk of energization. Therefore, an insulating member is installed in the gap between the battery and the cooling device. Further, in order to prevent a gap between the battery and the cooling device and a decrease in cooling efficiency, a filler is also installed for the purpose of bringing the battery and the cooling device into close contact with each other.

また、特許文献2では、以下の手法が提案されている。複数の単電池を連結した車両用の電源装置は、各々の単電池の間にあって、単電池の表面に熱結合状態に接触してなるセパレータを備える。また、上記電源装置において、単電池の間に冷却隙間を設けてセパレータを介して積層するように固定し、この冷却隙間に冷却気体を強制送風する送風機構を備える。さらに、上記電源装置は、各々の単電池の外周面に熱結合してなる温度均等化プレートを備え、この温度均等化プレートの熱伝導率を単電池間に備えられたセパレータの熱伝導率よりも大きくする。   In Patent Document 2, the following method is proposed. A power supply device for a vehicle in which a plurality of single cells are connected includes a separator formed between the single cells and in contact with the surface of the single cells in a thermally coupled state. Further, the power supply device includes a blower mechanism that provides cooling gaps between the single cells and is fixed so as to be stacked via a separator, and forcibly blows cooling gas into the cooling gaps. Furthermore, the power supply device includes a temperature equalizing plate that is thermally coupled to the outer peripheral surface of each unit cell, and the thermal conductivity of the temperature equalizing plate is determined from the thermal conductivity of the separator provided between the unit cells. Also make it bigger.

特表2014−505333号公報Special table 2014-505333 gazette 特開2010−272430号公報JP 2010-272430 A

しかしながら、特許文献1に記載されているような冷却装置は、組電池を構成する単電池のうちの一つが損傷し高温に達した場合にも、隣接する電池への熱の移動を促進してしまうおそれがある。つまり、冷却装置が他の単電池への熱伝導を促進する結果、他の単電池も損傷するおそれがあった。   However, the cooling device as described in Patent Document 1 promotes the transfer of heat to adjacent batteries even when one of the cells constituting the assembled battery is damaged and reaches a high temperature. There is a risk that. That is, as a result of the cooling device promoting heat conduction to the other unit cells, the other unit cells may be damaged.

一方、特許文献2においては、組電池を構成する単電池の一つが損傷を受けた場合に冷却用部材を介して隣接する電池に伝わる熱量について、組電池を構成する単電池の発熱量や、組電池を構成する電池以外の部材による伝熱の影響を定量的に考慮した上での検討は十分になされていない。また、異常時に冷却装置の冷媒フローが止まった場合を想定した上での検討はなされていない。異常時に冷却装置の冷媒フローが止まった場合には、冷却装置による組電池外部への除熱効率が低下し、冷却装置を介した隣接セルへの伝熱への寄与が高まるため、より延焼のおそれがある。このため、冷却装置の冷媒フローが止まった状態をも想定して安全性への対策を構築しておくことが極めて重要である。   On the other hand, in Patent Document 2, when one of the unit cells constituting the assembled battery is damaged, the amount of heat transmitted to the adjacent battery through the cooling member, the calorific value of the unit cell constituting the assembled battery, A sufficient study has not been made after quantitatively considering the influence of heat transfer by members other than the battery constituting the assembled battery. In addition, no examination has been made on the assumption that the refrigerant flow of the cooling device stops at the time of abnormality. If the refrigerant flow of the cooling device stops at the time of abnormality, the heat removal efficiency to the outside of the assembled battery by the cooling device decreases, and the contribution to heat transfer to the adjacent cells via the cooling device increases, so there is a risk of more fire spread There is. For this reason, it is extremely important to establish a measure for safety in consideration of a state where the refrigerant flow of the cooling device is stopped.

本発明は、複数の単電池を含む組電池において、冷却部材を介した単電池間の熱移動を好適に制御する充填部材を提供することを目的とする。   An object of the present invention is to provide a filling member that suitably controls heat transfer between single cells via a cooling member in an assembled battery including a plurality of single cells.

本発明者は上述した従来技術において十分に検討されていなかった、冷却用部材を介して単電池間を伝達される熱量について着目し、その影響について詳細な検討を行った。その結果、組電池を構成する単電池と冷却用部材との間に介装される充填部材について、当該充填部材の熱移動抵抗を適切な範囲内に抑えることで、異常が発生した第1の単電池から冷却装置を介して第2の単電池に伝わる熱移動量を適切に制御することが重要であることを見出し、本発明に至った。本発明は以下の通りである。   The present inventor paid attention to the amount of heat transferred between the cells via the cooling member, which has not been sufficiently studied in the above-described prior art, and conducted a detailed study on the effect. As a result, with respect to the filling member interposed between the unit cell constituting the assembled battery and the cooling member, the heat transfer resistance of the filling member is suppressed within an appropriate range, thereby causing the first abnormality. The present inventors have found that it is important to appropriately control the amount of heat transferred from the single cell to the second single cell via the cooling device, and have reached the present invention. The present invention is as follows.

[1] 厚み方向と前記厚み方向に直交する面方向とを有し、前記面方向に沿った第1の面と第2の面とを有し、前記第1の面において組電池を構成する複数の単電池と接触するとともに、前記第2の面において単電池を冷却可能な冷却部材と接触する充填部材であって、
組電池を構成する単電池のうちのいずれか一つを第1の単電池とした場合に、前記第1の単電池から発せられる熱が前記充填部材及び前記冷却部材を介して前記第1の単電池に隣接する第2の単電池へ移動する場合の前記充填部材の熱移動感度Sが以下の式1により定義され、
前記充填部材の熱移動感度S[W/K]=
前記充填部材の熱伝導率k[W/m・K]×前記充填部材と前記第1及び第2の単電池との接触面積A[m]/前記充填部材の厚みd[m]・・・(式1)
前記第1の単電池の温度が異常発熱状態の温度以上となった場合における熱移動感度が以下の式2を満たす、
0.5 ≦ S ≦ 4.0 ・・・(式2)
ことを特徴とする充填部材。
[1] It has a thickness direction and a surface direction perpendicular to the thickness direction, and has a first surface and a second surface along the surface direction, and an assembled battery is configured on the first surface. A filling member that contacts a plurality of unit cells and that contacts a cooling member capable of cooling the unit cells on the second surface,
When any one of the unit cells constituting the assembled battery is a first unit cell, the heat generated from the first unit cell is transferred to the first unit via the filling member and the cooling member. The heat transfer sensitivity S of the filling member when moving to a second unit cell adjacent to the unit cell is defined by the following formula 1,
Heat transfer sensitivity S [W / K] of the filling member =
Thermal conductivity k [W / m · K] of the filling member × contact area A [m 2 ] between the filling member and the first and second unit cells / thickness d [m] of the filling member (Formula 1)
The heat transfer sensitivity when the temperature of the first unit cell is equal to or higher than the temperature of the abnormal heat generation state satisfies the following formula 2.
0.5 ≦ S ≦ 4.0 (Formula 2)
The filling member characterized by the above-mentioned.

[2] 前記充填部材の厚み方向における熱伝導率が2.0×10−2W/m・K以上50.0W/m・K以下である、[1]に記載の組電池用部材。 [2] The assembled battery member according to [1], wherein a thermal conductivity in a thickness direction of the filling member is 2.0 × 10 −2 W / m · K or more and 50.0 W / m · K or less.

[3] 前記充填部材の厚みが5.0×10−5m以上5.0×10−2m以下である、[1]又は[2]に記載の組電池用部材。 [3] The assembled battery member according to [1] or [2], wherein the filling member has a thickness of 5.0 × 10 −5 m or more and 5.0 × 10 −2 m or less.

[4] [1]1から[3]のいずれか1項に記載の充填部材を含む組電池。   [4] An assembled battery including the filling member according to any one of [1] 1 to [3].

[1]から[3]のいずれか1項に記載の充填部材の熱移動感度Sが前記式(1)を満たして前記第1の単電池から前記充填部材を介して伝わる熱量を抑制することを含む熱伝達の制御方法。   The heat transfer sensitivity S of the filling member according to any one of [1] to [3] satisfies the formula (1) and suppresses the amount of heat transmitted from the first unit cell via the filling member. A method of controlling heat transfer including:

本発明によれば、複数の単電池を含む組電池において、冷却用部材を介した単電池間の熱移動を好適に制御することができる。   According to the present invention, in an assembled battery including a plurality of unit cells, heat transfer between the unit cells via the cooling member can be suitably controlled.

図1は、実施形態に係る充填部材及び冷却部材の構成を説明するとともに、充填部材の熱移動感度を説明する図である。Drawing 1 is a figure explaining the heat transfer sensitivity of a filling member while explaining composition of a filling member and a cooling member concerning an embodiment. 図2は、実施形態に係る組電池の一例を示す上面図である。FIG. 2 is a top view illustrating an example of the assembled battery according to the embodiment. 図3は、図2に示した組電池の側面を、手前側の側板を外した状態で模式的に示す側面図である。FIG. 3 is a side view schematically showing the side surface of the assembled battery shown in FIG. 2 with the front side plate removed. 図4は、単電池の一例を示す図である。FIG. 4 is a diagram illustrating an example of a unit cell. 図5は、図4に示した単電池の正面図である。FIG. 5 is a front view of the unit cell shown in FIG. 図6は、図4に示した単電池の側面図である。6 is a side view of the cell shown in FIG. 図7は、仕切り部材の説明図である。FIG. 7 is an explanatory diagram of the partition member. 図8は、単電池内部で発した熱の伝達経路を模式的に示す図である。FIG. 8 is a diagram schematically showing a transmission path of heat generated inside the unit cell.

以下、図面を参照して、本発明の実施の形態に係る充填部材、組電池、及び熱伝達の制御方法を説明する。以下に記載する実施形態の説明は一例であり、本発明は実施形態で説明する構成に限定されない。   Hereinafter, a filling member, an assembled battery, and a heat transfer control method according to an embodiment of the present invention will be described with reference to the drawings. Description of embodiment described below is an example, and this invention is not limited to the structure demonstrated by embodiment.

本実施形態に係る充填部材は、厚み方向と厚み方向に直交する面方向とを有し、面方向に沿った第1の面と第2の面とを有し、第1の面において組電池を構成する複数の単電池と接触するとともに、第2の面において単電池を冷却可能な冷却部材と接触する充填部材である。
組電池を構成する単電池のうちのいずれか一つを第1の単電池とした場合に、第1の単電池から発せられる熱が充填部材及び冷却部材を介して第1の単電池に隣接する第2の単電池へ移動する場合の充填部材の熱移動感度Sが以下の式1により定義され、
充填部材の熱移動感度S[W/K]=
充填部材の熱伝導率k[W/m・K]×充填部材と第1及び第2の単電池との接触面積A[m]/充填部材の厚みd[m]・・・(式1)
第1の単電池の温度が異常発熱状態の温度以上となった場合における熱移動感度Sが以下の式2を満たす、
0.5 ≦ S ≦ 4.0 ・・・(式2)
ことを特徴とする。
The filling member according to the present embodiment has a thickness direction and a surface direction orthogonal to the thickness direction, and has a first surface and a second surface along the surface direction, and the assembled battery in the first surface. Is a filling member that contacts a cooling member capable of cooling the unit cell on the second surface.
When any one of the cells constituting the assembled battery is a first cell, the heat generated from the first cell is adjacent to the first cell via the filling member and the cooling member. The heat transfer sensitivity S of the filling member when moving to the second unit cell is defined by the following formula 1,
Heat transfer sensitivity S [W / K] =
Thermal conductivity k [W / m · K] of the filling member × contact area A [m 2 ] between the filling member and the first and second unit cells / thickness d [m] of the filling member (Equation 1 )
The heat transfer sensitivity S when the temperature of the first unit cell is equal to or higher than the temperature of the abnormal heat generation state satisfies the following formula 2.
0.5 ≦ S ≦ 4.0 (Formula 2)
It is characterized by that.

ここで、本発明において、或る単電池を構成する電極や電解液等を構成する化学物質の一部ないし全てが、単電池の内部で発熱を伴いながら分解反応を起こすことにより、単電池の温度が上昇し、単電池の一部ないし全領域が200℃以上になった状態を「異常発熱状態」という。   Here, in the present invention, a part or all of chemical substances constituting an electrode or an electrolyte constituting a unit cell cause a decomposition reaction with heat generation inside the unit cell. A state in which the temperature rises and a part or all of the unit cell reaches 200 ° C. or higher is called “abnormal heat generation state”.

本実施形態に係る充填部材に関して、第1の単電池から発せられる熱が充填部材及び冷却部材を介して第2の単電池へ移動する場合の充填部材の熱移動感度Sは、上記式(1)により定義される。   Regarding the filling member according to the present embodiment, the heat transfer sensitivity S of the filling member when the heat generated from the first unit cell moves to the second unit cell via the filling member and the cooling member is expressed by the above equation (1). ).

また、本実施形態に係る充填部材では、第1の単電池(セル#1)の温度が異常発熱状態の温度(本実施形態では200℃)以上となった場合における熱移動感度Sが上記式(2)を満たす。   Further, in the filling member according to the present embodiment, the heat transfer sensitivity S when the temperature of the first unit cell (cell # 1) is equal to or higher than the temperature of the abnormal heat generation state (200 ° C. in the present embodiment) is expressed by the above formula. Satisfy (2).

[熱移動感度]
図1は、本発明の実施の形態に係る充填部材及び冷却部材の構成を説明するとともに、充填部材の熱移動感度を説明する図である。図1を用いて、充填部材10の熱移動感度Sを説明する。熱移動感度Sとは、組電池100を構成する第1の単電池200a(セル#1ともいう)と第1の単電池200aと異なる第2の単電池200b(セル#2ともいう)とが充填部材10と接触しており、第1の単電池200aから発せられた熱が第2の単電池200bに移動する際に、充填部材10と第1の単電池200a及び第2の単電池200bとの接触部分を経由して移動する熱量の程度を示す尺度である。
[Heat transfer sensitivity]
FIG. 1 is a diagram for explaining the configuration of the filling member and the cooling member according to the embodiment of the present invention and explaining the heat transfer sensitivity of the filling member. The heat transfer sensitivity S of the filling member 10 will be described with reference to FIG. The heat transfer sensitivity S refers to the first single battery 200a (also referred to as cell # 1) constituting the assembled battery 100 and the second single battery 200b (also referred to as cell # 2) different from the first single battery 200a. When the heat that is in contact with the filling member 10 and is generated from the first unit cell 200a moves to the second unit cell 200b, the filling member 10, the first unit cell 200a, and the second unit cell 200b. It is a scale which shows the grade of the calorie | heat amount which moves via a contact part.

熱移動感度Sは、充填部材10として使用される材料の厚み方向における熱伝導率(k[W/m・K])及び充填部材10と第1の単電池200a及び第2の単電池200bとの接触部分の面積(A[m])と、充填部材10の厚み(d[m])を用いて表すことができる。 The heat transfer sensitivity S indicates the thermal conductivity (k [W / m · K]) in the thickness direction of the material used as the filling member 10, the filling member 10, the first unit cell 200a, and the second unit cell 200b. The area (A [m 2 ]) of the contact portion and the thickness (d [m]) of the filling member 10 can be expressed.

ここで、セル#1から充填部材10及び冷却部材400を介してセル#2に伝わる熱量を考える。充填部材10の厚み方向の2面(面方向に沿った2面)について、セル#1及びセル#2と接触する面(上面)を面10a、その裏面(下面)を面10bとする。図1において、充填部材10の厚み方向は図1紙面の高さ方向に伸びており、充填部材10の面方向は図1紙面の左右方向に伸びている。冷却部材400は、図1の例では、充填部材10の面10bと密着する平面を有する板状に形成されている。また、充填部材10の厚み方向の熱伝導率をk[W/m・K]と定義し、充填部材10の厚みをd[m]とする。   Here, the amount of heat transferred from the cell # 1 to the cell # 2 via the filling member 10 and the cooling member 400 is considered. Regarding the two surfaces in the thickness direction of the filling member 10 (two surfaces along the surface direction), the surface (upper surface) in contact with the cell # 1 and the cell # 2 is defined as a surface 10a, and the back surface (lower surface) is defined as a surface 10b. In FIG. 1, the thickness direction of the filling member 10 extends in the height direction of the paper surface of FIG. 1, and the surface direction of the filling member 10 extends in the left-right direction of the paper surface of FIG. In the example of FIG. 1, the cooling member 400 is formed in a plate shape having a flat surface that is in close contact with the surface 10 b of the filling member 10. Further, the thermal conductivity in the thickness direction of the filling member 10 is defined as k [W / m · K], and the thickness of the filling member 10 is d [m].

さらに、充填部材10の面10aとセル#1とが接触する領域(領域a1とする)の平均温度をT1[℃]、領域a1と面対称の関係となる面10b上の領域(領域b1とする)の平均温度をT2[℃]、充填部材10の面10aとセル#2とが接触する領域(領域a2とする)の平均温度をT4[℃]、領域a2と面対称の関係となる領域(領域b2)の平均温度をT3[℃]とする。   Further, the average temperature of the region (referred to as region a1) where the surface 10a of the filling member 10 and the cell # 1 are in contact with each other is T1 [° C.], and the region on the surface 10b that is in plane symmetry with the region a1 (region b1). The average temperature of the region (referred to as region a2) where the surface 10a of the filling member 10 and the cell # 2 are in contact with each other is T4 [° C], and the region a2 has a plane-symmetric relationship. The average temperature of the region (region b2) is T3 [° C.].

平均温度T2が平均温度T1より低い場合、充填部材10の領域a1と領域b1とで表面温度差(T1−T2)が生じている。この場合、充填部材10の領域a1の単位断面積当たりの熱流量(熱流束)q1は、以下の式(3)によって表すことができる。
q1 = k(T1−T2)/d [W/m] ・・・(3)
When the average temperature T2 is lower than the average temperature T1, a surface temperature difference (T1-T2) is generated between the region a1 and the region b1 of the filling member 10. In this case, the heat flow rate (heat flux) q1 per unit cross-sectional area of the region a1 of the filling member 10 can be expressed by the following equation (3).
q1 = k (T1-T2) / d [W / m 2 ] (3)

また、平均温度T4が平均温度T3より低い場合、充填部材10の領域b2と領域a2とで表面温度差(T3−T4)が生じている。この場合、充填部材10の領域b2の単位断面積当たりの熱流量(熱流束)q2は、以下の式(4)によって表すことができる。
q2 = k(T3−T4)/d [W/m] ・・・(4)
Further, when the average temperature T4 is lower than the average temperature T3, a surface temperature difference (T3-T4) is generated between the region b2 and the region a2 of the filling member 10. In this case, the heat flow rate (heat flux) q2 per unit cross-sectional area of the region b2 of the filling member 10 can be expressed by the following equation (4).
q2 = k (T3-T4) / d [W / m 2 ] (4)

ここで、冷却部材400は、例えば熱伝導性のよい金属等で構成することができる。このため、冷却部材400から外部環境への除熱効率が低く、冷却部材400の周囲が断熱された環境に近い状態となっている場合には、冷却部材400の内部の温度はほぼ均一とみなすことができる。このような条件下では、平均温度T2と平均温度T3とがほぼ等しい(T2≒T3)と近似できる。この場合、充填部材10の領域b2の単位断面積当たりの熱流量(熱流束)q2は、以下の式(4−2)によって表すことができる。
q2 ≒ k(T2−T4)/d [W/m] ・・・(4−2)
Here, the cooling member 400 can be comprised, for example with a metal with good heat conductivity. For this reason, when the heat removal efficiency from the cooling member 400 to the external environment is low and the environment around the cooling member 400 is close to an insulated environment, the temperature inside the cooling member 400 is considered to be substantially uniform. Can do. Under such conditions, the average temperature T2 and the average temperature T3 can be approximated to be approximately equal (T2≈T3). In this case, the heat flow rate (heat flux) q2 per unit cross-sectional area of the region b2 of the filling member 10 can be expressed by the following equation (4-2).
q2≈k (T2-T4) / d [W / m 2 ] (4-2)

以上より、セル#1から冷却部材400へ充填部材10を経由して移動する接触面積A[m]当たりの熱量Q1、及び、冷却部材400からセル#2へ充填部材10を経由して移動する接触面積A[m]当たりの熱量Q2は、以下の式(5)および(6)によって表すことができる。
Q1 = A × q1 =Ak(T1−T2)/d [W] ・・・(5)
Q2 = A × q2 =Ak(T2−T4)/d [W] ・・・(6)
From the above, the heat quantity Q1 per contact area A [m 2 ] moving from the cell # 1 to the cooling member 400 via the filling member 10 and the movement from the cooling member 400 to the cell # 2 via the filling member 10 The amount of heat Q2 per contact area A [m 2 ] to be expressed can be expressed by the following equations (5) and (6).
Q1 = A × q1 = Ak (T1-T2) / d [W] (5)
Q2 = A * q2 = Ak (T2-T4) / d [W] (6)

充填部材10の熱移動感度Sは、ある単電池から別の単電池に熱が移動する際、それらの単電池が充填部材10に接触している場合に、その充填部材10の接触部分を経由して移動する熱量の程度を示す尺度であるから、以下の式(7)および(8)で定義することができる。
Q1 = S × (T1−T2)[W] ・・・(7)
Q2 = S × (T2−T4)[W] ・・・(8)
The heat transfer sensitivity S of the filling member 10 passes through the contact portion of the filling member 10 when the heat transfer from one unit cell to another unit cell is in contact with the filling member 10. Therefore, it can be defined by the following formulas (7) and (8).
Q1 = S × (T1-T2) [W] (7)
Q2 = S * (T2-T4) [W] (8)

熱移動感度Sは、式(5)、式(6)、式(7)、式(8)より、以下の式(9)で表すことができる。
S = Q1/(T1−T2) = Q2/(T2−T4)
= Ak/d [W/K] ・・・(9)
The heat transfer sensitivity S can be expressed by the following equation (9) from the equations (5), (6), (7), and (8).
S = Q1 / (T1-T2) = Q2 / (T2-T4)
= Ak / d [W / K] (9)

<組電池>
本発明の実施形態に係る組電池100について説明する。組電池100は、例えば、電気自動車(EV、Electric Vehicle)、ハイブリッド電気自動車(HEV、Hybrid Electric Vehicle)、プラグインハイブリッド電気自動車(PHEV、Plug−in Hybrid Electric Vehicle)、電動重機、電動バイク、電動アシスト自転車、船舶、航空機、電車、無停電電源装置(UPS、Uninterruptible Power Supply)、家庭用蓄電システム、風力/太陽光/潮力/地熱等の再生可能エネルギーを利用した電力系統安定化用蓄電池システム等に搭載される電池パックに適用される。但し、組電池100は、上述のEV等以外の機器に電力を供給する電力源としても使用し得る。
<Battery assembly>
An assembled battery 100 according to an embodiment of the present invention will be described. The assembled battery 100 includes, for example, an electric vehicle (EV), a hybrid electric vehicle (HEV, Hybrid Electric Vehicle), a plug-in hybrid electric vehicle (PHEV, Plug-in Hybrid Electric Vehicle), an electric heavy machine, an electric motorcycle, and an electric motorcycle. Assist bicycle, ship, aircraft, train, uninterruptible power supply (UPS), household power storage system, storage battery system for power system stabilization using renewable energy such as wind power / solar power / tidal power / geothermal power It is applied to battery packs mounted on However, the assembled battery 100 can also be used as a power source that supplies power to devices other than the EV described above.

図2は、複数の単電池200を用いて形成された組電池100の一例の上面図を示し、図3は、図2に示した組電池100から側板300dを取り外した状態を模式的に示す側面図である。   2 shows a top view of an example of an assembled battery 100 formed using a plurality of unit cells 200, and FIG. 3 schematically shows a state in which the side plate 300d is removed from the assembled battery 100 shown in FIG. It is a side view.

〔単電池〕
図4は組電池100を構成する単電池200の一例を示す図であり、図5は図4に示した単電池200の正面図であり、図6は、単電池200の右側面図である。図4、図5及び図6に示す一例において、単電池200は、高さ方向(H)、幅方向(W)、厚み方向(D)を有する直方体状に形成されており、その上面に端子210、端子220が設けられている。単電池200は、例えば、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備えるリチウムイオン二次電池である。リチウムイオン二次電池以外に、リチウムイオン全固体電池、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池等の二次電池を適用し得る。
[Single cell]
4 is a diagram showing an example of the unit cell 200 constituting the assembled battery 100, FIG. 5 is a front view of the unit cell 200 shown in FIG. 4, and FIG. 6 is a right side view of the unit cell 200. . In the example shown in FIGS. 4, 5, and 6, the unit cell 200 is formed in a rectangular parallelepiped shape having a height direction (H), a width direction (W), and a thickness direction (D). 210 and a terminal 220 are provided. The unit cell 200 is, for example, a lithium ion secondary battery including a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte. In addition to the lithium ion secondary battery, a secondary battery such as a lithium ion all solid battery, a nickel metal hydride battery, a nickel cadmium battery, or a lead storage battery can be applied.

〔組電池〕
図2及び図3において、組電池100は、筐体300と筐体300内に収容された複数の単電池200とを含む。複数の単電池200は、その厚み方向“D”(図2の左右方向)に一列に並べて配置され、単電池200の間に仕切り部材1が介装されている。筐体300は、配列された複数の単電池200の側方を囲むように設けられた側板300a、3
00b、300c及び300dを有する。側板300a及び側板300bには、図示しない治具などを用いて両者間の距離が縮まるように圧力がかけられ、側板300a及び側板300bに挟まれた各単電池200はその厚み方向に圧力(拘束圧)がかけられた状態で保持される。なお、図2及び図3では、一例として5個の単電池200が例示されているが、単電池の数は適宜選択可能である。また、図2及び図3の例では、組電池100は端子210及び端子220が上方を向くように配置される例を示しているが、組電池100は端子210及び端子220が側方を向くように配置されてもよい。
[Battery]
2 and 3, the assembled battery 100 includes a housing 300 and a plurality of unit cells 200 accommodated in the housing 300. The plurality of unit cells 200 are arranged in a line in the thickness direction “D” (left and right direction in FIG. 2), and the partition member 1 is interposed between the unit cells 200. The housing 300 includes side plates 300a and 3 provided so as to surround the sides of the plurality of unit cells 200 arranged.
00b, 300c and 300d. Pressure is applied to the side plate 300a and the side plate 300b using a jig (not shown) so that the distance between the side plate 300a and the side plate 300b is reduced. Pressure) is maintained. 2 and 3 exemplify five unit cells 200 as an example, the number of unit cells can be selected as appropriate. 2 and 3 show an example in which the assembled battery 100 is arranged so that the terminal 210 and the terminal 220 face upward. In the assembled battery 100, the terminal 210 and the terminal 220 face sideways. May be arranged as follows.

上述したように、筐体300内において、複数の単電池200はその厚み方向に並べられ、単電池200間には、仕切り部材1が配置されている。仕切り部材1を介して隣り合う(対向する)単電池200の正極端子(例えば端子210)と負極端子(例えば端子220)とは、バスバー301によって電気的に直列に接続される。これによって、組電池100は、所定の電圧の電力を出力する。   As described above, the plurality of single cells 200 are arranged in the thickness direction in the housing 300, and the partition member 1 is disposed between the single cells 200. A positive electrode terminal (for example, terminal 210) and a negative electrode terminal (for example, terminal 220) of the unit cells 200 that are adjacent (opposed) via the partition member 1 are electrically connected in series by the bus bar 301. Thereby, the assembled battery 100 outputs power of a predetermined voltage.

〔仕切り部材〕
仕切り部材1は、図7に示すように、高さ方向(H)、幅方向(W)及び厚み方向(D)を有する平行平板状、或いはシート状の全体形状を有する。仕切り部材1は、その厚み方向(D)において、組電池100を構成する単電池200の間、又は単電池200と単電池200以外の部材とを仕切るために使用される。仕切り部材1は、断熱材110等で構成することができる。また、仕切り部材1の厚みは、単電池200の厚みがL[mm]である場合に、通常、L/50mm以上L/10mm以下 の範囲であり、好ましくは、L/30mm以上L/15mm以下の範囲である。
(Partition member)
As shown in FIG. 7, the partition member 1 has a parallel plate shape having a height direction (H), a width direction (W), and a thickness direction (D), or an overall shape of a sheet. The partition member 1 is used to partition between the unit cells 200 constituting the assembled battery 100 or between the unit cell 200 and a member other than the unit cell 200 in the thickness direction (D). The partition member 1 can be comprised with the heat insulating material 110 grade | etc.,. The thickness of the partition member 1 is usually in the range of L / 50 mm or more and L / 10 mm or less, preferably L / 30 mm or more and L / 15 mm or less when the thickness of the unit cell 200 is L [mm]. Range.

〔断熱材〕
断熱材110は、多孔質体材料等で形成される。多孔質体は、例えば、繊維質(繊維状無機物ともいう)や粒子(粉状無機物ともいう)から形成されているものを例示することができる。断熱材110は、例えば、繊維質や粒子を押し固める等の所定の成型技術を用いて形成することができる。
[Insulation]
The heat insulating material 110 is formed of a porous material or the like. Examples of the porous body include those formed from fibrous materials (also referred to as fibrous inorganic materials) and particles (also referred to as powdered inorganic materials). The heat insulating material 110 can be formed, for example, using a predetermined molding technique such as pressing and solidifying fibers and particles.

繊維質(繊維状無機物)は、例えば、紙、コットンシート、ポリイミド繊維、アラミド繊維、ポリテトラフルオロエチレン(PTFE)繊維、ガラス繊維、ロックウール、セラミック繊維及び生体溶解性無機繊維からなる群から選ばれる少なくとも1つであることが好ましく、これらの中でもガラス繊維、ロックウール、セラミック繊維及び生体溶解性無機繊維から選ばれる少なくとも1つであることが特に好ましい。セラミック繊維は、主としてシリカとアルミナからなる繊維(シリカ:アルミナ=40:60〜0:100)であり、具体的には、シリカ・アルミナ繊維、ムライト繊維、アルミナ繊維を用いることができる。   The fibrous material (fibrous inorganic substance) is selected from the group consisting of paper, cotton sheet, polyimide fiber, aramid fiber, polytetrafluoroethylene (PTFE) fiber, glass fiber, rock wool, ceramic fiber, and biosoluble inorganic fiber, for example. And at least one selected from glass fiber, rock wool, ceramic fiber and biosoluble inorganic fiber is particularly preferable. The ceramic fiber is a fiber mainly composed of silica and alumina (silica: alumina = 40: 60 to 0: 100), and specifically, silica / alumina fiber, mullite fiber, and alumina fiber can be used.

また、粒子(粉末状無機物)は、例えば、シリカ粒子、アルミナ粒子、ケイ酸カルシウム、粘土鉱物、バーミキュライト、マイカ、セメント、パーライト、フュームドシリカ及びエアロゲルからなる群から選ばれる少なくとも1つであることが好ましく、これらの中でもシリカ粒子、アルミナ粒子、ケイ酸カルシウム及びバーミキュライトから選ばれる少なくとも1つが特に好ましい。粘土鉱物は主としてケイ酸マグネシウム(タルク、セピオライトを含む)、モンモリナイト、カオリナイトである。   Further, the particles (powdered inorganic substance) are, for example, at least one selected from the group consisting of silica particles, alumina particles, calcium silicate, clay mineral, vermiculite, mica, cement, pearlite, fumed silica, and airgel. Among these, at least one selected from silica particles, alumina particles, calcium silicate and vermiculite is particularly preferable. The clay minerals are mainly magnesium silicate (including talc and sepiolite), montmorillonite and kaolinite.

〔充填部材及び冷却部材〕
図3に示すように、筐体300の底部には、冷却部材(冷却装置ともいう)400が配置されている。複数の単電池200の夫々の底面は、平行平板状の充填部材10の上面(面10a:第1の面に相当)と接触し、充填部材10の下面(面10b:第2の面に相当)の一部ないし全面は、冷却部材400と接している。各単電池200からの熱は、充填
部材10を介して冷却部材400へ伝達可能となっている。
[Filling member and cooling member]
As shown in FIG. 3, a cooling member (also referred to as a cooling device) 400 is disposed at the bottom of the housing 300. The bottom surfaces of the plurality of unit cells 200 are in contact with the upper surface (surface 10a: corresponding to the first surface) of the parallel plate-shaped filling member 10, and the lower surface (surface 10b: equivalent to the second surface) of the filling member 10. ) Is in contact with the cooling member 400. Heat from each unit cell 200 can be transmitted to the cooling member 400 via the filling member 10.

冷却部材400は、例えばヒートシンクなどである。冷却部材400は、その内部で流体(冷媒)を移動(循環等)させるものであってもなくてもよい。充填部材10は、例えば、一種類以上の材料、例えば一種類以上のプラスチック、プラスチックコンパウンド、プラスチック・金属複合材料などのうちの単独、又は適宜の組み合わせによって形成される。   The cooling member 400 is, for example, a heat sink. The cooling member 400 may or may not move (circulate) the fluid (refrigerant) within the cooling member 400. The filling member 10 is formed of, for example, one or more kinds of materials, for example, one or more kinds of plastics, plastic compounds, plastic / metal composite materials, or the like alone or in an appropriate combination.

図8は、単電池200内部で発した熱の伝達経路を模式的に示す。単電池200内部での発熱は、各種伝達経路を介して、他の単電池200に伝達される。図8の例では、複数の単電池200のうちの一つである単電池200a(セル#1)からの熱の伝達経路が模式的に示されている。例えば、セル#1内部での発熱は、仕切り部材1を介して、他の単電池200b(セル#2)に伝達することができる。また、単電池200の夫々からの熱は、バスバー301を介して外部に放熱される。また、単電池200の夫々からの熱は、充填部材10を介して冷却部材400に伝達され、冷却部材400から外部へ放熱することができる。   FIG. 8 schematically shows a transmission path of heat generated inside the unit cell 200. Heat generated inside the unit cell 200 is transmitted to other unit cells 200 through various transmission paths. In the example of FIG. 8, a heat transfer path from the single battery 200a (cell # 1), which is one of the plurality of single batteries 200, is schematically shown. For example, the heat generated in the cell # 1 can be transmitted to the other unit cell 200b (cell # 2) via the partition member 1. In addition, heat from each of the unit cells 200 is radiated to the outside through the bus bar 301. Further, heat from each of the unit cells 200 is transmitted to the cooling member 400 via the filling member 10 and can be radiated from the cooling member 400 to the outside.

<組電池における発熱及び熱移動>
ここで、組電池100における発熱及び熱移動について説明する。単電池200を構成する電極や電解液等を構成する化学物質の一部ないし全てが、単電池200内部で発熱を伴いながら分解反応を起こすことにより、単電池200の温度が上昇し、単電池200の一部ないし全領域が200℃以上になる場合がある。即ち、単電池200が異常発熱状態となる場合がある。
<Heat generation and heat transfer in battery pack>
Here, heat generation and heat transfer in the assembled battery 100 will be described. A part or all of the chemical substances constituting the electrodes, electrolyte, and the like constituting the unit cell 200 cause a decomposition reaction with heat generation inside the unit cell 200, thereby increasing the temperature of the unit cell 200, and the unit cell 200. Some or all of 200 may be 200 ° C. or higher. That is, the unit cell 200 may be in an abnormal heat generation state.

一般に、単電池200を構成する材料のうち正極材料の安全性について、充電による脱リチウム後の結晶構造の安定性が大きく影響していることが知られている。正極材料として一般に用いられるLiCoO、Li(Ni1/3Mn1/3Co1/3)O、Li(Ni0.8Co0.15Al0.05)O等の材料は、充電状態では高温下で、酸素放出を伴う結晶崩壊を起こす。正極から放出された酸素は電解液の酸化等を引き起こし、急激な発熱反応を伴う。放射光を用いた構造解析により、上記正極材料種では200℃付近で結晶の相転移が起こることが報告されている。このため、単電池200の一部ないし全領域が200℃以上になる場合、正極の結晶崩壊が進行している、つまり単電池200が熱暴走状態にあることを意味する(参考文献1:リチウムイオン電池の高安全技術と材料 シーエムシー出版、P.44/参考文献2:J.Dahn et al., Electrochemistry Communication, 9, 2534−2540 (2007)/参考文献3:小林弘典、「放射光を用いたリチウムイオン二次電池用正極材料の評価・解析技術」Spring−8利用推進協議会 ガラス・セラミックス研究会(第二回)(2011))。 In general, it is known that the stability of the crystal structure after delithiation by charging greatly affects the safety of the positive electrode material among the materials constituting the unit cell 200. Materials such as LiCoO 2 , Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2 that are generally used as positive electrode materials are charged. In the state, crystal collapse accompanied with oxygen release occurs at high temperature. Oxygen released from the positive electrode causes oxidation of the electrolytic solution and is accompanied by a rapid exothermic reaction. According to structural analysis using synchrotron radiation, it has been reported that a crystal phase transition occurs at around 200 ° C. in the positive electrode material type. For this reason, when a part or all of the unit cell 200 reaches 200 ° C. or higher, it means that the crystal collapse of the positive electrode is progressing, that is, the unit cell 200 is in a thermal runaway state (Reference 1: Lithium). High Safety Technology and Materials for Ion Batteries CMC Publishing, P. 44 / Reference 2: J. Dahn et al., Electrochemistry Communication, 9, 2534-2540 (2007) / Reference 3: Hironori Kobayashi Evaluation and analysis technology of positive electrode material for lithium ion secondary battery used ”Spring-8 Utilization Promotion Council Glass and Ceramics Study Group (2nd) (2011)).

また、単電池200を構成する材料のうち負極材料の安全性について、充電負極(リチウム挿入炭素負極)は基本的にリチウム金属と同様の強い還元性を示し、電解液との反応で負極表面上に被膜が形成され、それによってさらなる反応が抑制されていることが知られている。従って、その保護被膜の化学的組成や構造、熱安定性が温度上昇時の充電負極の熱安定性に多大な影響を与える。通常、充電負極と電解液との反応は、保護被膜の形成と、それに続く被膜破壊による爆発的な還元分解反応により説明される。一般に、負極上での保護被膜形成反応は130℃付近から、引き続く被膜分解反応が200℃付近で進行し、最終的に爆発的還元分解反応に至ることが報告されている。このため、単電池200の一部ないし全領域が200℃以上になる場合、負極表面の被膜破壊が進行している、つまり単電池200が熱暴走状態にあることを意味する(参考文献4:電池ハンドブック第1版 オーム社、P.591/参考文献5:リチウムイオン電池の高安全技術・評価技術
の最前線 シーエムシー出版、P.90)。
In addition, regarding the safety of the negative electrode material among the materials constituting the unit cell 200, the charged negative electrode (lithium-inserted carbon negative electrode) basically exhibits a strong reducibility similar to that of lithium metal, and reacts with the electrolytic solution on the negative electrode surface. It is known that a film is formed on the surface, thereby suppressing further reaction. Therefore, the chemical composition, structure, and thermal stability of the protective coating greatly affect the thermal stability of the charging negative electrode when the temperature rises. Usually, the reaction between the charging negative electrode and the electrolytic solution is explained by the formation of a protective coating followed by an explosive reductive decomposition reaction by destruction of the coating. In general, it has been reported that the protective film formation reaction on the negative electrode proceeds from around 130 ° C., and the subsequent film decomposition reaction proceeds at around 200 ° C., eventually leading to an explosive reductive decomposition reaction. Therefore, when a part or all of the unit cell 200 is 200 ° C. or more, it means that the coating film destruction on the negative electrode surface has progressed, that is, the unit cell 200 is in a thermal runaway state (Reference Document 4: Battery Handbook 1st Edition Ohm Co., P.591 / Reference 5: Frontier of High Safety Technology and Evaluation Technology for Lithium Ion Batteries CMC Publishing, P.90).

また、本発明において、単電池200を構成する電極や電解液等を構成する化学物質が、単電池200内部で一定以上の発熱速度を伴う分解反応を起こしていない状態を、「通常状態」という。ここで、反応性化学物質が断熱条件下で自己発熱分解する際の熱的挙動を定量的に測定する手段であるARC(Accelerating rate calorimetry)を用いて、単電池200の発熱状態を評価することができる。例えばDahnらは、ARCにおいて観測される発熱速度が0.04℃/minを上回る場合に、セル内部で自己発熱反応が進行しているものと定義しており、これに倣うことができる(参考文献6:J.Dahn et al., Electrochimica Acta, 49, 4599−4604 (2004))。   Further, in the present invention, a state in which a chemical substance that constitutes an electrode, an electrolytic solution, or the like that constitutes the unit cell 200 does not cause a decomposition reaction with a certain rate of heat generation within the unit cell 200 is referred to as a “normal state”. . Here, the heat generation state of the unit cell 200 is evaluated using ARC (Accelerating rate calibration), which is a means for quantitatively measuring the thermal behavior when the reactive chemical substance undergoes self-exothermic decomposition under adiabatic conditions. Can do. For example, Dahn et al. Define that a self-heating reaction proceeds inside the cell when the exothermic rate observed in ARC exceeds 0.04 ° C./min, and this can be imitated (reference). Reference 6: J. Dahn et al., Electrochimica Acta, 49, 4599-4604 (2004)).

また、本発明において、通常状態の単電池200を、「通常状態を保持している単電池」、通常状態を逸脱し異常発熱状態に至っていない単電池200を、「通常状態を逸脱した単電池」という。単電池200が通常状態を逸脱していない場合に想定される表面平均温度の上限値は通常80℃である。ここで、汎用電解液成分の沸点は、下記表1に示すように90℃以上である。汎用電解液成分は、例えば、エチレンカーボネート(EC)、ジエチルカーボネート、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)である。単電池200の表面平均温度が80℃より低い場合は、単電池200を構成する汎用電解液自体の沸騰には至らない。

Figure 2019185845
Further, in the present invention, the unit cell 200 in the normal state is referred to as “unit cell that maintains the normal state”, and the unit cell 200 that deviates from the normal state and does not reach the abnormal heat generation state is referred to as “unit cell that deviates from the normal state”. " The upper limit of the surface average temperature assumed when the unit cell 200 does not deviate from the normal state is usually 80 ° C. Here, the boiling point of the general-purpose electrolyte component is 90 ° C. or higher as shown in Table 1 below. General-purpose electrolyte components are, for example, ethylene carbonate (EC), diethyl carbonate, dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). When the surface average temperature of the unit cell 200 is lower than 80 ° C., the general-purpose electrolytic solution itself constituting the unit cell 200 does not boil.
Figure 2019185845

例えば、仕切り部材1に接触する単電池200が通常状態を逸脱し、異常発熱状態に至っていない場合に想定される表面平均温度の上限値が180℃とする。ここで、仕切り部材1の材料が、仮に、汎用セパレータ材であるポリエチレンやポリプロピレン製であると仮定する。この場合、そのメルトダウン温度は160〜200℃であることが知られている。このため、単電池200の表面平均温度が180℃を超える場合には、単電池200を構成する汎用セパレータ材の一部がメルトダウンし、異常発熱状態に至るおそれがある。   For example, the upper limit value of the surface average temperature assumed when the unit cell 200 in contact with the partition member 1 deviates from the normal state and does not reach the abnormal heat generation state is 180 ° C. Here, it is assumed that the material of the partition member 1 is made of polyethylene or polypropylene which is a general-purpose separator material. In this case, the meltdown temperature is known to be 160-200 ° C. For this reason, when the surface average temperature of the unit cell 200 exceeds 180 ° C., a part of the general-purpose separator material constituting the unit cell 200 may melt down and an abnormal heat generation state may occur.

<異常発熱状態の単電池の冷却>
本実施形態に係る組電池100では、複数の単電池200のうちの一つの単電池200(例えば単電池200a(セル#1))が異常発熱状態になった場合に、セル#1から発せられる熱の一部は、充填部材10を介して冷却部材400に伝達される。
<Cooling of cells with abnormal heat generation>
In the assembled battery 100 according to the present embodiment, when one unit cell 200 (for example, the unit cell 200a (cell # 1)) of the plurality of unit cells 200 is in an abnormal heat generation state, the battery is emitted from the cell # 1. Part of the heat is transferred to the cooling member 400 via the filling member 10.

また、充填部材10に移動した熱のうちの一部は、充填部材10や冷却部材400を介して、異常発熱状態になった単電池200以外の単電池200に伝達される。異常発熱状態になった単電池200以外の単電池200は、例えば、異常発熱状態になった単電池200と仕切り部材1を介して対向する(仕切り部材1を挟んで隣接する)単電池200である。例えば、図8に示す例では、単電池200の一つである単電池200a(セル#1)が異常発熱状態となった場合に、そのセル#1からの熱の一部が充填部材10及び冷却部材400を介して単電池200b(セル#2)に伝達される。   In addition, a part of the heat transferred to the filling member 10 is transmitted to the single cells 200 other than the single cells 200 in an abnormal heat generation state via the filling member 10 and the cooling member 400. The unit cells 200 other than the unit cells 200 that are in an abnormal heat generation state are, for example, the unit cells 200 that are opposed to the unit cell 200 in an abnormal heat generation state via the partition member 1 (adjacent to each other with the partition member 1 in between). is there. For example, in the example shown in FIG. 8, when a single battery 200 a (cell # 1) that is one of the single batteries 200 is in an abnormal heat generation state, part of the heat from the cell # 1 is filled with the filling member 10 It is transmitted to the single battery 200b (cell # 2) via the cooling member 400.

[充填部材]
このため、実施形態に係る充填部材10は、一例として、図1に示した構成を備える。本実施形態では、充填部材10は、平行平板状に形成され、その厚み方向は、仕切り部材1の高さ方向(H)に配置され、充填部材10の面方向は、仕切り部材1の厚み方向(D)に配置されている。また、充填部材10は、その面方向に沿った第1の面に相当する面10a及び第2の面に相当する面10bを有する。充填部材10は、面10aにおいて、組電池100を構成する第1及び第2の単電池200a,200bと接触する。また、充填部材10は、面10bにおいて、第1及び第2の単電池200a,200bを冷却可能な冷却部材400と接触する。
[Filling material]
For this reason, the filling member 10 which concerns on embodiment is equipped with the structure shown in FIG. 1 as an example. In this embodiment, the filling member 10 is formed in a parallel plate shape, the thickness direction thereof is arranged in the height direction (H) of the partition member 1, and the surface direction of the filling member 10 is the thickness direction of the partition member 1. (D). The filling member 10 has a surface 10a corresponding to the first surface and a surface 10b corresponding to the second surface along the surface direction. The filling member 10 is in contact with the first and second unit cells 200a and 200b constituting the assembled battery 100 on the surface 10a. Moreover, the filling member 10 contacts the cooling member 400 that can cool the first and second unit cells 200a and 200b on the surface 10b.

<実施例>
次に実施例により本発明に係る充填部材の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。
<Example>
Next, specific embodiments of the filling member according to the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

以下に説明する実施例1〜5及び比較例1及び2では、異常発熱状態となった単電池200(単電池200aとする)から他の単電池200(単電池200bとする)への伝熱経路のうち、単電池200aと冷却部材400との間に配置される充填部材10を介する熱移動量に着目し、充填部材10による単電池200aと単電池200bとの間の伝熱量抑制の可能性を検討した。   In Examples 1 to 5 and Comparative Examples 1 and 2 described below, heat transfer from the unit cell 200 (referred to as the unit cell 200a) in an abnormal heat generation state to another unit cell 200 (referred to as the unit cell 200b). Paying attention to the amount of heat transfer through the filling member 10 disposed between the unit cell 200a and the cooling member 400 in the path, the amount of heat transfer between the unit cell 200a and the unit cell 200b by the filling member 10 can be suppressed. The sex was examined.

評価対象の組電池100として、図8に示すような5つの単電池200(セル#1〜セル#5)が連結された組電池モデルを構築し、セル#1に異常発熱状態時相当の発熱量1.4×10[J/m](NMC系正極を用いたセル#2の熱量評価から推定される総発熱量)を与え、以下の実施例1〜5並びに比較例1及び2の条件において、熱伝導方程式を有限要素法により解くことにより、セル#1に隣接するセル#2の温度推移を推算し、充填部材10の熱移動感度の変化によるセル間の伝熱量抑制等の効果を評価した。ここで、解析にはCOMSOL AB社製の汎用物理シミュレーションソフトウエアであるCOMSOL Multiphysicsを用い、下記参考文献9、10を参照して解析した。なお、セル#1とセル#2との間の伝熱経路については、図8で説明した経路が想定される(参考文献9:特開2006−010648号公報、参考文献10:R.M.Spotnitz et al., J.Power Sources 163, 1080−1086,(2007))。 As an assembled battery 100 to be evaluated, an assembled battery model in which five single cells 200 (cell # 1 to cell # 5) as shown in FIG. 8 are connected is constructed, and the cell # 1 generates heat corresponding to an abnormal heat generation state. An amount of 1.4 × 10 9 [J / m 3 ] (total calorific value estimated from the calorific value evaluation of the cell # 2 using the NMC positive electrode) was given, and the following Examples 1 to 5 and Comparative Examples 1 and 2 In this condition, the temperature transition of the cell # 2 adjacent to the cell # 1 is estimated by solving the heat conduction equation by the finite element method, and the amount of heat transfer between the cells due to the change of the heat transfer sensitivity of the filling member 10 is reduced. The effect was evaluated. Here, for analysis, COMSOL Multiphysics, which is general-purpose physical simulation software manufactured by COMSOL AB, was used, and analysis was performed with reference to the following references 9 and 10. In addition, about the heat transfer path | route between cell # 1 and cell # 2, the path | route demonstrated in FIG. 8 is assumed (reference literature 9: Unexamined-Japanese-Patent No. 2006-010648, reference literature 10: RM. Spotnitz et al., J. Power Sources 163, 1080-1086 ((2007)).

以下の表2に、実施例1〜5並びに比較例1及び2の結果を示す。

Figure 2019185845
Table 2 below shows the results of Examples 1 to 5 and Comparative Examples 1 and 2.
Figure 2019185845

実施例1〜5並びに比較例1及び2において、セル#1〜#5の夫々のサイズは、ドイツ自動車工業会で規定されているPHEV2サイズ(縦91mm、幅148mm、厚み26.5mm)とした。また、簡単のため、冷却部材400はアルミニウムやアルミニウム合金等の金属で構成された厚み約4mmの板状材料であると想定し、熱伝導率は200W/m・Kとした。セル#1及び#2と冷却部材400との間に設置される充填部材10は、絶縁塗料等の塗膜またはプラスチックフィルムであると想定した。充填部材10に関しては、膜厚、フィラー(充填部材10内への詰め物)の種類や充填量、あるいは充填部材10の構造体をなすプラスチックの種類で熱移動抵抗を変更できる。バスバー301は、アルミニウム製であるものと想定し、熱伝導率は237W/m・Kとした。また、セル#1とセル#2の間に設置される仕切り部材1は断熱性の材料であると想定し、膜厚(厚み方向の寸法)は1mm、熱伝導率は0.1W/m・Kとした。また、冷却部材400に関して、冷媒の流れ(フロー)が止まった状態を想定し、冷却部材400の周囲の環境には、自然対流相当の熱伝達係数を与えた。これらの条件下で、セル#1に異常が発生し異常発熱状態に達してから300秒間のセル#2内の温度推移を推算した。   In Examples 1 to 5 and Comparative Examples 1 and 2, the sizes of the cells # 1 to # 5 were PHEV2 sizes (91 mm long, 148 mm wide, 26.5 mm thick) defined by the German Automobile Manufacturers Association. . For simplicity, the cooling member 400 is assumed to be a plate-like material having a thickness of about 4 mm made of metal such as aluminum or aluminum alloy, and the thermal conductivity is 200 W / m · K. The filling member 10 installed between the cells # 1 and # 2 and the cooling member 400 was assumed to be a coating film such as an insulating paint or a plastic film. Regarding the filling member 10, the heat transfer resistance can be changed by the film thickness, the type and filling amount of the filler (stuffing into the filling member 10), or the type of plastic forming the structure of the filling member 10. The bus bar 301 was assumed to be made of aluminum, and the thermal conductivity was 237 W / m · K. Moreover, the partition member 1 installed between the cell # 1 and the cell # 2 is assumed to be a heat insulating material, the film thickness (dimension in the thickness direction) is 1 mm, and the thermal conductivity is 0.1 W / m · K. Further, regarding the cooling member 400, assuming that the refrigerant flow stopped, a heat transfer coefficient equivalent to natural convection was given to the environment around the cooling member 400. Under these conditions, the temperature transition in the cell # 2 was estimated for 300 seconds after the abnormality occurred in the cell # 1 and the abnormal heat generation state was reached.

なお、実施例1〜5並びに比較例1及び2においては、異常発熱状態の温度に達した単電池200から伝達された熱に起因する昇温の程度を明確にするため、セル#1以外のセル#2〜セル#5については、セルの自己発熱による昇温を考慮していない。   In Examples 1 to 5 and Comparative Examples 1 and 2, in order to clarify the degree of temperature rise caused by the heat transferred from the single battery 200 that reached the temperature of the abnormal heat generation state, other than the cell # 1 Regarding cell # 2 to cell # 5, temperature rise due to self-heating of the cells is not taken into consideration.

(比較例1)
充填部材10に熱伝導率2.0W/m・Kの材料を用い、膜厚は1mmとした。セル#1に異常が発生してから152秒後に、セル#2内部の最高温度が212.4℃に到達するものと推算された。この場合の充填部材10の熱移動感度Sは7.84W/Kであった。
(Comparative Example 1)
A material having a thermal conductivity of 2.0 W / m · K was used for the filling member 10, and the film thickness was 1 mm. It was estimated that the maximum temperature inside the cell # 2 reached 212.4 ° C. 152 seconds after the abnormality occurred in the cell # 1. In this case, the heat transfer sensitivity S of the filling member 10 was 7.84 W / K.

(実施例1)
充填部材10に熱伝導率1.0W/m・Kの材料を用い、膜厚は1mmとした。セル#1に異常が発生してから168秒後に、セル#2内部の最高温度が208.7℃に到達するものと推算された。この場合の充填部材10の熱移動感度Sは3.92W/Kであった。
Example 1
A material having a thermal conductivity of 1.0 W / m · K was used for the filling member 10 and the film thickness was 1 mm. It was estimated that the maximum temperature inside the cell # 2 reached 208.7 ° C. 168 seconds after the abnormality occurred in the cell # 1. In this case, the heat transfer sensitivity S of the filling member 10 was 3.92 W / K.

(実施例2)
充填部材10に熱伝導率0.8W/m・Kの材料を用い、膜厚は1mmとした。セル#1に異常が発生してから168秒後に、セル#2内部の最高温度が207.9℃に到達するものと推算された。この場合の充填部材10の熱移動感度Sは3.13W/Kであった。
(Example 2)
A material having a thermal conductivity of 0.8 W / m · K was used for the filling member 10, and the film thickness was 1 mm. It was estimated that the maximum temperature inside the cell # 2 reached 207.9 ° C. 168 seconds after the abnormality occurred in the cell # 1. In this case, the heat transfer sensitivity S of the filling member 10 was 3.13 W / K.

(実施例3)
充填部材10に熱伝導率0.6W/m・Kの材料を用い、膜厚は1mmとした。セル#1に異常が発生してから175秒後に、セル#2内部の最高温度が207.1℃に到達するものと推算された。この場合の充填部材10の熱移動感度Sbは2.35W/Kであった。
(Example 3)
A material having a thermal conductivity of 0.6 W / m · K was used for the filling member 10, and the film thickness was 1 mm. It was estimated that the maximum temperature inside the cell # 2 reached 207.1 ° C. 175 seconds after the abnormality occurred in the cell # 1. In this case, the heat transfer sensitivity Sb of the filling member 10 was 2.35 W / K.

(実施例4)
充填部材10に熱伝導率0.4W/m・Kの材料を用い、膜厚は1mmとした。セル#1に異常が発生してから188秒後に、セル#2内部の最高温度が207.3℃に到達するものと推算された。この場合の充填部材10の熱移動感度Sは1.57W/Kであった。
Example 4
A material having a thermal conductivity of 0.4 W / m · K was used for the filling member 10 and the film thickness was 1 mm. It was estimated that the maximum temperature inside the cell # 2 reached 207.3 ° C. 188 seconds after the abnormality occurred in the cell # 1. In this case, the heat transfer sensitivity S of the filling member 10 was 1.57 W / K.

(実施例5)
充填部材10に熱伝導率0.2W/m・Kの材料を用い、膜厚は1mmとした。セル#1に異常が発生してから179秒後に、セル#2内部の最高温度が208.1℃に到達するものと推算された。この場合の充填部材10の熱移動感度Sは0.78W/Kであった。
(Example 5)
A material having a thermal conductivity of 0.2 W / m · K was used for the filling member 10, and the film thickness was 1 mm. It was estimated that the maximum temperature inside the cell # 2 reached 208.1 ° C. 179 seconds after the abnormality occurred in the cell # 1. In this case, the heat transfer sensitivity S of the filling member 10 was 0.78 W / K.

(比較例2)
充填部材10に熱伝導率0.1W/m・Kの材料を用い、膜厚は1mmとした。セル#1に異常が発生してから208秒後に、セル#2内部の最高温度が211.0℃に到達するものと推算された。この場合の充填部材10の熱移動感度Sは0.39W/Kであった。
(Comparative Example 2)
A material having a thermal conductivity of 0.1 W / m · K was used for the filling member 10, and the film thickness was 1 mm. It was estimated that the maximum temperature inside the cell # 2 reached 211.0 ° C. 208 seconds after the abnormality occurred in the cell # 1. In this case, the heat transfer sensitivity S of the filling member 10 was 0.39 W / K.

実施例1〜5並びに比較例1及び2の結果から、以下のことがわかる。組電池100を構成する単電池200と電池温度の冷却および均等化のために備えられた冷却部材400との間に設置される充填部材10について、充填部材10の熱移動抵抗(熱伝導率k)を適切な範囲内に収めることで、異常が発生したセル#1(第1の単電池)から冷却部材400を介して伝わる熱量に起因するセル#2(第2の単電池)の昇温の程度を制御できる、すなわち、実施例1〜5並びに比較例1及び2によれば、冷却部材400を介した単電池200間の熱移動を好適に制御できる可能性があることが示された。実施例1〜5では、セル#2の最高温度を210℃より低い値にすることができるのに対し、比較例1及び2では、210℃を超える最高温度となった。これらより、セル#2の温度を好適に抑えることが可能な熱移動感度Sとして、式(2)の範囲(0.5≦S≦4.0)を得ることができた。なお、実施例1〜5の結果より、熱移動感度Sは、好ましくは0.7以上3.2以下であり、さらに好ましくは1.5以上2.4以下であるといえる。   From the results of Examples 1 to 5 and Comparative Examples 1 and 2, the following can be understood. About the filling member 10 installed between the unit cell 200 constituting the assembled battery 100 and the cooling member 400 provided for cooling and equalizing the battery temperature, the heat transfer resistance (thermal conductivity k) of the filling member 10 ) Within an appropriate range, the temperature rise of the cell # 2 (second unit cell) due to the amount of heat transferred through the cooling member 400 from the cell # 1 (first unit cell) in which an abnormality has occurred That is, according to Examples 1 to 5 and Comparative Examples 1 and 2, it was shown that there is a possibility that the heat transfer between the single cells 200 via the cooling member 400 may be suitably controlled. . In Examples 1 to 5, the maximum temperature of the cell # 2 can be set to a value lower than 210 ° C, whereas in Comparative Examples 1 and 2, the maximum temperature exceeded 210 ° C. From these, the range (0.5 ≦ S ≦ 4.0) of the formula (2) could be obtained as the heat transfer sensitivity S capable of suitably suppressing the temperature of the cell # 2. From the results of Examples 1 to 5, it can be said that the heat transfer sensitivity S is preferably 0.7 or more and 3.2 or less, and more preferably 1.5 or more and 2.4 or less.

ここで、実施例1〜5並びに比較例1及び2では、充填部材10の厚み(膜厚)を1mmに固定したが、充填部材10の厚みは、5.0×10−5m以上5.0×10−2m以下であってもよい。このため、実施例1〜5並びに比較例1及び2の結果から、充填部材10の厚み方向における熱伝導率kが2.0×10−2W/m・K以上50.0W/m・K以下であることが好ましいことがわかった。 Here, in Examples 1 to 5 and Comparative Examples 1 and 2, the thickness (film thickness) of the filling member 10 was fixed to 1 mm, but the thickness of the filling member 10 was 5.0 × 10 −5 m or more. It may be 0 × 10 −2 m or less. For this reason, from the results of Examples 1 to 5 and Comparative Examples 1 and 2, the thermal conductivity k in the thickness direction of the filling member 10 is 2.0 × 10 −2 W / m · K or more and 50.0 W / m · K. It was found that the following is preferable.

1 仕切り部材
10 充填部材
10a、10b 面
100 組電池
110 断熱材
200 単電池
300 筐体
400 冷却部材
DESCRIPTION OF SYMBOLS 1 Partition member 10 Filling member 10a, 10b Surface 100 Battery assembly 110 Heat insulating material 200 Single battery 300 Case 400 Cooling member

Claims (5)

厚み方向と前記厚み方向に直交する面方向とを有し、前記面方向に沿った第1の面と第2の面とを有し、前記第1の面において組電池を構成する複数の単電池と接触するとともに、前記第2の面において単電池を冷却可能な冷却部材と接触する充填部材であって、
組電池を構成する単電池のうちのいずれか一つを第1の単電池とした場合に、前記第1の単電池から発せられる熱が前記充填部材及び前記冷却部材を介して前記第1の単電池に隣接する第2の単電池へ移動する場合の前記充填部材の熱移動感度Sが以下の式1により定義され、
前記充填部材の熱移動感度S[W/K]=
前記充填部材の熱伝導率k[W/m・K]×前記充填部材と前記第1及び第2の単電池との接触面積A[m]/前記充填部材の厚みd[m]・・・(式1)
前記第1の単電池の温度が異常発熱状態の温度以上となった場合における熱移動感度が以下の式2を満たす、
0.5 ≦ S ≦ 4.0 ・・・(式2)
ことを特徴とする充填部材。
A plurality of single units that have a thickness direction and a surface direction orthogonal to the thickness direction, and that have a first surface and a second surface along the surface direction, and that form an assembled battery on the first surface. A filling member that contacts a battery and contacts a cooling member capable of cooling the unit cell on the second surface;
When any one of the unit cells constituting the assembled battery is a first unit cell, the heat generated from the first unit cell is transferred to the first unit via the filling member and the cooling member. The heat transfer sensitivity S of the filling member when moving to a second unit cell adjacent to the unit cell is defined by the following formula 1,
Heat transfer sensitivity S [W / K] of the filling member =
Thermal conductivity k [W / m · K] of the filling member × contact area A [m 2 ] between the filling member and the first and second unit cells / thickness d [m] of the filling member (Formula 1)
The heat transfer sensitivity when the temperature of the first unit cell is equal to or higher than the temperature of the abnormal heat generation state satisfies the following formula 2.
0.5 ≦ S ≦ 4.0 (Formula 2)
The filling member characterized by the above-mentioned.
前記充填部材の厚み方向における熱伝導率が2.0×10−2W/m・K以上50.0W/m・K以下である、請求項1に記載の充填部材。 The filling member according to claim 1, wherein the filling member has a thermal conductivity in the thickness direction of 2.0 × 10 −2 W / m · K or more and 50.0 W / m · K or less. 前記充填部材の厚みが5.0×10−5m以上5.0×10−2m以下である、請求項1又は2に記載の充填部材。 The filling member according to claim 1 or 2, wherein a thickness of the filling member is 5.0 x 10-5 m or more and 5.0 x 10-2 m or less. 請求項1から3のいずれか1項に記載の充填部材を含む組電池。   The assembled battery containing the filling member of any one of Claim 1 to 3. 請求項1から3のいずれか1項に記載の充填部材の熱移動感度Sが前記式1を満たして前記第1の単電池から前記充填部材を介して伝わる熱量を抑制する
ことを含む熱伝達の制御方法。
The heat transfer including the heat transfer sensitivity S of the filling member according to any one of claims 1 to 3 satisfying the formula 1 and suppressing the amount of heat transferred from the first unit cell through the filling member. Control method.
JP2018070430A 2018-03-30 2018-03-30 Control method of filling member, assembled battery and heat transfer Active JP6954213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018070430A JP6954213B2 (en) 2018-03-30 2018-03-30 Control method of filling member, assembled battery and heat transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018070430A JP6954213B2 (en) 2018-03-30 2018-03-30 Control method of filling member, assembled battery and heat transfer

Publications (2)

Publication Number Publication Date
JP2019185845A true JP2019185845A (en) 2019-10-24
JP6954213B2 JP6954213B2 (en) 2021-10-27

Family

ID=68341538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018070430A Active JP6954213B2 (en) 2018-03-30 2018-03-30 Control method of filling member, assembled battery and heat transfer

Country Status (1)

Country Link
JP (1) JP6954213B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106993A1 (en) * 2019-11-29 2021-06-03 株式会社スリーダム Battery pack and method for producing same
WO2022186518A1 (en) * 2021-03-05 2022-09-09 주식회사 엘지에너지솔루션 Battery pack and device including same
WO2022186517A1 (en) * 2021-03-05 2022-09-09 주식회사 엘지에너지솔루션 Battery pack and device including same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010648A (en) * 2004-06-29 2006-01-12 Mitsubishi Chemicals Corp Temperature distribution evaluation method, simulation device, and simulation program
JP2009301877A (en) * 2008-06-13 2009-12-24 Toyoda Gosei Co Ltd Battery pack device
JP2010272430A (en) * 2009-05-22 2010-12-02 Sanyo Electric Co Ltd Battery system for vehicle
JP2011023296A (en) * 2009-07-17 2011-02-03 Furukawa Battery Co Ltd:The Battery pack
JP2011108617A (en) * 2009-10-19 2011-06-02 Nitto Denko Corp Heat conduction member and battery pack device using the same
WO2012124273A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Battery block
JP2014505333A (en) * 2011-01-04 2014-02-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Temperature control plate for temperature control of galvanic cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010648A (en) * 2004-06-29 2006-01-12 Mitsubishi Chemicals Corp Temperature distribution evaluation method, simulation device, and simulation program
JP2009301877A (en) * 2008-06-13 2009-12-24 Toyoda Gosei Co Ltd Battery pack device
JP2010272430A (en) * 2009-05-22 2010-12-02 Sanyo Electric Co Ltd Battery system for vehicle
JP2011023296A (en) * 2009-07-17 2011-02-03 Furukawa Battery Co Ltd:The Battery pack
JP2011108617A (en) * 2009-10-19 2011-06-02 Nitto Denko Corp Heat conduction member and battery pack device using the same
JP2014505333A (en) * 2011-01-04 2014-02-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Temperature control plate for temperature control of galvanic cells
WO2012124273A1 (en) * 2011-03-17 2012-09-20 パナソニック株式会社 Battery block

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106993A1 (en) * 2019-11-29 2021-06-03 株式会社スリーダム Battery pack and method for producing same
WO2022186518A1 (en) * 2021-03-05 2022-09-09 주식회사 엘지에너지솔루션 Battery pack and device including same
WO2022186517A1 (en) * 2021-03-05 2022-09-09 주식회사 엘지에너지솔루션 Battery pack and device including same

Also Published As

Publication number Publication date
JP6954213B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
CN207967112U (en) The battery pack of battery module including battery module and the vehicle including battery pack
JP7354842B2 (en) Partition members and assembled batteries
CN108352588B (en) Battery module, battery pack having the same, and vehicle
US8349481B2 (en) Power storage apparatus
CN110114903B (en) Partition member, battery pack, and heat transfer control method for battery pack
Bugryniec et al. Computational modelling of thermal runaway propagation potential in lithium iron phosphate battery packs
JPWO2019146438A1 (en) Battery pack
JP6954213B2 (en) Control method of filling member, assembled battery and heat transfer
EP3379639B1 (en) Battery module, battery pack comprising same, and vehicle
JP2000067825A (en) Set battery
US11469471B1 (en) Battery pack heat dispensing systems
US11509015B2 (en) Energy storage module and energy storage device
JP2020532072A (en) Battery module, battery pack containing it and vehicle including the battery pack
Yeow et al. Characterizing thermal runaway of lithium-ion cells in a battery system using finite element analysis approach
WO2019107561A1 (en) Partition member and assembled battery
CN105633502A (en) Lithium ion battery module capable of restraining thermal runaway extension
JP2020064755A (en) Battery pack
JP6954214B2 (en) Filling member, battery assembly, and heat transfer control method
JP2019102244A (en) Partition member and battery pack
JP2011103271A (en) Power storage device
WO2018180254A1 (en) Battery pack
US20220093987A1 (en) Apparatus for insulating battery of electric vehicle
JP5445352B2 (en) Non-aqueous electrolyte secondary battery, vehicle and battery-powered equipment
JP7174326B2 (en) assembled battery
Sakaebe Zebra batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R151 Written notification of patent or utility model registration

Ref document number: 6954213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151