JPH0722610A - Electric charge transfer apparatus and its manufacture - Google Patents

Electric charge transfer apparatus and its manufacture

Info

Publication number
JPH0722610A
JPH0722610A JP16565593A JP16565593A JPH0722610A JP H0722610 A JPH0722610 A JP H0722610A JP 16565593 A JP16565593 A JP 16565593A JP 16565593 A JP16565593 A JP 16565593A JP H0722610 A JPH0722610 A JP H0722610A
Authority
JP
Japan
Prior art keywords
substrate
gate insulating
insulating film
charge transfer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16565593A
Other languages
Japanese (ja)
Other versions
JP3100802B2 (en
Inventor
Toshihiro Kuriyama
俊寛 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP05165655A priority Critical patent/JP3100802B2/en
Publication of JPH0722610A publication Critical patent/JPH0722610A/en
Application granted granted Critical
Publication of JP3100802B2 publication Critical patent/JP3100802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To increase a handling electric charge amount without deteriorating transmission efficiency, and also readily control and stabilize the potential, and further readily realize in a process and sufficiently scope with a lower voltage. CONSTITUTION:An electric charge transfer apparatus comprises a substrate 1; an embedded channel region 3 formed in this substrate 1; and a gate insulating film 2 formed in the substrate 1, and a peak value of an impurity concentration distribution of the embedded channel is set to be within the substrate 1. In a method of manufacturing the electric charge transfer apparatus, after a gate insulating film 2 is formed in the substrate 1, an embedded channel is formed within the substrate 1 by ion implantation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体撮像装置等に適
用される電荷転送装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge transfer device applied to a solid-state image pickup device or the like.

【0002】[0002]

【従来の技術】従来の電荷転送装置は、図3(a)に示
すように、埋め込みチャンネルCCD(以下BCCDと
呼ぶ)を構成するN形領域43を形成したP形基板41
に、ゲート絶縁膜42を形成後、電極となるポリシコン
電極44を選択的に形成していた。
2. Description of the Related Art In a conventional charge transfer device, as shown in FIG. 3A, a P-type substrate 41 having an N-type region 43 forming a buried channel CCD (hereinafter referred to as BCCD) is formed.
Then, after forming the gate insulating film 42, the polysilicon electrode 44 to be an electrode is selectively formed.

【0003】この電荷転送装置は、N形領域43の電子
を完全に排除することによりN形領域43を完全空乏化
させ、これにより生じた図3(c)に示すポテンシャル
のくぼみ45にポテンシャル46となるように信号電荷
の電子を蓄積する。そして、電荷の転送はポリシコン電
極44に電圧VG を印加し隣合った電極間のポテンシャ
ルに差を設けることにより行う。
This charge transfer device completely depletes the N-type region 43 by completely eliminating the electrons in the N-type region 43, and the potential 46 is generated in the potential depression 45 shown in FIG. The electrons of the signal charge are accumulated so that The charges are transferred by applying a voltage V G to the polysilicon electrode 44 and providing a potential difference between adjacent electrodes.

【0004】またこの電荷転送装置の製造において、N
形領域43はN形不純物のリンおよび砒素のうちどちら
か一方または両方をイオン注入によりP形基板41に選
択的に導入して形成する。そのイオン注入の条件は50
〜100KeV程度の加速電圧で1〜5E12cm-2
ドーズ量であり、また不純物濃度分布を図3(b)に示
している。47はN形領域43の分布、48は信号電荷
分布である。
In manufacturing the charge transfer device, N
The shaped region 43 is formed by selectively introducing one or both of N-type impurities such as phosphorus and arsenic into the P-type substrate 41 by ion implantation. The condition of the ion implantation is 50
The acceleration voltage is about 100 KeV and the dose is 1 to 5E12 cm -2 , and the impurity concentration distribution is shown in FIG. 47 is the distribution of the N-type region 43, and 48 is the signal charge distribution.

【0005】[0005]

【発明が解決しようとする課題】この従来例は、埋め込
みチャンネルの不純物濃度分布のピークがP形基板41
内にないため、信号電荷の蓄積が少なく、転送効率が劣
化するので取扱い電荷量が小さくなる欠点があった。ま
た、この従来例は製造容易であるが、ポテンシャルの制
御および安定化が困難であるという欠点があった。すな
わち、ポテンシャルを決定する要因は、ゲート絶縁膜4
2の膜厚とN形領域43の不純物分布47であり、これ
らが変動するとポテンシャルが変動し、たとえばゲート
絶縁膜42が厚くなるとポテンシャルは深くなり、N形
領域43の不純物の濃度が高くなるか、または拡散長が
長くなってもポテンシャルは深くなる。
According to this conventional example, the peak of the impurity concentration distribution of the buried channel is the P-type substrate 41.
Since it is not within the range, the signal charge is less accumulated and the transfer efficiency is deteriorated, so that there is a drawback that the amount of charge handled is reduced. Although this conventional example is easy to manufacture, it has a drawback that it is difficult to control and stabilize the potential. That is, the factor that determines the potential is the gate insulating film 4
The film thickness is 2 and the impurity distribution 47 in the N-type region 43. If these changes, the potential changes. For example, if the gate insulating film 42 becomes thicker, the potential becomes deeper, and the impurity concentration in the N-type region 43 becomes higher. , Or the potential becomes deeper even if the diffusion length becomes longer.

【0006】ところが、ゲート絶縁膜2の膜厚の制御性
は中心に対し±5%程度であり、中心を100nmとす
るとばらつきは10%の10nmとなるので、ポテンシ
ャルの変動は約1V以上となる。また、ゲート絶縁膜4
2の膜厚の制御は処理時間の調整で行うため、ゲート絶
縁膜42を形成の際の熱履歴がN形領域43の不純物の
分布に直接影響し、これがポテンシャルのばらつきをさ
らに増大させる。
However, the controllability of the film thickness of the gate insulating film 2 is about ± 5% with respect to the center, and if the center is 100 nm, the variation is 10%, which is 10%, so that the potential fluctuation is about 1 V or more. . In addition, the gate insulating film 4
Since the control of the film thickness of 2 is performed by adjusting the processing time, the thermal history at the time of forming the gate insulating film 42 directly affects the distribution of impurities in the N-type region 43, which further increases the variation in potential.

【0007】したがって、この発明の目的は、従来の前
記欠点を解消し、転送効率を劣化するくことなく取扱い
電荷量を増大でき、またポテンシャルの制御および安定
化が容易であり、しかもプロセス上実現が容易で、低電
圧化にも十分対応できる電荷転送装置およびその製造方
法を提供することである。
Therefore, the object of the present invention is to solve the above-mentioned drawbacks of the prior art, to increase the amount of charge handled without deteriorating the transfer efficiency, and to easily control and stabilize the potential, and to realize it in the process. It is an object of the present invention to provide a charge transfer device and a method for manufacturing the same, which are easy to operate and can sufficiently cope with a reduction in voltage.

【0008】[0008]

【課題を解決するための手段】請求項1の電荷転送装置
は、基板と、この基板に形成された埋め込みチャンネル
領域と、基板の表面に形成されたゲート絶縁膜とを備
え、埋め込みチャンネルの不純物濃度分布のピーク値が
前記基板の内部にあることを特徴とするものである。
According to another aspect of the present invention, there is provided a charge transfer device including a substrate, a buried channel region formed on the substrate, and a gate insulating film formed on a surface of the substrate. It is characterized in that the peak value of the concentration distribution is inside the substrate.

【0009】請求項2の電荷転送装置は、請求項1にお
いて、ゲート絶縁膜を積層順に酸化膜,ナイトライド膜
および酸化膜からなる三層構造としたものである。請求
項3の電荷転送装置の製造方法は、基板にゲート絶縁膜
を形成した後、イオン注入することにより基板内に埋め
込みチャンネルを形成することを特徴とするものであ
る。
A second aspect of the present invention is the charge transfer device according to the first aspect, wherein the gate insulating film has a three-layer structure including an oxide film, a nitride film and an oxide film in the order of stacking. According to a third aspect of the present invention, there is provided a method of manufacturing a charge transfer device, which comprises forming a gate insulating film on a substrate and then implanting ions to form a buried channel in the substrate.

【0010】請求項4の電荷転送装置の製造方法は、請
求項3において、ゲート絶縁膜が積層順に酸化膜,ナイ
トライド膜および酸化膜からなり、最初の酸化膜および
ナイトライド膜を順次基板に積層後イオン注入を行い、
その後にナイトライド膜上に酸化膜を形成するものであ
る。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a charge transfer device according to the third aspect, wherein the gate insulating film comprises an oxide film, a nitride film and an oxide film in the order of stacking, and the first oxide film and the nitride film are sequentially formed on the substrate. Ion implantation after stacking,
After that, an oxide film is formed on the nitride film.

【0011】[0011]

【作用】請求項1の電荷転送装置によれば、埋め込みチ
ャンネルの不純物濃度分布のピーク値が基板の内部にあ
るため、信号電荷の分布の中心は電荷が増大しても不純
物濃度分布と一致するので、信号電荷の蓄積が基板の内
部に有効にとどめられ、転送効率が劣化することなく取
扱い電荷量を増大することができる。しかも信号電荷の
蓄積量の増大と転送効率の両立が可能となることから微
細化に対応でき、暗電流の抑制能力も増大できる。
According to the charge transfer device of the first aspect, since the peak value of the impurity concentration distribution of the buried channel is inside the substrate, the center of the signal charge distribution coincides with the impurity concentration distribution even if the charge increases. Therefore, the accumulation of signal charges is effectively kept inside the substrate, and the amount of charges to be handled can be increased without deteriorating the transfer efficiency. In addition, since it is possible to increase both the amount of signal charges accumulated and the transfer efficiency, it is possible to cope with miniaturization and increase the dark current suppressing capability.

【0012】請求項2の電荷転送装置によれば、請求項
1において、請求項1において、ゲート絶縁膜を積層順
に酸化膜,ナイトライド膜および酸化膜からなる三層構
造としたため、請求項1の作用のほか基板の酸化を防止
できる。請求項3の電荷転送装置の製造方法によれば、
基板にゲート絶縁膜を形成した後、イオン注入すること
により基板内に埋め込みチャンネルを形成したため、ゲ
ート絶縁膜の形成の際の熱履歴が不純物濃度分布に影響
しなくなるとともに、埋め込みチャンネル領域の不純物
濃度分布の深さがゲート絶縁膜の厚さに対して負の相関
を持ち、製造工程の変動によるポテンシャルの変動を自
己制御可能とすることができるので、ポテンシャルを一
定に保ちこれを安定化できるとともに、低電圧化が可能
となる。また埋め込みチャンネルの不純物濃度のピーク
位置は加速電圧により制御性よく決定可能であり、しか
も基板の内部に形成されるので、請求項1と同作用があ
る。
According to a second aspect of the charge transfer device of the present invention, in the first aspect, the gate insulating film has a three-layer structure including an oxide film, a nitride film and an oxide film in the order of lamination. In addition to the above action, it is possible to prevent the oxidation of the substrate. According to the method of manufacturing the charge transfer device of claim 3,
Since the buried channel is formed in the substrate by implanting ions after forming the gate insulating film on the substrate, the thermal history at the time of forming the gate insulating film does not affect the impurity concentration distribution and the impurity concentration in the buried channel region is increased. The depth of the distribution has a negative correlation with the thickness of the gate insulating film, and it is possible to self-control the fluctuation of the potential due to the fluctuation of the manufacturing process, so that the potential can be kept constant and stabilized. It is possible to reduce the voltage. Further, the peak position of the impurity concentration of the buried channel can be determined with good controllability by the acceleration voltage, and since it is formed inside the substrate, there is the same effect as in claim 1.

【0013】請求項4の電荷転送装置の製造方法によれ
ば、請求項3において、ゲート絶縁膜が積層順に酸化
膜,ナイトライド膜および酸化膜からなり、最初の酸化
膜およびナイトライド膜を順次基板に積層後イオン注入
を行い、その後にナイトライド膜上に酸化膜を形成する
ため、請求項3の作用のほか、イオン注入後の酸化膜の
形成時の酸化による増速拡散が窒化膜により抑制される
ので、イオン注入時の不純物濃度分布がほぼ一定に保た
れる。
According to a fourth aspect of the present invention, there is provided the method of manufacturing a charge transfer device according to the third aspect, wherein the gate insulating film comprises an oxide film, a nitride film and an oxide film in the order of stacking, and the first oxide film and the nitride film are sequentially formed. Since ion implantation is performed after stacking on the substrate, and then an oxide film is formed on the nitride film, the nitride film is used for the enhanced diffusion due to the oxidation during the formation of the oxide film after the ion implantation, in addition to the function of claim 3. Since it is suppressed, the impurity concentration distribution during ion implantation is kept substantially constant.

【0014】[0014]

【実施例】この発明の一実施例を図1および図2に基づ
いて説明する。すなわち、この電荷転送装置は、基板1
と、この基板1の内部に形成された埋め込みチャンネル
領域3と、前記基板1の表面に形成されたゲート絶縁膜
2とを有する。ゲート絶縁膜2は積層順にシリコン酸化
膜を実施例とする酸化膜2a,シリコン窒化膜を実施例
とするナイトライド膜2bおよびシリコン酸化膜を実施
例とする酸化膜2cからなる三層構造としている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. That is, this charge transfer device is provided with the substrate 1
And a buried channel region 3 formed inside the substrate 1, and a gate insulating film 2 formed on the surface of the substrate 1. The gate insulating film 2 has a three-layer structure including an oxide film 2a having a silicon oxide film as an embodiment, a nitride film 2b having a silicon nitride film as an embodiment, and an oxide film 2c having a silicon oxide film as an embodiment in the order of stacking. .

【0015】また埋め込みチャンネル領域3の不純物濃
度分布のピーク値を図1(b)のように基板1の内部に
位置している。この図において、5は不純物濃度分布、
6は埋め込みチャンネル領域3以外の基板1における分
布、7は信号電荷分布である。また図1(c)はポテン
シャル分布であり、8は信号電荷のないときのポテンシ
ャル分布、9は信号電荷があるときのポテンシャル分布
である。なお、VG は電荷の転送時に印加する電圧であ
る。
The peak value of the impurity concentration distribution of the buried channel region 3 is located inside the substrate 1 as shown in FIG. 1 (b). In this figure, 5 is the impurity concentration distribution,
6 is a distribution in the substrate 1 other than the buried channel region 3, and 7 is a signal charge distribution. Further, FIG. 1C is a potential distribution, 8 is a potential distribution when there is no signal charge, and 9 is a potential distribution when there is signal charge. Note that V G is a voltage applied at the time of transferring charges.

【0016】つぎに、電荷転送装置の製造方法は、基板
1にゲート絶縁膜2を形成した後、イオン注入すること
により基板1内に埋め込みチャンネル1を形成するもの
である。すなわち、まずP形の基板1にゲート絶縁膜2
を形成する酸化膜2aおよびナイトライド膜2bを形成
した後、選択的にリンを加速電圧160KeV、ドーズ
量2E12cm-2でイオン注入して、埋め込みチャンネ
ル領域3を構成するN形領域を形成し、さらにゲート絶
縁膜2の酸化膜2cを形成後、ポリシリコン電極4を選
択的に形成している。
Next, in the method of manufacturing the charge transfer device, after the gate insulating film 2 is formed on the substrate 1, ion implantation is performed to form the buried channel 1 in the substrate 1. That is, first, the gate insulating film 2 is formed on the P-type substrate 1.
After forming the oxide film 2a and the nitride film 2b that form the N, a phosphorus ion is selectively ion-implanted at an acceleration voltage of 160 KeV and a dose amount of 2E12 cm −2 to form an N-type region forming the buried channel region 3, Further, after forming the oxide film 2c of the gate insulating film 2, the polysilicon electrode 4 is selectively formed.

【0017】この実施例によれば、基板1にゲート絶縁
膜2を形成した後、イオン注入することにより基板1内
に埋め込みチャンネルを形成したため、ゲート絶縁膜2
の形成の際の熱履歴が不純物濃度分布に影響しなくなる
とともに、埋め込みチャンネル領域3の不純物濃度分布
の深さがゲート絶縁膜2の厚さに対して負の相関を持つ
ようになる。すなわち、図2の(a1 ),(b1 )はゲ
ート絶縁膜2の膜厚が異なる電荷転送装置を比較したも
のである。そして図2の(a2 )は(a1 )の装置の不
純物濃度分布図、(a3 )は(a1 )の装置の信号電荷
のない状態のポテンシャル分布図、(b2 )は(b1
の装置の不純物濃度分布図、(b3 )は(b1 )の装置
の信号電荷のない状態のポテンシャル分布図である。図
2の(b 1 )に示すように絶縁膜2の膜厚が(a1 )に
比べて厚いと埋め込みチャンネル領域3は浅く形成さ
れ、図2(a1 )に示すように絶縁膜2の膜厚が薄いと
チャンネル領域3は深く形成される。そのため、イオン
注入の加速電圧が一定のとき、CCDの特性として重要
なポテンシャルはゲート絶縁膜2が(b1 )のように厚
くなれば深くなるが、埋め込みチャンネル領域3が浅く
なればポテンシャルは浅くなるため相殺されて図
(b3 )のようになる。反対にゲート絶縁膜2が
(a 1 )のように薄いときはポテンシャルが浅くなる
が、埋め込みチャンネル領域3が深くなるのでポテンシ
ャルは深くなるため相殺されて図(a3 )のようにな
り、図(a3 ),(b3 )の各ポテンシャル分布の電圧
αV,βVは、α≒βとなる。
According to this embodiment, the gate insulation is provided on the substrate 1.
After the film 2 is formed, ions are implanted into the substrate 1
Since the buried channel is formed in the gate insulating film 2
The thermal history during the formation of the impurities does not affect the impurity concentration distribution
And the impurity concentration distribution in the buried channel region 3
Has a negative correlation with the thickness of the gate insulating film 2.
Like That is, (a in FIG.1), (B1) Is
The charge transfer devices having different thicknesses of the gate insulating film 2 were compared.
Of. Then, in FIG.2) Is (a1) Device
Pure substance concentration distribution map, (a3) Is (a1) Device signal charge
Distribution diagram in the state without2) Is (b1)
Concentration distribution diagram of the equipment of (b)3) Is (b1) Equipment
FIG. 6 is a potential distribution diagram in a state in which there is no signal charge. Figure
2 of (b 1), The thickness of the insulating film 2 is (a1) To
If it is thicker, the buried channel region 3 is formed shallower.
2 (a1) If the insulating film 2 is thin,
The channel region 3 is deeply formed. Therefore, Ion
Important for CCD characteristics when the accelerating voltage for injection is constant
The potential of the gate insulating film 2 is (b1) Like thick
It becomes deeper as it gets deeper, but the buried channel region 3 becomes shallower
If this happens, the potential will be shallower and will be canceled out.
(B3)become that way. On the contrary, the gate insulating film 2
(A 1When it is thin like), the potential becomes shallow
However, since the buried channel region 3 becomes deep,
This is offset by the fact that3) Like
Figure (a3), (B3) Voltage of each potential distribution
αV and βV are α≈β.

【0018】このように、製造工程の変動によりゲート
絶縁膜2が変動しても、ポテンシャルの変動は自己制御
的に抑制されることとなるので、ポテンシャルを一定に
保ちこれを安定化でき、このためさらに低電圧化も可能
となる。また、図1の不純物濃度分布に示すようにゲー
ト絶縁膜2と基板1の界面よりも深いところ(たとえば
約0.1μm)に濃度のピークを持つ埋め込みチャンネ
ル領域3が得られる。このピーク位置は加速電圧により
制御性良く決定可能である。このように埋め込みチャン
ネルの不純物濃度のピーク位置は基板1の内部に形成さ
れるため、図1(b)に示すように、信号電荷の分布の
中心は電荷が増大しても不純物濃度分布と一致する。そ
のため、信号電荷の蓄積が基板の内部に有効にとどめら
れるので、従来例と比較すると転送効率が劣化し始める
信号量を増大することが可能となり、転送効率が劣化す
ることなく取扱い電荷量を増大することができ、しかも
信号電荷の蓄積量の増大と転送効率の両立が可能となる
ことからCCDの微細化に対応できる。
As described above, even if the gate insulating film 2 fluctuates due to fluctuations in the manufacturing process, fluctuations in the potential are suppressed in a self-controlled manner, so that the potential can be kept constant and stabilized. Therefore, it is possible to further reduce the voltage. Further, as shown in the impurity concentration distribution of FIG. 1, a buried channel region 3 having a concentration peak is obtained at a position deeper than the interface between the gate insulating film 2 and the substrate 1 (eg, about 0.1 μm). This peak position can be determined with good controllability by the acceleration voltage. Since the peak position of the impurity concentration of the buried channel is formed inside the substrate 1 as described above, the center of the signal charge distribution coincides with the impurity concentration distribution even if the charge increases, as shown in FIG. To do. Therefore, since the accumulation of signal charges is effectively kept inside the substrate, it is possible to increase the signal amount at which the transfer efficiency begins to deteriorate as compared with the conventional example, and the handled charge amount is increased without deteriorating the transfer efficiency. Since it is possible to achieve both the increase in the amount of signal charges accumulated and the transfer efficiency, it is possible to cope with the miniaturization of the CCD.

【0019】またこの電荷転送装置は、従来構造よりも
ゲート絶縁膜2と基板1の界面におけるN形不純物濃度
を低減できるためゲート電極に与える電圧を負方向にし
ていった時に生じるピンニング現象(界面での電位がチ
ャンネルストッパーのP形電位と同じになるとホールの
供給が始まりさらにゲート電圧を負方向にしても界面の
電位が固定されチャンネル電位のプロファイルも固定さ
れる)において界面でのホール供給量が増加し暗電流の
低減効果が増大する。
Further, since this charge transfer device can reduce the N-type impurity concentration at the interface between the gate insulating film 2 and the substrate 1 as compared with the conventional structure, the pinning phenomenon (interface) which occurs when the voltage applied to the gate electrode is in the negative direction. When the potential at the point becomes the same as the P-type potential of the channel stopper, the supply of holes starts and the potential of the interface is fixed and the profile of the channel potential is also fixed even if the gate voltage is made negative). And the effect of reducing dark current increases.

【0020】さらに製造工程において、酸化膜2aおよ
びナイトライド膜2bを順次基板1に積層後リンイオン
の注入を行い、その後にナイトライド膜2b上に酸化膜
2cを形成することにより、ゲート絶縁膜2を形成する
ため、イオン注入後の酸化膜の形成工程を行っても酸化
による増速拡散がナイトライド膜2bにより抑制される
ので、イオン注入時の不純物濃度分布がほぼ一定に保た
れ、基板1の酸化が防止される。
Further, in the manufacturing process, the oxide film 2a and the nitride film 2b are sequentially laminated on the substrate 1, phosphorus ions are implanted, and then the oxide film 2c is formed on the nitride film 2b. Therefore, even if the step of forming an oxide film after the ion implantation is performed, the enhanced diffusion due to the oxidation is suppressed by the nitride film 2b, so that the impurity concentration distribution during the ion implantation is kept substantially constant, and the substrate 1 Oxidation is prevented.

【0021】またチャンネルストッパを構成するP形領
域をゲート絶縁膜2の形成後にイオン注入して形成する
場合も、従来に比べて熱処理が減少されてチャンネルス
トッパのP形領域の横方向拡散が抑制され、実効的なC
CDのチャンネル幅が拡大するため取扱い電荷量が増大
する。なお、この発明において、イオン注入時の加速電
圧は100〜300KeVでもよい。
Also, when the P-type region forming the channel stopper is formed by ion implantation after the gate insulating film 2 is formed, the heat treatment is reduced as compared with the conventional case and the lateral diffusion of the P-type region of the channel stopper is suppressed. And effective C
Since the CD channel width increases, the amount of charge handled increases. In the present invention, the acceleration voltage at the time of ion implantation may be 100 to 300 KeV.

【0022】[0022]

【発明の効果】請求項1の電荷転送装置によれば、埋め
込みチャンネルの不純物濃度分布のピーク値が基板の内
部にあるため、信号電荷の分布の中心は電荷が増大して
も不純物濃度分布と一致するので、信号電荷の蓄積が基
板の内部に有効にとどめられ、転送効率が劣化すること
なく取扱い電荷量を増大することができる。しかも信号
電荷の蓄積量の増大と転送効率の両立が可能となること
から微細化に対応でき、暗電流の抑制能力も増大できる
という効果がある。
According to the charge transfer device of the first aspect, since the peak value of the impurity concentration distribution of the buried channel is inside the substrate, the center of the signal charge distribution is the impurity concentration distribution even if the charge increases. Since they coincide with each other, the accumulation of signal charges is effectively kept inside the substrate, and the amount of charges to be handled can be increased without deteriorating the transfer efficiency. Moreover, since it is possible to increase both the amount of signal charges accumulated and the transfer efficiency, it is possible to cope with miniaturization and to increase the dark current suppressing capability.

【0023】請求項2の電荷転送装置によれば、請求項
1において、請求項1において、ゲート絶縁膜を積層順
に酸化膜,ナイトライド膜および酸化膜からなる三層構
造としたため、請求項1の効果のほか基板の酸化を防止
できる。請求項3の電荷転送装置の製造方法によれば、
基板にゲート絶縁膜を形成した後、イオン注入すること
により基板内に埋め込みチャンネルを形成したため、ゲ
ート絶縁膜の形成の際の熱履歴が不純物濃度分布に影響
しなくなるとともに、埋め込みチャンネル領域の不純物
濃度分布の深さがゲート絶縁膜の厚さに対して負の相関
を持ち、製造工程の変動によるポテンシャルの変動を自
己制御可能とすることができるので、ポテンシャルを一
定に保ちこれを安定化できるとともに、低電圧化が可能
となる。また埋め込みチャンネルの不純物濃度のピーク
位置は加速電圧により制御性よく決定可能であり、しか
も基板の内部に形成されるので、請求項1と同効果があ
る。
According to the charge transfer device of claim 2, in claim 1, the gate insulating film has a three-layer structure including an oxide film, a nitride film, and an oxide film in the order of stacking. In addition to the above effect, the oxidation of the substrate can be prevented. According to the method of manufacturing the charge transfer device of claim 3,
Since the buried channel is formed in the substrate by implanting ions after forming the gate insulating film on the substrate, the thermal history at the time of forming the gate insulating film does not affect the impurity concentration distribution and the impurity concentration in the buried channel region is increased. The depth of the distribution has a negative correlation with the thickness of the gate insulating film, and it is possible to self-control the fluctuation of the potential due to the fluctuation of the manufacturing process, so that the potential can be kept constant and stabilized. It is possible to reduce the voltage. Further, the peak position of the impurity concentration of the buried channel can be determined with good controllability by the accelerating voltage, and since it is formed inside the substrate, it has the same effect as claim 1.

【0024】請求項4の電荷転送装置の製造方法によれ
ば、請求項3において、ゲート絶縁膜が積層順に酸化
膜,ナイトライド膜および酸化膜からなり、最初の酸化
膜およびナイトライド膜を順次基板に積層後イオン注入
を行い、その後にナイトライド膜上に酸化膜を形成する
ため、請求項3の効果のほか、イオン注入後の酸化膜の
形成時の酸化による増速拡散が窒化膜により抑制される
ので、イオン注入時の不純物濃度分布がほぼ一定に保た
れる。
According to the manufacturing method of the charge transfer device of claim 4, in claim 3, the gate insulating film comprises an oxide film, a nitride film and an oxide film in the order of stacking, and the first oxide film and the nitride film are sequentially formed. Since ion implantation is performed after stacking on the substrate and then an oxide film is formed on the nitride film, in addition to the effect of claim 3, enhanced diffusion due to oxidation at the time of forming the oxide film after ion implantation is caused by the nitride film. Since it is suppressed, the impurity concentration distribution during ion implantation is kept substantially constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】図(a)はこの発明の一実施例の断面図、
(b)はその不純物濃度分布図、(c)はポテンシャル
分布図である。
FIG. 1A is a sectional view of an embodiment of the present invention,
(B) is the impurity concentration distribution diagram, and (c) is the potential distribution diagram.

【図2】図(a1 ),(b1 )は相互にゲート絶縁膜の
膜厚の異なる例の断面図、(a 2 ),(b2 )は不純物
濃度分布図、(a3 ),(b3 )はポテンシャル分布図
である。
FIG. 2 is a diagram (a)1), (B1) Are mutually on the gate insulating film
Sectional views of examples of different film thickness, (a 2), (B2) Is an impurity
Concentration distribution map, (a3), (B3) Is the potential distribution map
Is.

【図3】図(a)は従来例の断面図、(b)はその不純
物濃度分布図、(c)はポテンシャル分布図である。
3A is a sectional view of a conventional example, FIG. 3B is an impurity concentration distribution diagram thereof, and FIG. 3C is a potential distribution diagram.

【符号の説明】[Explanation of symbols]

1 基板 2 ゲート絶縁膜 3 埋め込みチャンネル 1 substrate 2 gate insulating film 3 buried channel

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板と、この基板に形成された埋め込み
チャンネル領域と、前記基板の表面に形成されたゲート
絶縁膜とを備え、前記埋め込みチャンネルの不純物濃度
分布のピーク値が前記基板の内部にあることを特徴とす
る電荷転送装置。
1. A substrate, a buried channel region formed on the substrate, and a gate insulating film formed on a surface of the substrate, wherein a peak value of an impurity concentration distribution of the buried channel is inside the substrate. A charge transfer device characterized by being present.
【請求項2】 ゲート絶縁膜が積層順に酸化膜,ナイト
ライド膜および酸化膜からなる三層構造である請求項1
の電荷転送装置。
2. The gate insulating film has a three-layer structure including an oxide film, a nitride film and an oxide film in the order of stacking.
Charge transfer device.
【請求項3】 基板にゲート絶縁膜を形成した後、イオ
ン注入することにより基板内に埋め込みチャンネルを形
成することを特徴とする電荷転送装置の製造方法。
3. A method of manufacturing a charge transfer device, comprising forming a buried channel in the substrate by implanting ions after forming a gate insulating film on the substrate.
【請求項4】 ゲート絶縁膜は、積層順に酸化膜,ナイ
トライド膜および酸化膜からなり、最初の酸化膜および
ナイトライド膜を順次基板に積層後イオン注入を行い、
その後にナイトライド膜上に酸化膜を形成する請求項3
記載の電荷転送装置の製造方法。
4. The gate insulating film is composed of an oxide film, a nitride film and an oxide film in the order of stacking, and the first oxide film and the nitride film are sequentially stacked on the substrate and ion implantation is performed,
After that, an oxide film is formed on the nitride film.
A method of manufacturing the charge transfer device described.
JP05165655A 1993-07-05 1993-07-05 Method for manufacturing charge transfer device Expired - Fee Related JP3100802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05165655A JP3100802B2 (en) 1993-07-05 1993-07-05 Method for manufacturing charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05165655A JP3100802B2 (en) 1993-07-05 1993-07-05 Method for manufacturing charge transfer device

Publications (2)

Publication Number Publication Date
JPH0722610A true JPH0722610A (en) 1995-01-24
JP3100802B2 JP3100802B2 (en) 2000-10-23

Family

ID=15816488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05165655A Expired - Fee Related JP3100802B2 (en) 1993-07-05 1993-07-05 Method for manufacturing charge transfer device

Country Status (1)

Country Link
JP (1) JP3100802B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106699A1 (en) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. Manufacturing method of solid-state imaging device
JP2010287743A (en) * 2009-06-11 2010-12-24 Sony Corp Semiconductor device and method for manufacturing the same, solid-state image sensing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106699A1 (en) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. Manufacturing method of solid-state imaging device
JP2008535204A (en) * 2005-03-31 2008-08-28 松下電器産業株式会社 Method for manufacturing solid-state imaging device
US7585694B2 (en) 2005-03-31 2009-09-08 Panasonic Corporation Manufacturing method of solid-state imaging device
JP2010287743A (en) * 2009-06-11 2010-12-24 Sony Corp Semiconductor device and method for manufacturing the same, solid-state image sensing device

Also Published As

Publication number Publication date
JP3100802B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP2835216B2 (en) Method for manufacturing semiconductor device
US7361527B2 (en) Image sensor with improved charge transfer efficiency and method for fabricating the same
JP2787908B2 (en) Method for manufacturing semiconductor device
US8541825B2 (en) Image sensor with improved charge transfer efficiency and method for fabricating the same
US6599782B1 (en) Semiconductor device and method of fabricating thereof
JPH0834313B2 (en) Semiconductor device and manufacturing method thereof
JPH04247629A (en) Charge coupled device and manufacture thereof
JPH05102179A (en) Semiconductor device and its manufacture
JP3100802B2 (en) Method for manufacturing charge transfer device
JP2757491B2 (en) Method for manufacturing semiconductor device
JPH04343437A (en) Manufacture of semiconductor device
JPS6373666A (en) Insulated-gate field-effect semiconductor device
JP2853786B2 (en) Method for manufacturing solid-state imaging device
JPH1140662A (en) Manufacture of semiconductor device
JPS61256670A (en) Insulated gate field effect transistor
JPS6373667A (en) Manufacture of mos semiconductor device
JPS6290974A (en) Manufacture of mosfet
JP3320589B2 (en) Solid-state imaging device and method of manufacturing the same
JPH01117066A (en) Manufacture of mos type semiconductor device
JPH04239777A (en) Manufacture of semiconductor device
JPS6376376A (en) Manufacture of metal-oxide semiconductor (mos) device
JP3026834B2 (en) Solid-state imaging device
JPH09307102A (en) Semiconductor device
JPH06244401A (en) Solid-state image pickup device and manufacture thereof
JPH06310698A (en) Solid image pickup device and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20070818

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080818

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080818

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090818

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110818

LAPS Cancellation because of no payment of annual fees