JPH07218050A - Noncondensed gas discharging device - Google Patents

Noncondensed gas discharging device

Info

Publication number
JPH07218050A
JPH07218050A JP6012853A JP1285394A JPH07218050A JP H07218050 A JPH07218050 A JP H07218050A JP 6012853 A JP6012853 A JP 6012853A JP 1285394 A JP1285394 A JP 1285394A JP H07218050 A JPH07218050 A JP H07218050A
Authority
JP
Japan
Prior art keywords
gas
refrigerant
condensed
condensable gas
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6012853A
Other languages
Japanese (ja)
Other versions
JP3048817B2 (en
Inventor
Masaya Izu
正弥 伊豆
Sumio Ikeda
澄雄 池田
Yoko Shinozaki
陽子 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6012853A priority Critical patent/JP3048817B2/en
Publication of JPH07218050A publication Critical patent/JPH07218050A/en
Application granted granted Critical
Publication of JP3048817B2 publication Critical patent/JP3048817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve hydrogen gas-discharge capacity of a noncondensed gas discharging device. CONSTITUTION:A heat-exchanger 54 to cool a noncondensed gas tank 50 is located in the middle of a refrigerant piping 52 which runs from a condenser 7 to a vaporizer 1 and in which refrigerant liquid in the condenser 7 flows, and an orifice 53 is disposed upper stream from the heat-exchanger. Steam flowing in togetherwith noncondensed gas is cooled and condensed by the heat- exchanger 54 which is arranged in the noncondensed gas tank 50 and through which flow temperature steam flows. Adhesion of steam on the surface of a palladium cell 51, i.e., a hydrogen permeation surface, is suppressed, hydrogen discharge capacity of the palladium cell 51 is maintained, and the increase of noncondensed gas in a device, especially hydrogen gas concentration, is prevented from occurring to stabilize operation of an absorption type freezer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に設けられ
る不凝縮ガス排出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-condensable gas discharge device provided in an absorption refrigerator.

【0002】[0002]

【従来の技術】例えば、実開昭60ー111854号公
報には、吸収式冷凍機内の吸収液を用いて蒸発器あるい
は吸収器内の不凝縮ガスを抽気するガス抽気装置と、こ
の抽気装置に抽気された不凝縮ガスを貯えるガス貯室
と、このガス貯室に接続され不凝縮ガス中の水素を透過
させて外部へ放出するパラジウム金属あるいはパラジウ
ム合金製の水素放出管とを備えた吸収冷凍機が開示され
ている。
2. Description of the Related Art For example, Japanese Utility Model Laid-Open No. 60-111854 discloses a gas extraction device for extracting uncondensed gas in an evaporator or an absorber using an absorption liquid in an absorption refrigerator, and this extraction device. Absorption refrigeration equipped with a gas storage chamber for storing the extracted non-condensable gas, and a hydrogen release pipe made of palladium metal or palladium alloy that is connected to the gas storage chamber and transmits hydrogen in the non-condensed gas to the outside to release it. Machine is disclosed.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の技
術において、吸収冷凍機の運転中ガス抽気装置に水素な
どの不凝縮ガスとともに蒸発器あるいは吸収器の冷媒蒸
気が抽気され、この冷媒蒸気がガス貯室に流入すると水
素放出管の表面に冷媒蒸気が付着し、水素放出管の水素
透過量が減少して水素排出能力が低下するという問題が
発生する。そして、水素排出水素排出能力が低下した状
態が長時間継続すると、ガス貯室の圧力が上昇してガス
抽気装置の抽気能力も低下し、機器内の不凝縮ガス濃度
が上昇して再生器の温度高或いは圧力高が発生し、吸収
冷凍機の異常停止装置が働き異常停止するという問題も
発生する。
In the prior art as described above, the refrigerant vapor of the evaporator or the absorber is extracted together with the non-condensable gas such as hydrogen into the gas extraction apparatus during operation of the absorption refrigerator, and the refrigerant vapor is extracted. When the gas flows into the gas storage chamber, the refrigerant vapor adheres to the surface of the hydrogen discharge pipe, and the amount of hydrogen permeation through the hydrogen discharge pipe decreases, resulting in a decrease in the hydrogen discharge capacity. Then, if the state in which the hydrogen discharge capacity is reduced continues for a long time, the pressure in the gas storage chamber rises, the extraction capacity of the gas extraction device also decreases, and the concentration of non-condensed gas in the equipment increases and There is also a problem that a high temperature or a high pressure occurs and an abnormal stop device of the absorption refrigerator operates to cause an abnormal stop.

【0004】本発明は、ガス貯室からの水素放出能力を
確保し、吸収式冷凍機の運転を安定するものである。
The present invention ensures the ability to release hydrogen from the gas storage chamber and stabilizes the operation of the absorption refrigerator.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するために、請求項1に記載の発明によれば、吸収器
2、高温発生器4、凝縮器7及び蒸発器1を配管接続し
て吸収液及び冷媒の循環路を形成した吸収式冷凍機の機
内の吸収液を用いて機内の不凝縮ガスを抽気するガス抽
気装置37と、このガス抽気装置に連通し抽気した不凝
縮ガスを蓄えるガス貯室50と、この不凝縮ガスタンク
に連通し不凝縮ガス中の水素ガスを透過させて放出する
パラジウムセル51とを備えた不凝縮ガス排出装置にお
いて、凝縮器7から蒸発器1へ至り凝縮器7の冷媒液が
流入する冷媒配管52を備え、この冷媒配管の途中に不
凝縮ガスタンク50を冷却する熱交換器54が設けられ
且つ熱交換器より上流にオリフィス53が設けられたこ
とを特徴とする不凝縮ガス排出装置を提供するものであ
る。
In order to solve the above-mentioned problems, according to the present invention, the absorber 2, the high temperature generator 4, the condenser 7 and the evaporator 1 are connected by piping. And a gas extraction device 37 for extracting the non-condensed gas in the machine using the absorption liquid in the machine of the absorption refrigerating machine in which a circulation path of the absorption liquid and the refrigerant is formed, and the non-condensed gas extracted in communication with the gas extraction device In the non-condensable gas discharge device provided with a gas storage chamber 50 for storing hydrogen and a palladium cell 51 communicating with the non-condensable gas tank and transmitting and releasing hydrogen gas in the non-condensed gas, from the condenser 7 to the evaporator 1. A refrigerant pipe 52 through which the refrigerant liquid of the condenser 7 flows is provided, a heat exchanger 54 for cooling the non-condensable gas tank 50 is provided in the middle of the refrigerant pipe, and an orifice 53 is provided upstream of the heat exchanger. Characterized by There is provided a gas discharge device.

【0006】また、請求項2に記載された発明によれ
ば、 蒸発器1下部の冷媒液溜と蒸発器上部の冷媒液散
布装置とを配管接続し途中に冷媒液循環ポンプ21を有
した冷媒液循環配管20と、冷媒液循環ポンプの出口側
の冷媒液循環配管から分岐して凝縮器7へ至り途中に不
凝縮ガスタンク50を冷却する熱交換器62が設けられ
た冷媒配管61とを備えた不凝縮ガス排出装置を提供す
るものである。
According to the second aspect of the present invention, the refrigerant having the refrigerant liquid circulation pump 21 is connected to the refrigerant liquid reservoir in the lower portion of the evaporator 1 and the refrigerant liquid spraying device in the upper portion of the evaporator by pipe connection. A liquid circulation pipe 20 and a refrigerant pipe 61 provided with a heat exchanger 62 that branches from the refrigerant liquid circulation pipe on the outlet side of the refrigerant liquid circulation pump to reach the condenser 7 and cools the noncondensable gas tank 50 midway. And a non-condensable gas discharge device.

【0007】さらに、請求項3に記載された発明によれ
ば、蒸発器下部の冷媒液溜と蒸発器上部の冷媒液散布装
置とを配管接続し途中に冷媒液循環ポンプ21を有した
冷媒液循環配管20を備え、この冷媒液循環配管の冷媒
液循環ポンプ出口側配管は不凝縮ガスタンク50を貫通
した不凝縮ガス排出装置を提供するものである。また、
請求項4に記載された発明によれば、凝縮器7から流出
した冷媒液が蒸発した後或いは蒸発器から流出した冷媒
液が流れ不凝縮ガスタンク50を冷却する熱交換器54
と、不凝縮ガスタンク50に配管接続され途中に開閉弁
58を有したガス供給管56と、不凝縮ガスタンクの底
部に配管接続され途中に開閉弁57を有した凝縮水排出
管55とを備えた不凝縮ガス排出装置を提供するもので
ある。
Further, according to the invention described in claim 3, the refrigerant liquid having the refrigerant liquid circulating pump 21 is connected in the middle between the refrigerant liquid reservoir in the lower portion of the evaporator and the refrigerant liquid spraying device in the upper portion of the evaporator. The non-condensable gas discharge device is provided with the circulation pipe 20, and the refrigerant liquid circulation pump outlet side pipe of the refrigerant liquid circulation pipe penetrates the non-condensed gas tank 50. Also,
According to the invention described in claim 4, the heat exchanger 54 for cooling the non-condensable gas tank 50 after the refrigerant liquid flowing out from the condenser 7 is evaporated or the refrigerant liquid flowing out from the evaporator flows.
And a gas supply pipe 56 pipe-connected to the non-condensable gas tank 50 and having an opening / closing valve 58 in the middle, and a condensed water discharge pipe 55 pipe-connected to the bottom of the non-condensing gas tank and having an opening / closing valve 57 in the middle. A non-condensable gas discharge device is provided.

【0008】また、請求項5に記載された発明によれ
ば、凝縮器7ら流出した冷媒液が蒸発した後或いは蒸発
器1から流出した冷媒液が流れ不凝縮ガスタンク50を
冷却する熱交換器と、不凝縮ガスタンク50の底部から
ガス抽気装置37へ至り途中に開閉弁57を有した凝縮
水排出配管55とを備えた不凝縮ガス排出装置を提供す
るものである。
According to the fifth aspect of the present invention, the heat exchanger cools the non-condensable gas tank 50 after the refrigerant liquid flowing out of the condenser 7 is evaporated or the refrigerant liquid flowing out of the evaporator 1 flows. And a condensed water discharge pipe 55 having an opening / closing valve 57 on the way to the gas extraction device 37 from the bottom of the non-condensed gas tank 50.

【0009】[0009]

【作用】請求項1の発明によれば、不凝縮ガスと共に流
入した水蒸気は不凝縮ガスタンク50内に設けられ低温
の冷媒蒸気が流れる熱交換器54によって冷却され凝縮
し、パラジウムセル51の表面即ち水素透過面への水蒸
気の付着を抑えパラジウムセル51の水素排出能力を維
持することができ、この結果、機器内の不凝縮ガス特に
水素ガス濃度の上昇を回避して吸収式冷凍機の運転を安
定することが可能になる。
According to the first aspect of the present invention, the water vapor that has flown in together with the non-condensable gas is cooled and condensed by the heat exchanger 54 provided in the non-condensed gas tank 50 through which the low-temperature refrigerant vapor flows, and the surface of the palladium cell 51, Adhesion of water vapor to the hydrogen permeable surface can be suppressed, and the hydrogen discharge capacity of the palladium cell 51 can be maintained. As a result, the operation of the absorption chiller can be performed while avoiding an increase in the concentration of non-condensable gas, especially hydrogen gas in the equipment. It becomes possible to stabilize.

【0010】また、請求項2の発明によれば、不凝縮ガ
スと共に流入した水蒸気は不凝縮ガスタンク50に設け
られ低温の冷媒液が流れる熱交換器62によって冷却さ
れ凝縮し、パラジウムセル51の表面即ち水素透過面へ
の水蒸気の付着を抑えパラジウムセル51の水素排出能
力を維持することが可能になり、且つ、熱交換器62で
温度上昇した冷媒液は凝縮器7へ戻され、冷媒液溜り7
7に溜まっている冷媒液と共に蒸発器1へ流れるため、
冷媒ポンプ21から吐出した冷媒液には熱交換器62を
通過して温度上昇した冷媒液が混入することはなく、冷
媒ポンプ21から吐出した冷媒液はほとんど温度上昇す
ることなくそのまま蒸発器1で散布され、蒸発器1で冷
却効率を維持することが可能になる。
According to the second aspect of the invention, the water vapor that has flown in together with the non-condensable gas is cooled and condensed by the heat exchanger 62 provided in the non-condensed gas tank 50 through which the low-temperature refrigerant liquid flows, and the surface of the palladium cell 51. That is, it becomes possible to suppress the adhesion of water vapor to the hydrogen permeable surface and maintain the hydrogen discharge capacity of the palladium cell 51, and the refrigerant liquid whose temperature has risen in the heat exchanger 62 is returned to the condenser 7 to collect in the refrigerant liquid pool. 7
Since it flows to the evaporator 1 together with the refrigerant liquid accumulated in 7,
The refrigerant liquid discharged from the refrigerant pump 21 does not mix with the refrigerant liquid whose temperature has risen by passing through the heat exchanger 62, and the refrigerant liquid discharged from the refrigerant pump 21 hardly rises in temperature in the evaporator 1 as it is. After being sprayed, it becomes possible to maintain the cooling efficiency in the evaporator 1.

【0011】また、請求項3の発明によれば、不凝縮ガ
スと共に流入した水蒸気は不凝縮ガスタンク50を貫通
し低温の冷媒液が流れる熱交換器63によって冷却され
凝縮し、パラジウムセル51の表面即ち水素透過面への
水蒸気の付着を抑えパラジウムセル51の水素排出能力
を維持することができ、この結果、機器内の不凝縮ガス
特に水素ガス濃度の上昇を回避して吸収冷温水機の運転
を安定することができ、且つ、熱交換器63には冷媒循
環配管20を流れる冷媒液の全量が流れるので、熱交換
器63での水蒸気凝縮量は増加し、不凝縮ガスタンク5
0内の水蒸気量を極僅かに抑えることができ、この結
果、パラジウムセル51の水素排出能力を一層向上する
ことが可能になる。
Further, according to the third aspect of the invention, the water vapor that has flown in together with the non-condensable gas is cooled and condensed by the heat exchanger 63 which passes through the non-condensed gas tank 50 and the low-temperature refrigerant liquid flows, and the surface of the palladium cell 51 is condensed. That is, it is possible to suppress the adhesion of water vapor to the hydrogen permeable surface and maintain the hydrogen discharge capacity of the palladium cell 51. As a result, the operation of the absorption chiller / heater is avoided while avoiding the increase of the non-condensable gas in the equipment, especially the hydrogen gas concentration. And the total amount of the refrigerant liquid flowing through the refrigerant circulation pipe 20 flows through the heat exchanger 63, so that the amount of condensed steam in the heat exchanger 63 increases and the noncondensable gas tank 5
The amount of water vapor in 0 can be suppressed to an extremely small amount, and as a result, the hydrogen discharge capacity of the palladium cell 51 can be further improved.

【0012】また、請求項4の発明によれば、不凝縮ガ
スタンク50に溜まった凝縮水を開閉弁58及び59の
開閉を切り換えて不凝縮ガスタンクの底部から外部へ排
出ことができるので、不凝縮ガスタンク50内に凝縮水
が多量に溜まり熱交換器54まで達することを回避で
き、熱交換器54による水蒸気の凝縮作用を継続させ、
長期にわたって不凝縮ガスタンク内の水蒸気量を僅かに
抑えることが可能になる。
According to the invention of claim 4, the condensed water accumulated in the non-condensable gas tank 50 can be discharged to the outside from the bottom of the non-condensed gas tank by switching the opening / closing valves 58 and 59. It is possible to prevent a large amount of condensed water from accumulating in the gas tank 50 and reaching the heat exchanger 54, and to continue the condensation action of water vapor by the heat exchanger 54.
The amount of water vapor in the non-condensable gas tank can be slightly suppressed for a long period of time.

【0013】さらに、請求項5の発明によれば、ガス供
給管56及び開閉弁58を設ける必要はなく、構成を簡
略化することができ、且つ外部と連通する配管などを設
ける必要が無く吸収冷温水機の機密を一層確実に保ち外
部からの不凝縮ガスの侵入を回避することが可能にな
る。
Further, according to the invention of claim 5, there is no need to provide the gas supply pipe 56 and the opening / closing valve 58, the structure can be simplified, and there is no need to provide a pipe or the like for communicating with the outside. It becomes possible to more reliably keep the water-cooling machine confidential and to prevent the infiltration of non-condensable gas from the outside.

【0014】[0014]

【実施例】以下、本発明の請求項1に関する第1の実施
例を図面に基づいて詳細に説明する。図1は冷媒に例え
ば水、吸収液(溶液)に臭化リチウム(LiBr)溶液
を用いた吸収式冷凍機である吸収冷温水機の概略構成図
であり、1は蒸発器、2は吸収器、3は蒸発器1及び吸
収器2を収納した蒸発器吸収器胴(以下、下胴とい
う)、4は例えばガスバーナ5を備え高温熱源によって
加熱される高温再生器、6は低温再生器、7は凝縮器、
8は低温再生器6及び凝縮器7を収納した低温再生器凝
縮器胴(以下、上胴という)、9は低温熱交換器、10
は高温熱交換器、11ないし15は吸収液配管、16は
吸収液配管11の途中に設けられた吸収液ポンプ、17
ないし19は冷媒配管、20は冷媒循環配管、21は冷
媒ポンプ、22はガスバ−ナ5に接続されたガス配管、
23は加熱量制御弁、24は途中に蒸発器熱交換器25
が設けられた冷水配管であり、それぞれは図1に示した
ように配管接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment according to claim 1 of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an absorption chiller-heater, which is an absorption refrigerator using water as a refrigerant and a lithium bromide (LiBr) solution as an absorption liquid (solution), where 1 is an evaporator and 2 is an absorber. Reference numeral 3 denotes an evaporator absorber body (hereinafter referred to as a lower body) accommodating the evaporator 1 and the absorber 2, 4 denotes a high temperature regenerator that is equipped with a gas burner 5 and is heated by a high temperature heat source, 6 denotes a low temperature regenerator, and 7 Is a condenser,
Reference numeral 8 is a low temperature regenerator condenser barrel (hereinafter referred to as the upper barrel) that houses the low temperature regenerator 6 and the condenser 7, 9 is a low temperature heat exchanger, 10
Is a high temperature heat exchanger, 11 to 15 are absorbing liquid pipes, 16 is an absorbing liquid pump provided in the middle of the absorbing liquid pipe 11, 17
Reference numeral 19 is a refrigerant pipe, 20 is a refrigerant circulation pipe, 21 is a refrigerant pump, 22 is a gas pipe connected to the gas burner 5,
23 is a heating amount control valve, 24 is an evaporator heat exchanger 25 on the way
Are provided for the cold water, and each is connected as shown in FIG.

【0015】また、26は冷却水配管であり、この冷却
水配管26の途中に吸収器熱交換器27及び凝縮器熱交
換器28が設けられている。29は蒸発器1の冷媒溜り
30と吸収器2の吸収液溜り31とを配管接続する冷媒
バイパス管、32は開閉弁、33は吸収液配管12と吸
収器2とを接続する吸収液バイパス管、34は開閉弁、
35は冷媒配管17と吸収器2とを接続する冷媒蒸気バ
イパス管、36は開閉弁であり、各開閉弁32、34、
36は冷水の供給時に閉じ、温水の供給時に開く。
Reference numeral 26 is a cooling water pipe, and an absorber heat exchanger 27 and a condenser heat exchanger 28 are provided in the middle of the cooling water pipe 26. Reference numeral 29 is a refrigerant bypass pipe that connects the refrigerant reservoir 30 of the evaporator 1 and the absorbent liquid reservoir 31 of the absorber 2 by piping, 32 is an on-off valve, and 33 is an absorption liquid bypass pipe that connects the absorbent liquid pipe 12 and the absorber 2. , 34 is an on-off valve,
Reference numeral 35 is a refrigerant vapor bypass pipe connecting the refrigerant pipe 17 and the absorber 2, 36 is an on-off valve, and each on-off valve 32, 34,
36 is closed when cold water is supplied and is opened when hot water is supplied.

【0016】37は吸収冷温水機から抽気した不凝縮ガ
スを分離して貯留する従来周知の不凝縮ガス抽気装置で
ある。38は不凝縮ガス抽気装置37の容器であり、こ
の容器38は上部に抽気室39を、中間部に貯室40
を、下部に分離室41を備えている。そして、抽気室3
9にエゼクター42が設けられ、抽気室39から下方へ
不凝縮ガス及び吸収液の流下管39Aが延びている。抽
気室39に吸収液配管11の途中吸収液ポンプ16の吐
出側配管から分岐した吸収液供給管42の吐出端が開口
している。43は吸収液供給管42の途中に設けられ、
吸収器熱交換器27へ送られる冷却水の一部が流れて吸
収液を冷却する吸収液冷却器である。
Reference numeral 37 is a conventionally known non-condensable gas extraction device for separating and storing the non-condensed gas extracted from the absorption chiller / heater. Reference numeral 38 is a container of the non-condensed gas extraction device 37. This container 38 has an extraction chamber 39 in the upper part and a storage chamber 40 in the middle part.
And a separation chamber 41 at the bottom. And the extraction chamber 3
The ejector 42 is provided in 9 and the downflow pipe 39A of the noncondensable gas and the absorbing liquid extends downward from the extraction chamber 39. A discharge end of an absorption liquid supply pipe 42 branched from the discharge side pipe of the absorption liquid pump 16 is opened in the extraction chamber 39 in the middle of the absorption liquid pipe 11. 43 is provided in the middle of the absorption liquid supply pipe 42,
This is an absorption liquid cooler in which part of the cooling water sent to the absorber heat exchanger 27 flows to cool the absorption liquid.

【0017】44は一端が吸収器2の気相部に開口し他
端が抽気室39に開口した第1の抽気管、45は一端が
凝縮器7の気相部に開口し他端が抽気室39に開口した
第2の抽気管である。46は不凝縮ガス排出管であり、
この不凝縮ガス排出管46は途中に開閉弁47を有し、
真空ポンプ(図示せず)に接続されている。48は連絡
管であり、この連絡管48の途中には開閉弁49が設け
られ一端は抽気室39に接続され他端は不凝縮ガスタン
ク50に接続されている。不凝縮ガスタンク50には例
えばパラジウムから成るパラジウムセル51が複数個接
続されている。また、52は凝縮器7の冷媒液溜り77
から蒸発器30に至る冷媒管であり、この冷媒管52の
途中には例えばオリフィスである冷媒蒸発機構53と設
けられ、この冷媒蒸発機構53より下流側の冷媒管52
の一部が不凝縮ガスタンク50内を通過し熱交換器54
として作用する。
Reference numeral 44 denotes a first extraction pipe having one end opened to the gas phase portion of the absorber 2 and the other end opened to the extraction chamber 39. 45 is one end opened to the gas phase portion of the condenser 7 and the other end is extracted. It is a second bleeder tube that opens to the chamber 39. 46 is a non-condensable gas discharge pipe,
This non-condensable gas discharge pipe 46 has an opening / closing valve 47 on the way,
It is connected to a vacuum pump (not shown). Reference numeral 48 is a connecting pipe, and an opening / closing valve 49 is provided in the middle of the connecting pipe 48, one end of which is connected to the extraction chamber 39 and the other end of which is connected to the non-condensing gas tank 50. A plurality of palladium cells 51 made of palladium, for example, are connected to the non-condensing gas tank 50. Further, 52 is a refrigerant liquid pool 77 of the condenser 7.
From the evaporator 30 to the evaporator 30, a refrigerant evaporating mechanism 53, which is, for example, an orifice, is provided in the middle of the refrigerant tube 52, and the refrigerant tube 52 on the downstream side of the refrigerant evaporating mechanism 53.
Part of the heat passes through the non-condensable gas tank 50 and passes through the heat exchanger 54.
Acts as.

【0018】さらに、不凝縮ガスタンク50には図1に
示したように凝縮水排出管55とガス供給管56とが接
続され、凝縮水排出管55とガス供給管56との途中に
は開閉弁57、58が設けられている。そして、吸収式
冷温水機の通常の運転時には開閉弁49は開いており、
開閉弁47、57及び58は閉じている。また、60は
分離室41から吸収器2の気相部へ至る吸収液戻し管で
ある。
Further, as shown in FIG. 1, a condensed water discharge pipe 55 and a gas supply pipe 56 are connected to the non-condensed gas tank 50, and an opening / closing valve is provided between the condensed water discharge pipe 55 and the gas supply pipe 56. 57 and 58 are provided. Further, the on-off valve 49 is open during the normal operation of the absorption chiller-heater,
The on-off valves 47, 57 and 58 are closed. Further, reference numeral 60 is an absorbent return pipe from the separation chamber 41 to the gas phase portion of the absorber 2.

【0019】上記吸収式冷凍機の冷水供給の運転時、従
来の吸収式冷凍機と同様に高温再生器4で蒸発した冷媒
は低温再生器6を経て凝縮器7へ流れ、凝縮器熱交換器
28を流れる冷却水と熱交換して凝縮液化した後冷媒配
管19を介して蒸発器1へ流れる。そして、冷媒が蒸発
器熱交換器24を流れる水と熱交換して蒸発し、気化熱
によって蒸発器熱交換器25を流れる水が冷却される。
そして、冷水が負荷に循環する。また、蒸発器1で蒸発
した冷媒は吸収器2で吸収液に吸収される。冷媒を吸収
して濃度が薄くなった吸収液が吸収液ポンプ16の運転
によって低温熱交換器9及び高温熱交換器10を経て高
温再生器4へ送られる。高温再生器4へ送られた吸収液
はバ−ナ5によって加熱されて冷媒が蒸発し、中濃度の
吸収液が高温熱交換器10を経て低温再生器6は流れ
る。低温再生器6で吸収液は高温再生器10から冷媒配
管17を流れてきた冷媒蒸気によって加熱され、さらに
冷媒蒸気が分離され濃度が高くなる。高濃度になった吸
収液は低温熱交換器9を経て温度低下して吸収器2へ送
られ、散布される。
During the cold water supply operation of the absorption refrigerating machine, the refrigerant evaporated in the high temperature regenerator 4 flows to the condenser 7 via the low temperature regenerator 6 as in the conventional absorption refrigerating machine, and the condenser heat exchanger. After heat exchange with the cooling water flowing through 28 to condense and liquefy, it flows to the evaporator 1 through the refrigerant pipe 19. The refrigerant exchanges heat with the water flowing through the evaporator heat exchanger 24 to evaporate, and the water flowing through the evaporator heat exchanger 25 is cooled by the heat of vaporization.
Then, cold water circulates through the load. Further, the refrigerant evaporated in the evaporator 1 is absorbed by the absorbing liquid in the absorber 2. The absorption liquid, which has absorbed the refrigerant and becomes thin in concentration, is sent to the high temperature regenerator 4 through the low temperature heat exchanger 9 and the high temperature heat exchanger 10 by the operation of the absorption liquid pump 16. The absorbing liquid sent to the high temperature regenerator 4 is heated by the burner 5 to evaporate the refrigerant, and the medium concentration absorbing liquid passes through the high temperature heat exchanger 10 and flows to the low temperature regenerator 6. In the low temperature regenerator 6, the absorption liquid is heated by the refrigerant vapor flowing from the high temperature regenerator 10 through the refrigerant pipe 17, and the refrigerant vapor is further separated to have a high concentration. The absorption liquid having a high concentration is sent to the absorber 2 after being lowered in temperature through the low temperature heat exchanger 9 and is sprayed.

【0020】以上のように、吸収式冷凍機が運転されて
いるときの不凝縮ガスの排出運転について説明する。吸
収液ポンプ16から吐出された吸収液の一部は吸収液配
管42へ流入し、途中を吸収液冷却器43で温度低下し
て抽気室39へ送られ、エゼクタ42に吐出される。抽
気室39では吐出された吸収液によるエゼクタ作用によ
り第1の抽気管44及び第2の抽気管45を介して吸収
器2及び凝縮器7の水素ガス及びその他の酸素などの不
凝縮ガスあるいは水蒸気が抽気される。抽気された不凝
縮ガスなどは流下管39Aを吸収液と共に流下し、分離
室41にて吸収液と分離した不凝縮ガスは貯室40に溜
まる。
The discharge operation of the non-condensable gas when the absorption refrigerator is operated as described above will be described. Part of the absorbing liquid discharged from the absorbing liquid pump 16 flows into the absorbing liquid pipe 42, the temperature of the absorbing liquid cools in the absorbing liquid cooler 43, is sent to the extraction chamber 39, and is discharged to the ejector 42. In the bleeding chamber 39, hydrogen gas and other non-condensed gas such as oxygen or water vapor in the absorber 2 and the condenser 7 are passed through the first bleeder pipe 44 and the second bleeder pipe 45 by the ejector action of the discharged absorbing liquid. Is extracted. The extracted non-condensable gas flows down the downflow pipe 39A together with the absorbing liquid, and the non-condensing gas separated from the absorbing liquid in the separation chamber 41 is stored in the storage chamber 40.

【0021】貯室40に溜まった不凝縮ガスあるいは水
蒸気は連絡管48を経て不凝縮ガスタンク50へ流れ、
不凝縮ガスのうち水素ガスはパラジウムセル51から外
部へ放出される。また、凝縮器7から冷媒管52に流入
した液冷媒は冷媒蒸発機構53にて蒸発し熱交換器54
へ流れる。このため、不凝縮ガスタンク50に流入した
水蒸気は熱交換器54にて冷却されて凝縮する。
The non-condensable gas or water vapor stored in the storage chamber 40 flows to the non-condensable gas tank 50 through the connecting pipe 48,
Hydrogen gas of the non-condensed gas is released from the palladium cell 51 to the outside. Further, the liquid refrigerant flowing from the condenser 7 into the refrigerant pipe 52 is evaporated by the refrigerant evaporation mechanism 53 and the heat exchanger 54.
Flows to. Therefore, the steam that has flowed into the non-condensable gas tank 50 is cooled and condensed by the heat exchanger 54.

【0022】以上のように不凝縮ガスタンク50に流入
した水蒸気が凝縮し、吸収式冷温水機の運転及び不凝縮
ガス抽気装置37の運転に伴い次第に不凝縮ガスタンク
50内の凝縮水の量が増加する。このため、所定期間経
過時にあるいは吸収冷温水機の定期点検時に吸収冷温水
機の運転管理者が開閉弁49を閉じ、開閉弁58を開き
不凝縮ガスタンク50にガス供給管56から例えば窒素
ガスを送る。その後に開閉弁58を閉じ開閉弁57を開
くことによって不凝縮ガスタンク50の溜まっていた凝
縮水が凝縮水排出管55を介して外部へ排出される。
As described above, the water vapor flowing into the non-condensable gas tank 50 is condensed, and the amount of condensed water in the non-condensable gas tank 50 is gradually increased with the operation of the absorption chiller-heater and the operation of the non-condensable gas extraction device 37. To do. For this reason, the operation manager of the absorption chiller-heater closes the on-off valve 49 and opens the on-off valve 58 when a predetermined period of time has passed or during the periodic inspection of the absorption chiller-heater, and opens, for example, nitrogen gas from the gas supply pipe 56 into the non-condensing gas tank 50. send. Then, by closing the on-off valve 58 and opening the on-off valve 57, the condensed water stored in the non-condensable gas tank 50 is discharged to the outside through the condensed water discharge pipe 55.

【0023】凝縮水の排出後、開閉弁57を閉じ開閉弁
47を閉じた状態で下流の真空ポンプを所定時間運転す
る。その後、開閉弁47及び開閉弁49を開くことによ
って不凝縮ガスタンク50及び連絡管48内の窒素ガス
その他のガスを連絡管48、貯室40及び不凝縮ガス排
出管46を介して排出する。そして、開閉弁47を閉じ
たることによって再び不凝縮ガスが貯室40から不凝縮
ガスタンク50へ流入し上記と同様に水素ガスが排出さ
れると共に水蒸気は凝縮して不凝縮ガスタンク50に溜
まる。また、開閉弁47を閉じた後所定時間真空ポンプ
は運転を継続される。
After the condensed water is discharged, the downstream vacuum pump is operated for a predetermined time with the opening / closing valve 57 closed and the opening / closing valve 47 closed. Then, the on-off valve 47 and the on-off valve 49 are opened to discharge the nitrogen gas and other gases in the non-condensing gas tank 50 and the connecting pipe 48 through the connecting pipe 48, the storage chamber 40 and the non-condensing gas discharge pipe 46. Then, by closing the opening / closing valve 47, the noncondensable gas again flows into the noncondensable gas tank 50 from the storage chamber 40, the hydrogen gas is discharged in the same manner as described above, and the water vapor is condensed and accumulated in the noncondensable gas tank 50. In addition, the vacuum pump continues to operate for a predetermined time after closing the opening / closing valve 47.

【0024】上記実施例によれば、不凝縮ガスと共に流
入した水蒸気は不凝縮ガスタンク50内に設けられた熱
交換器54によって冷却され凝縮し、パラジウムセル5
1の表面即ち水素透過面への水蒸気の付着を抑えパラジ
ウムセル51の水素排出能力を維持することができ、こ
の結果、機器内の不凝縮ガス特に水素ガス濃度の上昇を
回避して吸収冷温水機の運転を安定することができる。
According to the above-described embodiment, the water vapor flowing in together with the noncondensable gas is cooled and condensed by the heat exchanger 54 provided in the noncondensable gas tank 50, and the palladium cell 5
It is possible to suppress the adhesion of water vapor to the surface of No. 1 or the hydrogen permeation surface and maintain the hydrogen discharge capacity of the palladium cell 51. As a result, the non-condensable gas in the equipment, especially the hydrogen gas concentration is prevented from increasing, and the absorption cold / hot water is absorbed. The operation of the machine can be stabilized.

【0025】また、上記実施例おいて、不凝縮ガスタン
ク50に溜まった凝縮水を開閉弁49、58及び59の
開閉を切り換えて不凝縮ガスタンクの底部から外部へ排
出ことができるので、不凝縮ガスタンク50内に凝縮水
が多量に溜まり熱交換器54まで達することを回避で
き、この結果、熱交換器54による水蒸気の凝縮作用を
継続させ、長期にわたって不凝縮ガスタンク内の水蒸気
量を僅かに抑えることができる。
In the above embodiment, the condensed water accumulated in the non-condensable gas tank 50 can be discharged to the outside from the bottom of the non-condensable gas tank by switching the opening / closing valves 49, 58 and 59. It is possible to prevent a large amount of condensed water from accumulating in 50 and reaching the heat exchanger 54. As a result, the condensation action of water vapor by the heat exchanger 54 is continued, and the amount of water vapor in the non-condensed gas tank is slightly suppressed for a long period of time. You can

【0026】なお、例えば凝縮水排出管55を一点鎖線
にて示したように不凝縮ガス抽気装置37の貯室40に
配管接続する。そして、所定期間毎あるいは定期点検時
に開閉弁57を開き、溜まっていた凝縮水を不凝縮ガス
抽気装置37に戻すようにしても良い。この場合には、
上記開閉弁49、ガス供給管56及び開閉弁58を設け
る必要はなく、構成を簡略化することができ、且つ外部
と連通する配管などを設ける必要が無く吸収冷温水機の
機密を一層確実に保つことができるまた、熱交換器54
を不凝縮ガスタンク50の外壁に沿って配管し、熱交換
器54からの熱伝導によって不凝縮ガスタンク50の壁
面を冷却し、内壁に水蒸気を凝縮させるようにしても良
い。
Note that, for example, the condensed water discharge pipe 55 is connected to the storage chamber 40 of the noncondensable gas extraction device 37 by piping as shown by the alternate long and short dash line. Then, the open / close valve 57 may be opened every predetermined period or at the time of periodical inspection to return the condensed water that has accumulated to the non-condensed gas extraction device 37. In this case,
It is not necessary to provide the opening / closing valve 49, the gas supply pipe 56, and the opening / closing valve 58, the configuration can be simplified, and the confidentiality of the absorption chiller-heater can be further ensured without the need for providing piping or the like communicating with the outside. Can also keep heat exchanger 54
May be installed along the outer wall of the non-condensable gas tank 50, and the wall surface of the non-condensable gas tank 50 may be cooled by heat conduction from the heat exchanger 54 so that the water vapor is condensed on the inner wall.

【0027】以下、本発明の請求項2に関する第2の実
施例について図2に基づいて説明する。なお、特に説明
がない構成については上記第1の実施例と同様のものと
して詳細な説明は省略する。61は冷媒循環配管20の
冷媒ポンプ21の吐出側配管の途中から分岐して凝縮器
7の気相部に至る冷媒配管であり、この冷媒配管61の
途中には不凝縮ガスタンク50内に配設された熱交換器
62が設けられている。
A second embodiment according to claim 2 of the present invention will be described below with reference to FIG. It should be noted that the configuration, which is not particularly described, is similar to that of the first embodiment, and detailed description thereof will be omitted. Reference numeral 61 denotes a refrigerant pipe that branches from the middle of the discharge side pipe of the refrigerant pump 21 of the refrigerant circulation pipe 20 to reach the vapor phase portion of the condenser 7, and is arranged in the non-condensable gas tank 50 in the middle of the refrigerant pipe 61. A heat exchanger 62 is provided.

【0028】吸収式冷温水機の運転時、上記第1の実施
例と同様に不凝縮ガスタンク50に不凝縮ガスが流入
し、水素ガスがパラジウムセル51を介して外部へ排出
される。また、冷媒ポンプ21から吐出された冷媒液の
一部が冷媒配管61に流入し、例えば7〜8℃の冷媒液
が熱交換器62に流れる。不凝縮ガスタンク50に不凝
縮ガスと共に流入した水蒸気は冷媒液が流れる熱交換器
62にて熱交換して冷却され、凝縮して不凝縮ガスタン
ク50の底に次第に溜まる。また、熱交換器62を通過
した冷媒液は凝縮器7へ流入し、冷媒溜り77の冷媒液
と共に蒸発器1へ流れる。
When the absorption chiller-heater is operating, the non-condensable gas flows into the non-condensable gas tank 50 and the hydrogen gas is discharged to the outside through the palladium cell 51, as in the first embodiment. In addition, a part of the refrigerant liquid discharged from the refrigerant pump 21 flows into the refrigerant pipe 61, and the refrigerant liquid of, for example, 7 to 8 ° C. flows to the heat exchanger 62. The steam that has flown into the non-condensable gas tank 50 together with the non-condensable gas is heat-exchanged and cooled in the heat exchanger 62 through which the refrigerant liquid flows, is condensed, and gradually accumulates at the bottom of the non-condensable gas tank 50. The refrigerant liquid that has passed through the heat exchanger 62 flows into the condenser 7 and flows into the evaporator 1 together with the refrigerant liquid in the refrigerant reservoir 77.

【0029】以上のように不凝縮ガスタンク50に流入
した水蒸気が凝縮し、吸収式冷温水機の運転及び不凝縮
ガス抽気装置37の運転に伴い次第に不凝縮ガスタンク
50内の凝縮水の量が増加する。このため、所定期間経
過時にあるいは吸収冷温水機の定期点検時に吸収冷温水
機の運転管理者が開閉弁57を開き不凝縮ガスタンク5
0に溜まっていた凝縮水が凝縮水排出管55を介して不
凝縮ガス抽気装置37の貯室40へ流れる。凝縮水の排
出後は、開閉弁57を閉じることによって再び不凝縮ガ
スが貯室40から連絡管48を通り不凝縮ガスタンク5
0へ流入し上記と同様に水素ガスが排出されると共に水
蒸気は凝縮して不凝縮ガスタンク50に溜まる。ここ
で、上記請求項1に関する実施例と同様に不凝縮ガスタ
ンク50に開閉弁58を有したガス供給管56を接続
し、連絡管48に開閉弁49を設け、凝縮水排出管55
を外部に開口して凝縮水を外部へ排出するようにしても
良い。
As described above, the steam flowing into the non-condensable gas tank 50 is condensed, and the amount of condensed water in the non-condensable gas tank 50 gradually increases as the absorption chiller-heater and the non-condensable gas extraction device 37 operate. To do. For this reason, the operation manager of the absorption chiller-heater opens the on-off valve 57 after a predetermined period has elapsed or during the periodic inspection of the absorption chiller-heater, and the non-condensing gas tank 5 is opened.
The condensed water accumulated in 0 flows into the storage chamber 40 of the non-condensed gas extraction device 37 via the condensed water discharge pipe 55. After the condensed water is discharged, the non-condensable gas is again passed from the storage chamber 40 through the communication pipe 48 by closing the opening / closing valve 57.
In the same manner as described above, hydrogen gas is discharged and water vapor is condensed and accumulated in the non-condensed gas tank 50. Here, similarly to the embodiment of claim 1, the non-condensable gas tank 50 is connected to the gas supply pipe 56 having the opening / closing valve 58, the communication pipe 48 is provided with the opening / closing valve 49, and the condensed water discharge pipe 55.
May be opened to the outside to discharge the condensed water to the outside.

【0030】また、熱交換器62を不凝縮ガスタンク5
0の外壁に沿って配管し、熱交換器62からの熱伝導に
よって不凝縮ガスタンク50の壁面を冷却し、内壁に水
蒸気を凝縮させるようにしても良い。上記実施例によれ
ば、不凝縮ガスと共に流入した水蒸気は不凝縮ガスタン
ク50に設けられ低温の冷媒液が流れる熱交換器62に
よって冷却され凝縮し、パラジウムセル51の表面即ち
水素透過面への水蒸気の付着を抑えパラジウムセル51
の水素排出能力を維持することができ、この結果、機器
内の不凝縮ガス特に水素ガス濃度の上昇を回避して吸収
冷温水機の運転を安定することができる。
The heat exchanger 62 is connected to the non-condensing gas tank 5
0 may be provided along the outer wall, and the wall surface of the noncondensable gas tank 50 may be cooled by heat conduction from the heat exchanger 62 so that water vapor is condensed on the inner wall. According to the above-described embodiment, the water vapor that has flown in together with the non-condensable gas is cooled and condensed by the heat exchanger 62 provided in the non-condensable gas tank 50 through which the low-temperature refrigerant liquid flows, and the water vapor to the surface of the palladium cell 51, that is, the hydrogen permeable surface. Suppresses adhesion of palladium 51
It is possible to maintain the hydrogen discharge capacity of the above, and as a result, it is possible to avoid an increase in the concentration of the non-condensable gas in the equipment, especially the hydrogen gas, and to stabilize the operation of the absorption chiller-heater.

【0031】また、熱交換器62で温度上昇した冷媒液
は凝縮器7へ戻され、冷媒液溜り77に溜まっている冷
媒液と共に蒸発器1へ流れるため、冷媒ポンプ21から
吐出した冷媒液には熱交換器62を通過して温度上昇し
た冷媒液が混入することはない。この結果、冷媒ポンプ
21から吐出した冷媒液はほとんど温度上昇することな
くそのまま蒸発器1で散布され、蒸発器1で冷却効率を
維持することができる。
Further, the refrigerant liquid whose temperature has risen in the heat exchanger 62 is returned to the condenser 7 and flows into the evaporator 1 together with the refrigerant liquid accumulated in the refrigerant liquid pool 77, so that the refrigerant liquid discharged from the refrigerant pump 21 becomes Does not mix with the refrigerant liquid that has passed through the heat exchanger 62 and has increased in temperature. As a result, the refrigerant liquid discharged from the refrigerant pump 21 is sprayed as it is in the evaporator 1 with almost no temperature rise, and the cooling efficiency can be maintained in the evaporator 1.

【0032】以下本発明の請求項3に関する第3の実施
例について図3に基づいて説明する。なお、特に説明が
ない構成については上記第1及び第2の実施例と同様の
ものとして詳細な説明は省略する。図3に破線にて示し
たように冷媒循環配管20の途中は不凝縮ガスタンク5
0のほぼ中央を上下方向に貫通して熱交換器63が形成
されている。
A third embodiment relating to claim 3 of the present invention will be described below with reference to FIG. It should be noted that the configurations that are not particularly described are similar to those of the first and second embodiments, and detailed description thereof will be omitted. As shown by the broken line in FIG. 3, the non-condensable gas tank 5 is provided in the middle of the refrigerant circulation pipe 20.
A heat exchanger 63 is formed by vertically penetrating substantially the center of 0.

【0033】吸収式冷温水機の運転時、上記第1及び第
2の実施例と同様に不凝縮ガスタンク50に不凝縮ガス
が流入し、水素ガスがパラジウムセル51を介して外部
へ排出される。また、冷媒ポンプ21から吐出された例
えば7〜8℃の冷媒液が熱交換器63に流れる。そし
て、不凝縮ガスタンク50に不凝縮ガスと共に流入した
水蒸気は冷媒液が流れる熱交換器63にて熱交換して冷
却され、熱交換器63の外壁に凝縮して下方へ流れて不
凝縮ガスタンク50の底に次第に溜まる。また、熱交換
器63を通過した冷媒液は蒸発器1で散布される。
During operation of the absorption chiller-heater, the non-condensable gas flows into the non-condensable gas tank 50 and the hydrogen gas is discharged to the outside through the palladium cell 51, as in the first and second embodiments. . Further, the refrigerant liquid of, for example, 7 to 8 ° C. discharged from the refrigerant pump 21 flows into the heat exchanger 63. Then, the steam that has flown into the non-condensable gas tank 50 together with the non-condensable gas is heat-exchanged and cooled in the heat exchanger 63 through which the refrigerant liquid flows, is condensed on the outer wall of the heat exchanger 63 and flows downward to flow in the non-condensed gas tank 50. Gradually accumulates at the bottom of. Further, the refrigerant liquid that has passed through the heat exchanger 63 is sprayed by the evaporator 1.

【0034】以上のように不凝縮ガスタンク50に流入
した水蒸気が熱交換器63で凝縮し、吸収式冷温水機の
運転及び不凝縮ガス抽気装置37の運転に伴い次第に不
凝縮ガスタンク50内の凝縮水の量が増加する。このた
め、所定期間経過時にあるいは吸収冷温水機の定期点検
時に吸収冷温水機の運転管理者が開閉弁57を開き不凝
縮ガスタンク50に溜まっていた凝縮水が凝縮水排出管
55を介して不凝縮ガス抽気装置37の貯室40へ流れ
る。凝縮水の排出後は、開閉弁57を閉じることによっ
て再び不凝縮ガスが貯室40から連絡管48を通り不凝
縮ガスタンク50へ流入し上記と同様に水素ガスが排出
されると共に水蒸気は凝縮して不凝縮ガスタンク50に
溜まる。ここで、上記請求項1及び2に関する実施例と
同様に不凝縮ガスタンク50に開閉弁58を有したガス
供給管56を接続し、連絡管48に開閉弁49を設け、
凝縮水排出管55を外部に開口して凝縮水を外部へ排出
するようにしても良い。
As described above, the water vapor flowing into the non-condensable gas tank 50 is condensed in the heat exchanger 63 and gradually condensed in the non-condensable gas tank 50 with the operation of the absorption chiller-heater and the operation of the non-condensable gas extraction device 37. The amount of water increases. For this reason, when a predetermined period of time elapses or during periodical inspection of the absorption chiller-heater, the operation manager of the absorption chiller-heater opens the on-off valve 57 to prevent the condensed water accumulated in the non-condensed gas tank 50 from passing through the condensed water discharge pipe 55. It flows into the storage chamber 40 of the condensed gas extraction device 37. After the condensed water is discharged, the on-off valve 57 is closed so that the non-condensed gas flows into the non-condensed gas tank 50 again from the storage chamber 40 through the communication pipe 48, and the hydrogen gas is discharged and the water vapor is condensed as described above. Accumulate in the non-condensing gas tank 50. Here, the gas supply pipe 56 having the open / close valve 58 is connected to the non-condensable gas tank 50 and the open / close valve 49 is provided in the communication pipe 48, as in the embodiments of claims 1 and 2.
The condensed water discharge pipe 55 may be opened to the outside to discharge the condensed water to the outside.

【0035】上記実施例によれば、不凝縮ガスと共に流
入した水蒸気は不凝縮ガスタンク50を貫通し低温の冷
媒液が流れる熱交換器63によって冷却され凝縮し、パ
ラジウムセル51の表面即ち水素透過面への水蒸気の付
着を抑えパラジウムセル51の水素排出能力を維持する
ことができ、この結果、機器内の不凝縮ガス特に水素ガ
ス濃度の上昇を回避して吸収冷温水機の運転を安定する
ことができる。
According to the above-described embodiment, the water vapor flowing in together with the non-condensable gas is cooled and condensed by the heat exchanger 63 which passes through the non-condensed gas tank 50 and the low-temperature refrigerant liquid flows, and the surface of the palladium cell 51, that is, the hydrogen permeable surface. It is possible to suppress the adhesion of water vapor to the palladium cell 51 and maintain the hydrogen discharge capacity of the palladium cell 51, and as a result, to prevent the non-condensable gas in the equipment, especially the hydrogen gas concentration from rising, and stabilize the operation of the absorption chiller-heater. You can

【0036】また、熱交換器63には冷媒循環配管20
を流れる冷媒液の全量が流れるので、熱交換器63での
水蒸気凝縮量は増加し、不凝縮ガスタンク50内の水蒸
気量を極僅かに抑えることができ、この結果、パラジウ
ムセル51の水素排出能力を一層向上することができ
る。
The heat exchanger 63 has a refrigerant circulation pipe 20.
Since the entire amount of the refrigerant liquid flowing through the tank flows, the amount of water vapor condensed in the heat exchanger 63 increases, and the amount of water vapor in the non-condensed gas tank 50 can be suppressed to an extremely small amount. As a result, the hydrogen discharge capacity of the palladium cell 51 can be reduced. Can be further improved.

【0037】[0037]

【発明の効果】本発明は上記実施例のように構成された
不凝縮ガス排出装置であり、請求項1の発明によれば、
凝縮器から蒸発器へ至り凝縮器の冷媒液が流入する冷媒
配管の途中に不凝縮ガスタンクを冷却する熱交換器が設
けられ、この熱交換器より上流に冷媒蒸発機構が設けら
れているので、不凝縮ガスと共に不凝縮ガスタンクに流
れた水蒸気は不凝縮ガスタンクに設けられ低温の冷媒蒸
気が流れる熱交換器によって冷却され凝縮し、水素放出
器の表面即ち水素透過面への水蒸気の付着を抑え水素排
出能力を維持することができ、この結果、機器内の不凝
縮ガス特に水素ガス濃度の上昇を回避して吸収式冷凍機
の運転を安定することができる。
The present invention is a non-condensable gas discharge device configured as in the above embodiment, and according to the invention of claim 1,
A heat exchanger for cooling the non-condensable gas tank is provided in the middle of the refrigerant pipe where the refrigerant liquid of the condenser flows from the condenser to the condenser, and since the refrigerant evaporation mechanism is provided upstream of this heat exchanger, The water vapor that has flowed into the non-condensable gas tank together with the non-condensable gas is cooled and condensed by the heat exchanger provided in the non-condensable gas tank and through which the low-temperature refrigerant vapor flows. The discharge capacity can be maintained, and as a result, the operation of the absorption chiller can be stabilized by avoiding an increase in the concentration of non-condensable gas, especially hydrogen gas, in the equipment.

【0038】また、請求項2に記載された発明によれ
ば、 蒸発器下部の冷媒液溜と蒸発器上部の冷媒液散布
装置とを配管接続した冷媒液循環配管の途中の冷媒液循
環ポンプの出口側の冷媒液循環配管から分岐して凝縮器
へ至る冷媒配管の途中に不凝縮ガスタンクを冷却する熱
交換器が設けられているので、不凝縮ガスと共に流入し
た水蒸気は不凝縮ガスタンクに設けられた低温の冷媒液
が流れる熱交換器によって冷却され凝縮し、水素放出器
の表面即ち水素透過面への水蒸気の付着を抑え水素放出
器の水素排出能力を維持することができ、この結果、機
器内の不凝縮ガス特に水素ガス濃度の上昇を回避して吸
収冷温水機の運転を安定することができる。
According to the second aspect of the present invention, the refrigerant liquid circulation pump in the middle of the refrigerant liquid circulation pipe connecting the refrigerant liquid reservoir in the lower portion of the evaporator and the refrigerant liquid distribution device in the upper portion of the evaporator is connected. Since a heat exchanger that cools the noncondensable gas tank is provided in the middle of the refrigerant pipe that branches from the refrigerant liquid circulation pipe on the outlet side and reaches the condenser, the steam that flows in together with the noncondensable gas is provided in the noncondensable gas tank. The low-temperature refrigerant liquid is cooled and condensed by the heat exchanger, and the adhesion of water vapor to the surface of the hydrogen discharger, that is, the hydrogen permeation surface can be suppressed to maintain the hydrogen discharge capability of the hydrogen discharger. The operation of the absorption chiller-heater can be stabilized by avoiding an increase in the concentration of the non-condensable gas, especially the hydrogen gas.

【0039】また、熱交換器で温度上昇した冷媒液は凝
縮器へ戻され、凝縮器に溜まっている冷媒液と共に蒸発
器へ流れるため、蒸発器で散布される冷媒液の温度上昇
を回避でき、この結果、蒸発器で冷却効率を維持するこ
とができる。さらに、請求項3に記載された発明によれ
ば、蒸発器下部の冷媒液溜と蒸発器上部の冷媒液散布装
置とを配管接続し途中に冷媒液循環ポンプを有した冷媒
液循環配管の冷媒液循環ポンプ出口側配管は不凝縮ガス
タンクを貫通しているので、不凝縮ガスと共に不凝縮ガ
スタンクに流れた水蒸気は不凝縮ガスタンクを貫通し低
温の冷媒液が流れる冷媒液循環配管によって冷却され凝
縮し、水素放出器の表面即ち水素透過面への水蒸気の付
着を抑え水素放出器の水素排出能力を維持することがで
き、この結果、機器内の不凝縮ガス特に水素ガス濃度の
上昇を回避して吸収冷温水機の運転を安定することがで
きる。
Further, since the refrigerant liquid whose temperature has risen in the heat exchanger is returned to the condenser and flows to the evaporator together with the refrigerant liquid accumulated in the condenser, the temperature rise of the refrigerant liquid sprayed in the evaporator can be avoided. As a result, the cooling efficiency can be maintained in the evaporator. Further, according to the invention described in claim 3, the refrigerant in the refrigerant liquid circulation pipe having a refrigerant liquid circulation pump in the lower part of the evaporator and the refrigerant liquid distribution device in the upper part of the evaporator connected by piping. Since the liquid circulation pump outlet side pipe penetrates the non-condensable gas tank, the water vapor flowing into the non-condensable gas tank together with the non-condensable gas is cooled and condensed by the refrigerant liquid circulation pipe that penetrates the non-condensable gas tank and the low-temperature refrigerant liquid flows. , It is possible to suppress the adhesion of water vapor to the surface of the hydrogen discharger, that is, the hydrogen permeation surface, and to maintain the hydrogen discharge capacity of the hydrogen discharger. The operation of the absorption chiller-heater can be stabilized.

【0040】また、不凝縮ガスタンクを貫通した冷媒循
環配管20には循環する冷媒液の全量が流れるので、不
凝縮ガスタンクでの水蒸気凝縮量は増加し、不凝縮ガス
タンク内の水蒸気量を極僅かに抑えることができ、この
結果、水素放出器の水素排出能力を一層向上することが
できる。また、請求項4に記載された発明によれば、凝
縮器から流出した冷媒液が蒸発した後或いは蒸発器から
流出した冷媒液が流れ不凝縮ガスタンクを冷却する熱交
換器と、不凝縮ガスタンクに配管接続され途中に開閉弁
を有したガス注入配管と、不凝縮ガスタンクの底部に配
管接続され途中に開閉弁を有した凝縮水排出配管とを備
えているので、不凝縮ガスタンクに溜まった凝縮水を開
閉弁の開閉を切り換えて不凝縮ガスタンクの底部から外
部へ排出ことができ、不凝縮ガスタンク内に凝縮水が多
量に溜まり熱交換器まで達することを回避でき、この結
果、熱交換器による水蒸気の凝縮作用を継続させ、長期
にわたって不凝縮ガスタンク内の水蒸気量を僅かに抑え
ることができる。
Further, since the entire amount of the circulating refrigerant liquid flows through the refrigerant circulation pipe 20 penetrating the noncondensable gas tank, the amount of condensed water vapor in the noncondensable gas tank increases, and the amount of water vapor in the noncondensable gas tank becomes extremely small. As a result, it is possible to further improve the hydrogen discharge capacity of the hydrogen discharger. According to the invention described in claim 4, the heat exchanger for cooling the non-condensable gas tank after the refrigerant liquid flowing out of the condenser is evaporated or the refrigerant liquid flowing out of the evaporator flows into the non-condensable gas tank. Condensed water collected in the non-condensable gas tank because it is equipped with a gas injection pipe that is connected to the pipe and has an on-off valve in the middle, and a condensed water discharge pipe that is connected to the bottom of the non-condensable gas tank and has an on-off valve in the middle The on-off valve can be opened and closed to discharge from the bottom of the non-condensable gas tank to the outside, and a large amount of condensed water can be prevented from reaching the heat exchanger in the non-condensable gas tank. It is possible to keep the amount of water vapor in the non-condensed gas tank slightly suppressed over a long period of time by continuing the condensing action of.

【0041】また、請求項5に記載された発明によれ
ば、凝縮器から流出した冷媒液が蒸発した後或いは蒸発
器から流出した冷媒液が流れ不凝縮ガスタンクを冷却す
る熱交換器と、不凝縮ガスタンクの底部からガス抽気装
置に至り途中に開閉弁を有した凝縮水排出配管とを備え
ているので、開閉弁を有した複数の配管を接続する必要
はなく、構成を簡略化することができ、且つ外部と連通
する配管などを設ける必要が無いため、吸収式冷凍機の
機密を一層確実に保つことができ、不凝縮ガスによる運
転効率の低下を抑えることができる。
According to the invention described in claim 5, after the refrigerant liquid flowing out of the condenser is evaporated or the refrigerant liquid flowing out of the evaporator flows, a heat exchanger for cooling the non-condensed gas tank is provided. Since it has a condensed water discharge pipe having an opening / closing valve on the way from the bottom of the condensed gas tank to the gas extraction device, it is not necessary to connect a plurality of pipes having an opening / closing valve, and the configuration can be simplified. In addition, since it is not necessary to provide a pipe or the like that communicates with the outside, it is possible to more reliably keep the secret of the absorption refrigerator, and it is possible to suppress a decrease in operating efficiency due to non-condensable gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1、請求項4及び請求項5に関
する一実施例を示す吸収冷温水機の概略構成図である。
FIG. 1 is a schematic configuration diagram of an absorption chiller-heater showing one embodiment of claim 1, claim 4 and claim 5 of the present invention.

【図2】本発明の請求項2及び請求項5に関する一実施
例を示す吸収冷温水機の概略構成図である。
FIG. 2 is a schematic configuration diagram of an absorption chiller-heater showing one embodiment according to claims 2 and 5 of the present invention.

【図3】本発明の請求項3及び請求項5に関する一実施
例を示す吸収冷温水機の概略構成図である。
FIG. 3 is a schematic configuration diagram of an absorption chiller-heater showing one embodiment relating to claims 3 and 5 of the present invention.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 4 高温再生器 6 低温再生器 9 低温熱交換器 10 高温熱交換器 20 冷媒循環配管 21 冷媒ポンプ 37 不凝縮ガス抽気装置 48 連絡管 49 開閉弁 50 不凝縮ガスタンク 51 パラジウムセル 52 冷媒配管 55 凝縮水排出管 56 ガス供給管 57 開閉弁 58 開閉弁 61 冷媒配管 62 熱交換器 63 熱交換器 1 Evaporator 2 Absorber 4 High Temperature Regenerator 6 Low Temperature Regenerator 9 Low Temperature Heat Exchanger 10 High Temperature Heat Exchanger 20 Refrigerant Circulation Piping 21 Refrigerant Pump 37 Noncondensable Gas Extractor 48 Communication Pipe 49 Open / Close Valve 50 Noncondensable Gas Tank 51 Palladium Cell 52 Refrigerant pipe 55 Condensed water discharge pipe 56 Gas supply pipe 57 Open / close valve 58 Open / close valve 61 Refrigerant pipe 62 Heat exchanger 63 Heat exchanger

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吸収器、発生器、凝縮器及び蒸発器を配
管接続して吸収液及び冷媒の循環路を形成した吸収式冷
凍機の機内の吸収液を用いて機内の不凝縮ガスを抽気す
るガス抽気装置と、このガス抽気装置に連通し抽気した
不凝縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガ
スタンクに連通し不凝縮ガス中の水素ガスを透過させて
放出するパラジウム金属もしくはその合金製の水素放出
器とを備えた不凝縮ガス排出装置において、凝縮器から
蒸発器へ至り凝縮器の冷媒液が流入する冷媒配管を備
え、この冷媒配管の途中に不凝縮ガスタンクを冷却する
熱交換器が設けられ且つ熱交換器より上流に冷媒蒸発機
構が設けられたことを特徴とする不凝縮ガス排出装置。
1. An uncondensed gas in a machine is extracted by using an absorption solution in an absorption refrigerating machine in which an absorber, a generator, a condenser and an evaporator are connected by piping to form a circulation path for the absorption solution and a refrigerant. Gas extraction device, a non-condensable gas tank that communicates with this gas extraction device and stores the extracted non-condensed gas, and a palladium metal or its alloy that communicates with this non-condensed gas tank and allows hydrogen gas in the non-condensed gas to permeate and be released In a non-condensable gas discharge device equipped with a hydrogen discharger made of hydrogen, a refrigerant pipe from the condenser to the evaporator, through which the refrigerant liquid of the condenser flows, is provided, and heat exchange for cooling the non-condensable gas tank in the middle of this refrigerant pipe. A non-condensable gas discharge device, characterized in that a condenser is provided and a refrigerant evaporation mechanism is provided upstream of the heat exchanger.
【請求項2】 吸収器、発生器、凝縮器及び蒸発器を配
管接続して吸収液及び冷媒の循環路を形成した吸収式冷
凍機の機内の吸収液を用いて機内の不凝縮ガスを抽気す
るガス抽気装置と、このガス抽気装置に連通し抽気した
不凝縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガ
スタンクに連通し不凝縮ガス中の水素ガスを透過させて
放出するパラジウム金属もしくはその合金製の水素放出
器とを備えた不凝縮ガス排出装置において、蒸発器下部
の冷媒液溜と蒸発器上部の冷媒液散布装置とを配管接続
し途中に冷媒液循環ポンプを有した冷媒液循環配管と、
冷媒液循環ポンプの出口側の冷媒液循環配管から分岐し
て凝縮器へ至り途中に不凝縮ガスタンクを冷却する熱交
換器が設けられた冷媒配管とを備えたことを特徴とする
不凝縮ガス排出装置。
2. The non-condensable gas in the machine is extracted by using the absorption solution in the absorption refrigerating machine in which an absorber, a generator, a condenser and an evaporator are connected by piping to form a circulation path for the absorption solution and the refrigerant. Gas extraction device, a non-condensable gas tank that communicates with this gas extraction device and stores the extracted non-condensed gas, and a palladium metal or its alloy that communicates with this non-condensed gas tank and allows hydrogen gas in the non-condensed gas to permeate and be released In a non-condensable gas discharge device equipped with a hydrogen discharger made of hydrogen, a refrigerant liquid circulation pipe having a refrigerant liquid circulation pump in the middle of the refrigerant liquid reservoir in the lower part of the evaporator and a refrigerant liquid distribution device in the upper part of the evaporator. When,
Noncondensable gas discharge, characterized in that the refrigerant liquid circulation pipe on the outlet side of the refrigerant liquid circulation pump is branched from the refrigerant liquid circulation pipe to a condenser and a refrigerant pipe provided with a heat exchanger for cooling the noncondensable gas tank is provided on the way. apparatus.
【請求項3】 吸収器、発生器、凝縮器及び蒸発器を配
管接続して吸収液及び冷媒の循環路を形成した吸収式冷
凍機の機内の吸収液を用いて機内の不凝縮ガスを抽気す
るガス抽気装置と、このガス抽気装置に連通し抽気した
不凝縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガ
スタンクに連通し不凝縮ガス中の水素ガスを透過させて
放出するパラジウム金属もしくはその合金製の水素放出
器とを備えた不凝縮ガス排出装置において、蒸発器下部
の冷媒液溜と蒸発器上部の冷媒液散布装置とを配管接続
し途中に冷媒液循環ポンプを有した冷媒液循環配管を備
え、この冷媒液循環配管の冷媒液循環ポンプ出口側配管
は不凝縮ガスタンクを貫通したことを特徴とする不凝縮
ガス排出装置。
3. The non-condensable gas in the machine is extracted by using the absorption liquid in the absorption refrigerating machine in which the absorber, the generator, the condenser and the evaporator are connected by piping to form a circulation path for the absorption liquid and the refrigerant. Gas extraction device, a non-condensable gas tank that communicates with this gas extraction device and stores the extracted non-condensed gas, and a palladium metal or its alloy that communicates with this non-condensed gas tank and allows hydrogen gas in the non-condensed gas to permeate and be released In a non-condensable gas discharge device equipped with a hydrogen discharger made of hydrogen, a refrigerant liquid circulation pipe having a refrigerant liquid circulation pump in the middle of the refrigerant liquid reservoir in the lower part of the evaporator and a refrigerant liquid distribution device in the upper part of the evaporator. A non-condensable gas discharge device, characterized in that the refrigerant liquid circulation pump outlet side pipe of the refrigerant liquid circulation pipe penetrates the non-condensable gas tank.
【請求項4】 吸収器、発生器、凝縮器及び蒸発器を配
管接続して吸収液及び冷媒の循環路を形成した吸収式冷
凍機の機内の吸収液を用いて機内の不凝縮ガスを抽気す
るガス抽気装置と、このガス抽気装置に連通し抽気した
不凝縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガ
スタンクに連通し不凝縮ガス中の水素ガスを透過させて
放出するパラジウム金属もしくはその合金製の水素放出
器とを備えた不凝縮ガス排出装置において、凝縮器から
流出した冷媒液が蒸発した後或いは蒸発器から流出した
冷媒液が流れ不凝縮ガスタンクを冷却する熱交換器と、
貯室に配管接続され途中に開閉弁を有したガス注入配管
と、不凝縮ガスタンクの底部に配管接続され途中に開閉
弁を有した凝縮水排出配管とを備えたことを特徴とする
不凝縮ガス排出装置。
4. The non-condensable gas in the machine is extracted by using the absorbent in the machine of the absorption type refrigerator in which the absorber, the generator, the condenser and the evaporator are connected by piping to form a circulation path for the absorbent and the refrigerant. Gas extraction device, a non-condensable gas tank that communicates with this gas extraction device and stores the extracted non-condensed gas, and a palladium metal or its alloy that communicates with this non-condensed gas tank and allows hydrogen gas in the non-condensed gas to permeate and be released In a non-condensable gas discharge device having a hydrogen discharger made of, a heat exchanger for cooling the non-condensable gas tank after the refrigerant liquid flowing out from the condenser is evaporated or the refrigerant liquid flowing out from the evaporator flows,
A non-condensable gas characterized by comprising a gas injection pipe connected to the storage chamber with a switching valve in the middle, and a condensed water discharge pipe connected to the bottom of the non-condensing gas tank with a switching valve in the middle. Ejection device.
【請求項5】 吸収器、発生器、凝縮器及び蒸発器を配
管接続して吸収液及び冷媒の循環路を形成した吸収式冷
凍機の機内の吸収液を用いて機内の不凝縮ガスを抽気す
るガス抽気装置と、このガス抽気装置に連通し抽気した
不凝縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガ
スタンクに連通し不凝縮ガス中の水素ガスを透過させて
放出するパラジウム金属もしくはその合金製の水素放出
器とを備えた不凝縮ガス排出装置において、凝縮器から
流出した冷媒液が蒸発した後或いは蒸発器から流出した
冷媒液が流れ不凝縮ガスタンクを冷却する熱交換器と、
不凝縮ガスタンクの底部からガス抽気装置に至り途中に
開閉弁を有した凝縮水排出配管とを備えたことを特徴と
する不凝縮ガス排出装置。
5. The non-condensable gas in the machine is extracted by using the absorption solution in the absorption refrigerating machine in which an absorber, a generator, a condenser and an evaporator are connected by piping to form a circulation path for the absorption solution and the refrigerant. Gas extraction device, a non-condensable gas tank that communicates with this gas extraction device and stores the extracted non-condensed gas, and a palladium metal or its alloy that communicates with this non-condensed gas tank and allows hydrogen gas in the non-condensed gas to permeate and be released In a non-condensable gas discharge device having a hydrogen discharger made of, a heat exchanger for cooling the non-condensable gas tank after the refrigerant liquid flowing out from the condenser is evaporated or the refrigerant liquid flowing out from the evaporator flows,
A non-condensable gas discharge device, comprising: a non-condensable gas tank, a bottom part of the non-condensable gas tank, and a condensed water discharge pipe having an opening / closing valve in the middle thereof.
JP6012853A 1994-02-04 1994-02-04 Non-condensable gas discharge device Expired - Fee Related JP3048817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6012853A JP3048817B2 (en) 1994-02-04 1994-02-04 Non-condensable gas discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6012853A JP3048817B2 (en) 1994-02-04 1994-02-04 Non-condensable gas discharge device

Publications (2)

Publication Number Publication Date
JPH07218050A true JPH07218050A (en) 1995-08-18
JP3048817B2 JP3048817B2 (en) 2000-06-05

Family

ID=11816967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6012853A Expired - Fee Related JP3048817B2 (en) 1994-02-04 1994-02-04 Non-condensable gas discharge device

Country Status (1)

Country Link
JP (1) JP3048817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208455A (en) * 2000-01-25 2001-08-03 Honda Motor Co Ltd Absorption refrigerating machine
CN107289791A (en) * 2017-08-14 2017-10-24 张家港市江南锅炉压力容器有限公司 A kind of condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208455A (en) * 2000-01-25 2001-08-03 Honda Motor Co Ltd Absorption refrigerating machine
CN107289791A (en) * 2017-08-14 2017-10-24 张家港市江南锅炉压力容器有限公司 A kind of condenser
CN107289791B (en) * 2017-08-14 2023-09-05 江苏江锅智能装备股份有限公司 Condenser

Also Published As

Publication number Publication date
JP3048817B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP2008116173A (en) Absorption type refrigerating machine
JPH07218050A (en) Noncondensed gas discharging device
JP3209927B2 (en) Absorption refrigeration equipment
KR960013203B1 (en) Absorption refrigeration system
JPH074769A (en) Single and double effect absorption refrigerating device
US3461684A (en) Absorption refrigeration machine
JP5075346B2 (en) Absorption refrigerator
JP3215248B2 (en) Refrigerant freezing prevention device for absorption chiller / heater / refrigerator
JP3244774B2 (en) Automatic cooling / heating switching method and apparatus in absorption chiller / heater
US3266267A (en) Absorption refrigeration
JP2021167684A (en) Absorption refrigerator
JP4201418B2 (en) Control method of absorption chiller / heater
JPH09203568A (en) Absorption refrigerator
JP4020569B2 (en) Absorption chiller / heater
KR100188892B1 (en) Absorption air-conditioning apparatus
JP2001263875A (en) Vacuum keeping device for absorption refrigerating machine
JP3663008B2 (en) Absorption chiller / heater
JP2011220675A (en) Absorption refrigerating machine
JPH0710215Y2 (en) Absorption refrigerator extraction device
JPH0692856B2 (en) Absorption refrigerator
JP2011202948A (en) Absorption refrigerating machine
JP3081334B2 (en) Bleeding device for absorption refrigerator
JP3209945B2 (en) Absorption air conditioner
JPH06257883A (en) Absorption type water cooler-heater
JP2000130893A (en) Operating method for absorption hot and chilled water generator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees