JPH06257883A - Absorption type water cooler-heater - Google Patents

Absorption type water cooler-heater

Info

Publication number
JPH06257883A
JPH06257883A JP4545693A JP4545693A JPH06257883A JP H06257883 A JPH06257883 A JP H06257883A JP 4545693 A JP4545693 A JP 4545693A JP 4545693 A JP4545693 A JP 4545693A JP H06257883 A JPH06257883 A JP H06257883A
Authority
JP
Japan
Prior art keywords
pipe
liquid
generator
refrigerant
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4545693A
Other languages
Japanese (ja)
Other versions
JP3314441B2 (en
Inventor
Toshitaka Takei
俊孝 武居
Kenji Yasuda
賢二 安田
Takashi Fujii
敬士 藤井
Takatoshi Takigawa
孝寿 瀧川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP04545693A priority Critical patent/JP3314441B2/en
Publication of JPH06257883A publication Critical patent/JPH06257883A/en
Application granted granted Critical
Publication of JP3314441B2 publication Critical patent/JP3314441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/36Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties
    • B41M5/363Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties using materials comprising a polymeric matrix containing a low molecular weight organic compound such as a fatty acid, e.g. for reversible recording

Abstract

PURPOSE:To reduce number of using switching valves enhance reliability without fear of introducing a capacity decrease due to leakage of vacuum from the valve, a perforation accident, etc., due to penetration of the air. CONSTITUTION:A bypass tube 19 for bypassing refrigerant vapor generated in a generator 1 through a condenser 2 and bypassing gas-liquid two-phase flow of the refrigerant vapor and absorption solution to a low pressure vessel side is provided between the generator 1 side, an absorber 5 and a low pressure vessel side of an evaporator 4, and a switching valve 20 which is closed at the time of taking chilled water to the tube 19 and opened at the time of taking warm water is interposed therebetween.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷温水機、詳しく
は、発生器,凝縮器及び吸収器,蒸発器を備え、この蒸
発器から冷水又は温水を取出すようにした吸収式冷温水
機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater, more specifically, an absorption chiller-heater having a generator, a condenser, an absorber, and an evaporator, from which cold water or hot water is taken out. Regarding

【0002】[0002]

【従来の技術】従来、この種吸収式冷温水機は、例えば
オーム社発行の「設備と管理1990年5月号」の第4
6頁「ガス吸収冷温水機系統図」に記載されているよう
に知られている。この冷温水機は、図6に示したよう
に、高温発生器A,低温発生器B,凝縮器C,蒸発器D
及び吸収器Eを備え、前記高温発生器Aの冷媒蒸気域と
前記凝縮器Cの内底部との間には、前記高温発生器Aで
発生した冷媒蒸気を前記低温発生器Bを経て凝縮器C側
へと送る冷媒蒸気管Fを接続すると共に、前記高温発生
器Aの冷媒溶液域と前記低温発生器Bの内方上部側との
間に、中間に高温熱交換器Gをもち、前記高温発生器A
の冷媒溶液を低温発生器B側に送る中間溶液管Hを接続
し、かつ、前記低温発生器Bの内底部と前記吸収器Eの
内方上部側との間に、中間に低温熱交換器Iをもち、前
記低温発生器Bの内底部に貯溜する濃溶液を前記吸収器
Eの上方側に供給する濃溶液管Jを接続している。
2. Description of the Related Art Conventionally, this type of absorption chiller-heater has been disclosed, for example, in "Facility and Management May 1990 Issue 4" issued by Ohmsha.
It is known as described in “Gas absorption chiller / heater system diagram” on page 6. As shown in FIG. 6, this chiller / heater has a high temperature generator A, a low temperature generator B, a condenser C, and an evaporator D.
And an absorber E, and between the refrigerant vapor region of the high temperature generator A and the inner bottom of the condenser C, the refrigerant vapor generated in the high temperature generator A is passed through the low temperature generator B to the condenser. A refrigerant vapor pipe F for sending to the C side is connected, and a high temperature heat exchanger G is provided in the middle between the refrigerant solution region of the high temperature generator A and the upper inner side of the low temperature generator B. High temperature generator A
Is connected to an intermediate solution pipe H for sending the refrigerant solution to the low temperature generator B side, and between the inner bottom portion of the low temperature generator B and the upper inner side of the absorber E, an intermediate low temperature heat exchanger is provided. A concentrated solution pipe J having I and supplying a concentrated solution stored in the inner bottom portion of the low temperature generator B to the upper side of the absorber E is connected.

【0003】また、前記凝縮器Cの内底部と前記蒸発器
Dとの間には、前記凝縮器Cの内底部に貯溜する冷媒液
を前記蒸発器Dに送る冷媒液管Kを接続すると共に、前
記蒸発器Dの下部側と上部側との間に、中間に冷媒ポン
プLが介装された冷媒液管Mを接続する一方、前記吸収
器Eの内底部には、中間に吸収液ポンプNをもち、前記
高,低熱交換器G,Iを通過して前記高温発生器Aの上
部側に至る稀溶液管Oを接続させている。
Between the inner bottom of the condenser C and the evaporator D, a refrigerant liquid pipe K for sending the refrigerant liquid stored in the inner bottom of the condenser C to the evaporator D is connected. Between the lower side and the upper side of the evaporator D, a refrigerant liquid pipe M in which a refrigerant pump L is interposed is connected, while at the inner bottom of the absorber E, an absorption liquid pump is provided in the middle. A dilute solution pipe O having N and passing through the high and low heat exchangers G and I to the upper side of the high temperature generator A is connected.

【0004】さらに、前記冷媒蒸気管Fの途中から分岐
して前記吸収器Eの上部側へと延びる冷媒蒸気分岐管P
を設けて、該冷媒蒸気分岐管Pの途中に温水取出時に開
き、冷水取出時閉じる第1電磁弁Qを介装させると共
に、前記中間溶液管Hの途中から分岐して前記吸収器E
の上部側へと延びる溶液分岐管Rを設けて、この溶液分
岐管Rの途中に温水取出時開き、冷水取出時閉じる第2
電磁弁Sを介装させる一方、前記蒸発器Dの内底部と前
記吸収器Eの内底部との間に第1連絡配管Tを接続し
て、該第1連絡配管Tの途中に温水取出時開き、冷水取
出時閉じる第3電磁弁Uを介装させている。また、前記
蒸発器Dの内底部と前記稀溶液管Oの途中との間には第
2連絡配管Vを設けて、該第2連絡配管Vの途中に第4
電磁弁Wを介装させている。
Further, a refrigerant vapor branch pipe P that branches from the middle of the refrigerant vapor pipe F and extends to the upper side of the absorber E.
Is provided in the middle of the refrigerant vapor branch pipe P to intervene the first solenoid valve Q which is opened at the time of taking out hot water and closed at the time of taking out cold water.
A solution branch pipe R extending to the upper side of the solution branch pipe is provided, and in the middle of this solution branch pipe R, open when hot water is taken out and closed when cold water is taken out
While interposing the solenoid valve S, a first connecting pipe T is connected between the inner bottom portion of the evaporator D and the inner bottom portion of the absorber E, and hot water is taken out in the middle of the first connecting pipe T. A third solenoid valve U that opens and closes when cold water is taken out is interposed. Further, a second connecting pipe V is provided between the inner bottom portion of the evaporator D and the middle of the dilute solution pipe O, and a fourth connecting pipe V is provided in the middle of the second connecting pipe V.
The solenoid valve W is interposed.

【0005】また、前記吸収器Eの外部側から、該吸収
器Eと前記凝縮器Cの内部を経て外方側へと至る冷却水
管Xを設けると共に、前記蒸発器Dには冷温水取出管Y
を配管して、該取出管Yから取出される冷温水を室内な
どの冷暖房源として使用するようにしている。尚、同図
中、Zは前記溶液管Mの途中と前記蒸発器Dの内底部と
の間に介装された冷媒ブロー用弁である。
A cooling water pipe X is provided from the outside of the absorber E to the outside through the absorber E and the condenser C, and the evaporator D is provided with a cold / hot water take-out pipe. Y
The cold and hot water taken out from the take-out pipe Y is used as a cooling and heating source for a room or the like. In the figure, Z is a refrigerant blowing valve provided between the solution pipe M and the inner bottom of the evaporator D.

【0006】以上の吸収式冷温水機を用いて冷房運転を
行うときには、前記第1〜第4電磁弁Q,S,U,Wが
それぞれ閉鎖される。そして、先ず、前記高温発生器A
内に設けたバーナーaを点火して、その内部に装填され
た臭化リチウム溶液などの稀溶液を加熱することにより
高温の冷媒蒸気が発生し、この冷媒蒸気が前記冷媒蒸気
管Fを介して前記低温発生器Bへと送られ、該低温発生
器Bにおいて、前記高温発生器Aから高温熱交換器Gを
経て前記低温発生器Bに導入される中間濃度溶液と熱交
換されることにより冷媒蒸気が発生し、この冷媒蒸気が
前記凝縮器Cに送られて凝縮液化され、この凝縮液冷媒
が前記冷媒蒸気管Fから前記低温発生器Bの通過時に凝
縮された液冷媒と共に前記冷媒液管Kから前記蒸発器D
の内部へと送られ、該蒸発器Dの下部側から前記冷媒ポ
ンプLをもつ冷媒液管Mにより前記蒸発器Dの上部側へ
と供給されて、前記取出管Y内を通過する水を冷却して
冷房源として使用される。また、前記低温発生器B内に
おいては、前記中間溶液管Hを介して導入される前記高
温発生器Aの冷媒溶液が前記冷媒蒸気管F内の蒸気冷媒
と熱交換されて加熱濃縮される。
When performing the cooling operation using the above absorption-type chiller-heater, the first to fourth solenoid valves Q, S, U and W are closed. And first, the high temperature generator A
A high-temperature refrigerant vapor is generated by igniting a burner a provided inside and heating a dilute solution such as a lithium bromide solution loaded therein, and this refrigerant vapor passes through the refrigerant vapor pipe F. The refrigerant is sent to the low-temperature generator B, and in the low-temperature generator B, the medium-concentration solution introduced from the high-temperature generator A through the high-temperature heat exchanger G into the low-temperature generator B is heat-exchanged with the refrigerant. Steam is generated, the refrigerant vapor is sent to the condenser C to be condensed and liquefied, and the condensed liquid refrigerant is condensed from the refrigerant vapor pipe F when passing through the low temperature generator B together with the refrigerant refrigerant pipe. K to the evaporator D
Water supplied to the upper side of the evaporator D by the refrigerant liquid pipe M having the refrigerant pump L from the lower side of the evaporator D to cool the water passing through the take-out pipe Y. And used as a cooling source. Further, in the low temperature generator B, the refrigerant solution of the high temperature generator A introduced via the intermediate solution pipe H is heat-concentrated by heat exchange with the vapor refrigerant in the refrigerant vapor pipe F.

【0007】さらに、前記蒸発器D内で前記取出管Y内
の水と熱交換されて蒸発された冷媒蒸気は前記吸収器E
へと流入され、一方、該吸収器Eの内上部には、前記低
温発生器Bで加熱濃縮された濃溶液が中間に低温熱交換
器Iをもつ濃溶液管Jを介して供給されるのであり、従
って、前記吸収器E内に流入した前記冷媒蒸気は前記濃
溶液に吸収されるのであり、また、この濃溶液は前記冷
媒蒸気を吸収することで稀溶液となって、前記吸収液ポ
ンプNを備えた稀溶液管Oにより前記高,低熱交換器
G,Iを通過して前記高温発生器Aへと戻される。
Further, the refrigerant vapor that has been heat-exchanged with the water in the take-out pipe Y in the evaporator D and evaporated is the absorber E.
On the other hand, since the concentrated solution heated and concentrated in the low temperature generator B is supplied to the inner upper portion of the absorber E through the concentrated solution pipe J having the low temperature heat exchanger I in the middle. Therefore, the refrigerant vapor flowing into the absorber E is absorbed by the concentrated solution, and the concentrated solution becomes a dilute solution by absorbing the refrigerant vapor. It is returned to the high temperature generator A through the high and low heat exchangers G and I by a dilute solution pipe O equipped with N.

【0008】また、以上の吸収式冷温水機を用いて暖房
運転を行うときには、前記第1〜第4電磁弁Q,S,
U,Wをそれぞれ開放すると共に、前記冷却水管Xへの
通水を停止して運転が行われる。そして、先ず、前記高
温発生器A内に設けたバーナーaを点火して、その内部
の稀溶液を加熱することにより高温の冷媒蒸気が発生
し、この冷媒蒸気の大半は、前記第1電磁弁Qの開放に
より、前記冷媒蒸気分岐管Pから第1電磁弁Qを介して
前記吸収器Eへと供給され、該吸収器Eから前記蒸発器
D側へと送られ、この蒸発器Dが凝縮器となってその内
部で前記冷媒蒸気と前記取出管Y内を通過する水と熱交
換され、この水が加熱されて暖房源として使用される。
When performing the heating operation by using the above absorption-type chiller-heater, the first to fourth solenoid valves Q, S,
The operation is performed by opening U and W respectively and stopping the water flow to the cooling water pipe X. Then, first, a high-temperature refrigerant vapor is generated by igniting the burner a provided in the high-temperature generator A and heating the dilute solution inside thereof, and most of this refrigerant vapor is generated by the first solenoid valve. When Q is opened, it is supplied from the refrigerant vapor branch pipe P to the absorber E via the first electromagnetic valve Q and is sent from the absorber E to the evaporator D side, where the evaporator D is condensed. As a container, heat exchange is performed with the refrigerant vapor and water passing through the extraction pipe Y, and the water is heated and used as a heating source.

【0009】また、前記蒸発器D内で凝縮された冷媒
は、前記第3電磁弁Uが開放されているため、前記第1
連絡配管Tから前記吸収器Eの内底部へと供給され、一
方、該吸収器Eの内部には、前記第2電磁弁Sの開放に
より、前記溶液分岐管Rを介して前記高温発生器A内の
中間溶液が供給され、この中間溶液に前記蒸発器Dから
送られた冷媒が吸収されて稀溶液となり、該稀溶液が前
記吸収液ポンプNを介して前記稀溶液管Oから高温発生
器Aへと戻される。さらに、前記蒸発器D内の凝縮液一
部が前記第2連絡配管Vから第4電磁弁Wを介して前記
稀溶液管Oにも戻され、この稀溶液管Oを流れる溶液に
吸収されて前記高温発生器Aに戻される。
The refrigerant condensed in the evaporator D has the first solenoid valve U opened, so that the first refrigerant
It is supplied from the connecting pipe T to the inner bottom of the absorber E, while inside the absorber E, the high temperature generator A is passed through the solution branch pipe R by opening the second solenoid valve S. Is supplied with the intermediate solution, the refrigerant sent from the evaporator D is absorbed into the intermediate solution to become a dilute solution, and the dilute solution is passed from the dilute solution pipe O through the absorption liquid pump N to a high temperature generator. Returned to A. Further, a part of the condensate in the evaporator D is returned from the second connecting pipe V to the dilute solution pipe O via the fourth solenoid valve W and absorbed by the solution flowing in the dilute solution pipe O. It is returned to the high temperature generator A.

【0010】[0010]

【発明が解決しようとする課題】ところが、以上のよう
な吸収式冷温水機では、冷暖房運転時に切換動作する電
磁弁の数が4個必要となり、これら電磁弁からの真空洩
れが多く生じ、この真空洩れによる能力ダウンが生じた
り、また、真空洩れによる空気侵入で、配管等に腐食に
よる穴明き事故が生ずる問題があったし、また、電磁弁
の数に比例して冷暖切換時の操作性も悪くなる問題があ
った。尚、前記真空洩れについて更に詳記すると、前記
吸収式冷温水機における各機器内は、ほゞ真空状(例え
ば絶対圧力6mmHg)に保持されており、また一方電磁弁
は気密性を高くしているが、完全なものでなく、このた
め電磁弁から大気圧の空気が侵入することになるのであ
り、また、大気圧の空気が侵入すると機器内圧力が上昇
することから能力ダウンとなるし、また、空気が侵入す
ると吸収溶液による機器配管の腐食が促進され穴明きの
原因となるのである。
However, in the absorption chiller-heater as described above, it is necessary to provide four solenoid valves for switching operation during the heating / cooling operation, which causes a large amount of vacuum leakage from these solenoid valves. There is a problem that the capacity may be reduced due to vacuum leakage, and that air leakage due to vacuum leakage may cause holes in the piping due to corrosion, and that the operation during switching between cooling and heating is proportional to the number of solenoid valves. There was a problem that it deteriorated. The vacuum leak will be described in more detail. The inside of each device in the absorption chiller-heater is kept in a substantially vacuum state (for example, absolute pressure 6 mmHg), while the solenoid valve is made airtight. However, it is not perfect, and therefore atmospheric pressure air will invade from the solenoid valve, and if atmospheric pressure air invades, the internal pressure of the equipment will rise and the capacity will be reduced, In addition, when the air enters, the corrosion of the equipment piping due to the absorbing solution is promoted, which causes perforation.

【0011】本発明の目的は、開閉弁の使用数を少なく
できて、真空洩れによる能力ダウンや腐食による穴明き
事故による信頼性の低下を少なくし、かつ、冷暖切換え
の信頼性も向上できる吸収式冷温水機を提供することに
ある。
The object of the present invention is to reduce the number of on-off valves used, to reduce the deterioration of reliability due to vacuum leaks and to the reduction of reliability due to hole punching accidents due to corrosion, and to improve the reliability of switching between cooling and heating. It is to provide an absorption chiller-heater.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、発生器1,凝縮器2及び吸収器5,蒸発
器4とを備え、この蒸発器4から冷水又は温水を取出す
ようにした吸収式冷温水機において、前記発生器1側と
吸収器5及び蒸発器4の低圧容器側との間に、前記発生
器1で発生した冷媒蒸気が前記凝縮器2を側路し前記冷
媒蒸気と吸収溶液との気液2相流で前記低圧容器にバイ
パスするバイパス管19を設けると共に、このバイパス
管19に冷水取出時閉じ、温水取出時開く開閉弁20を
介装させたのである。
To achieve the above object, the present invention comprises a generator 1, a condenser 2, an absorber 5 and an evaporator 4, from which cold water or hot water is drawn. In the absorption chiller-heater described above, the refrigerant vapor generated in the generator 1 bypasses the condenser 2 between the generator 1 side and the low-pressure container side of the absorber 5 and the evaporator 4, and A bypass pipe 19 that bypasses the low-pressure container by a gas-liquid two-phase flow of a refrigerant vapor and an absorbing solution is provided, and an on-off valve 20 that is closed when cold water is taken out and is opened when hot water is taken out is interposed in the bypass pipe 19. .

【0013】前記バイパス管19は、前記発生器1にお
ける吸収溶液の液面位置で、かつ、通路開口部が前記発
生器1における吸収溶液の液域と冷媒蒸気のガス域とに
開口する位置に接続することが好ましい。
The bypass pipe 19 is located at the liquid level position of the absorbing solution in the generator 1 and at the position where the passage opening portion is open to the liquid region of the absorbing solution and the gas region of the refrigerant vapor in the generator 1. It is preferable to connect.

【0014】また、前記バイパス管19は、その一端側
を前記発生器1に接続すると共に、この接続部19aを
前記発生器1における吸収溶液の液域から突入させて、
その突入先端部を冷媒蒸気のガス域に開口させる一方、
前記液域への突入部に、該液域に開口する溶液取入口1
9cを設けるようにしてもよい。
The bypass pipe 19 has one end connected to the generator 1, and the connecting portion 19a is projected from the liquid region of the absorbing solution in the generator 1,
While opening the rush tip into the gas area of the refrigerant vapor,
A solution inlet 1 that opens into the liquid region at the entry into the liquid region
9c may be provided.

【0015】さらに、前記バイパス管19は、その一端
側を前記発生器1側の液部に接続すると共に、前記バイ
パス管19の途中で、かつ、前記開閉弁20に対し発生
器側に蒸気エゼクター26を介装し、この蒸気エゼクタ
ー26に前記発生器1から凝縮器2に延びる冷媒蒸気管
7から分岐する分岐蒸気管71を接続するようにしても
よい。
Further, one end of the bypass pipe 19 is connected to the liquid portion on the side of the generator 1, and a steam ejector is provided in the middle of the bypass pipe 19 and on the generator side with respect to the on-off valve 20. 26 may be interposed, and a branch steam pipe 71 branched from the refrigerant steam pipe 7 extending from the generator 1 to the condenser 2 may be connected to the steam ejector 26.

【0016】また、前記バイパス管19の途中に液エゼ
クター28を介装すると共に、前記蒸発器4の液部に冷
媒液管27を接続して、この冷媒液管27を前記液エゼ
クター28に接続するようにしてもよい。
A liquid ejector 28 is provided in the middle of the bypass pipe 19, and a refrigerant liquid pipe 27 is connected to the liquid portion of the evaporator 4, and the refrigerant liquid pipe 27 is connected to the liquid ejector 28. You may do it.

【0017】[0017]

【作用】冷水取出運転時には、前記バイパス管19の開
閉弁20を閉じることにより、従来通り前記冷温水取出
管から冷水を取出し得るのであり、また温水取出運転時
には、前記バイパス管19の開閉弁20を開くことによ
り、前記発生器1で発生した冷媒蒸気と吸収溶液との気
液2相流が、前記バイパス管19から開閉弁20を経て
前記吸収器5と蒸発器4との低圧容器側へと送られ、前
記気液2相流中の冷媒蒸気により暖房運転時に凝縮器と
なる前記蒸発器4内における取出管内の水が加熱され、
この加熱された温水の取出しが可能となるのである。
The cold water can be taken out from the cold / hot water take-out pipe as usual by closing the on-off valve 20 of the bypass pipe 19 during the cold water take-out operation, and the open-close valve 20 of the bypass pipe 19 can be taken during the hot water take-out operation. By opening, the gas-liquid two-phase flow of the refrigerant vapor and the absorbing solution generated in the generator 1 is passed from the bypass pipe 19 to the low pressure container side of the absorber 5 and the evaporator 4 via the opening / closing valve 20. And the refrigerant vapor in the gas-liquid two-phase flow heats the water in the take-out pipe in the evaporator 4 serving as a condenser during the heating operation,
The heated hot water can be taken out.

【0018】以上のように、前記発生器1側と前記吸収
器5及び蒸発器4の低圧容器側との間に気液2相液で前
記凝縮器2を側路して前記低圧容器側にバイパスする前
記バイパス管19を設けたから、従来例のように冷媒蒸
気管Fから分岐する冷媒蒸気分岐管Pと中間溶液管Hか
ら分岐する溶液分岐管Rとの2系統を各別に設けていた
ものに比較して1つのバイパス管19にでき、各分岐管
P,Rに介装する2つの開閉弁を1つにできるのであ
る。従って、真空漏洩れの原因となる開閉弁を減少でき
るから、真空洩れによる能力ダウンを少なくできるし、
また、真空洩れによる空気の侵入で生ずる腐食の問題も
少なくでき、その信頼性を向上できると共に冷温水取出
し切換えの操作性も向上できるのである。
As described above, the condenser 2 is bypassed by the gas-liquid two-phase liquid between the generator 1 side and the low pressure vessel side of the absorber 5 and the evaporator 4 to the low pressure vessel side. Since the bypass pipe 19 for bypassing is provided, two systems of the refrigerant vapor branch pipe P branching from the refrigerant vapor pipe F and the solution branch pipe R branching from the intermediate solution pipe H are separately provided as in the conventional example. Compared with the above, one bypass pipe 19 can be provided, and two on-off valves interposed in each branch pipe P, R can be provided as one. Therefore, it is possible to reduce the number of on-off valves that cause vacuum leakage, and it is possible to reduce the performance reduction due to vacuum leakage.
In addition, the problem of corrosion caused by the invasion of air due to vacuum leakage can be reduced, the reliability thereof can be improved, and the operability of switching hot and cold water withdrawal can be improved.

【0019】また、前記バイパス管19を、前記発生器
1における吸収溶液の液面位置で、かつ、通路開口部が
前記発生器1における吸収溶液の液域と冷媒蒸気のガス
域とに開口する位置に接続することにより、簡単な構成
により前記発生器1で発生する冷媒蒸気と吸収溶液との
気液2相流を前記低圧容器側に送ることができて、従っ
て、全体としてその配管構成を合理的に簡単にでき、コ
ストダウンを有効に図れるのである。
Further, the bypass pipe 19 is opened at the liquid level position of the absorbing solution in the generator 1 and the passage opening is opened to the liquid region of the absorbing solution and the gas region of the refrigerant vapor in the generator 1. By connecting to the position, the gas-liquid two-phase flow of the refrigerant vapor and the absorbing solution generated in the generator 1 can be sent to the low-pressure container side with a simple structure, and therefore the piping structure as a whole is It is reasonably easy, and cost reduction can be effectively achieved.

【0020】さらに、前記バイパス管19の一端側を前
記発生器1に接続すると共に、この接続部19aを前記
発生器1における吸収溶液の液域から突入させて、その
突入先端部を冷媒蒸気のガス域に開口させる一方、前記
液域への突入部に、該液域に開口する溶液取入口19c
を設けることにより、この取入口19cとガス域に臨む
前記接続部19aの先端側との間に所定距離を確保でき
て、前記発生器1の液面に若干の高低変動があっても、
温水取出運転時に前記気液2相流を前記バイパス管19
を介して低圧容器側に確実に送ることができる。
Further, one end side of the bypass pipe 19 is connected to the generator 1, and the connecting portion 19a is made to protrude from the liquid region of the absorbing solution in the generator 1 so that the protruding tip portion of the refrigerant vapor A solution inlet 19c that opens to the liquid region while being opened to the gas region at the protrusion to the liquid region
By providing the above, a predetermined distance can be secured between the intake 19c and the tip side of the connecting portion 19a facing the gas region, and even if the liquid level of the generator 1 slightly fluctuates,
During the hot water extraction operation, the gas-liquid two-phase flow is applied to the bypass pipe 19
Can be reliably sent to the low-pressure container side via.

【0021】また、前記バイパス管19の一端側を前記
発生器1側の液部に接続すると共に、前記バイパス管1
9の途中で、かつ、前記開閉弁20に対し発生器1側に
蒸気エゼクター26を介装し、この蒸気エゼクター26
に前記発生器1から凝縮器2に延びる冷媒蒸気管7から
分岐する分岐蒸気管71を接続することにより、前記開
閉弁20を開いたとき前記発生器1と低圧容器との器内
圧力差を利用し、前記蒸気エゼクター26のエゼクター
作用により前記分岐蒸気管71からの蒸気冷媒と前記バ
イパス管19からの冷媒溶液とを混合して気液2相流と
なし得るのであって、前記発生器1での液面高さに変動
があっても、前記気液2相流を前記バイパス管19を介
して前記低圧容器側により確実に送ることができる。
Further, one end of the bypass pipe 19 is connected to the liquid portion on the side of the generator 1, and the bypass pipe 1 is connected.
A steam ejector 26 is provided in the middle of 9 and on the side of the generator 1 with respect to the on-off valve 20.
By connecting a branch steam pipe 71 branching from the refrigerant steam pipe 7 extending from the generator 1 to the condenser 2 to the internal pressure difference between the generator 1 and the low-pressure container when the on-off valve 20 is opened. By utilizing the ejector action of the vapor ejector 26, the vapor refrigerant from the branch vapor pipe 71 and the refrigerant solution from the bypass pipe 19 can be mixed to form a gas-liquid two-phase flow. Even if there is a change in the liquid level height at 1, the gas-liquid two-phase flow can be reliably sent to the low-pressure container side via the bypass pipe 19.

【0022】さらに、前記バイパス管19の途中に液エ
ゼクター28を介装すると共に、前記蒸発器4の液部に
冷媒液管27を接続して、この冷媒液管27を前記液エ
ゼクター28に接続する場合には、暖房運転時に前記液
エゼクター28のエゼクター作用により、前記冷媒液管
27を介して前記蒸発器4内の冷媒液を吸入し、この冷
媒液を前記バイパス管19からの気液2相流とを混合さ
せて前記低圧容器側に確実に送ることができ、従って、
図6に示した従来例のように第3電磁弁Uをもった第1
連絡配管Tや第4電磁弁Wをもった第2連絡配管Vを省
略でき、より一層電磁弁(開閉弁)の個数を減少でき、
電磁弁からの真空洩れをより一層少なくできるのであ
る。
Further, a liquid ejector 28 is provided in the middle of the bypass pipe 19, a refrigerant liquid pipe 27 is connected to the liquid portion of the evaporator 4, and the refrigerant liquid pipe 27 is connected to the liquid ejector 28. In the case of heating, the refrigerant liquid in the evaporator 4 is sucked through the refrigerant liquid pipe 27 by the ejector action of the liquid ejector 28 during the heating operation, and the refrigerant liquid is discharged into the gas-liquid 2 from the bypass pipe 19. It is possible to mix with the phase flow and reliably send it to the low-pressure vessel side, therefore,
The first having the third solenoid valve U as in the conventional example shown in FIG.
The connecting pipe T and the second connecting pipe V having the fourth solenoid valve W can be omitted, and the number of solenoid valves (open / close valves) can be further reduced,
Vacuum leakage from the solenoid valve can be further reduced.

【0023】[0023]

【実施例】図1は二重効用形の吸収式冷温水機を示して
おり、この吸収式冷温水機は、発生器1として、バーナ
ー1aをもった直焚式の高温発生器1Aと低温発生器1
Bとを備え、この低温発生器1Bと凝縮器2とを仕切壁
31をもった一つの胴体3内に設けると共に、内方上部
側に散布体41をもつ蒸発器4と、同じく内方上部側に
散布体51をもつ吸収器5とを一つの胴体6に内装し
て、該胴体6の内部で前記蒸発器4と吸収器5との間に
はエリミネータ61を介装させている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a double-effect type absorption chiller-heater. This absorption chiller-heater has a high-temperature generator 1A having a burner 1a as a generator 1 and a low-temperature generator 1A. Generator 1
B and the low temperature generator 1B and the condenser 2 are provided in one body 3 having a partition wall 31, and an evaporator 4 having a spattering body 41 on the inner upper side, and an inner upper portion as well. An absorber 5 having a spray body 51 on its side is incorporated in one body 6, and an eliminator 61 is provided inside the body 6 between the evaporator 4 and the absorber 5.

【0024】そして、前記高温発生器1Aの上方で冷媒
蒸気域と前記凝縮器2の内底部との間には、前記高温発
生器1Aで発生した冷媒蒸気を前記低温発生器1Bを経
て凝縮器2側へと送る冷媒蒸気管7を設けると共に、前
記高温発生器1Aの吸収溶液域と前記低温発生器1Bの
内方上部側との間には、中間に高温熱交換器8をもち、
前記高温発生器1A内の吸収溶液を低温発生器1B側に
送る中間溶液管9を設け、かつ、前記低温発生器1Bの
内底部と前記吸収器5に設けた散布体51の内方上部側
との間に、中間に低温熱交換器10をもち、前記低温発
生器1Bの内底部に貯溜する濃溶液を前記吸収器5の上
方側に供給する濃溶液管11を設けている。また、前記
凝縮器2の内底部と前記蒸発器4との間には、前記凝縮
器2の内底部に貯溜する冷媒液を前記蒸発器4内に送る
冷媒液管12を設け、かつ、前記蒸発器4の内底部側と
前記散布体41との間には、中間に冷媒ポンプ13を介
装させた冷媒液管14を接続すると共に、前記吸収器5
の内底部には、中間に溶液ポンプ15をもち、前記高,
低熱交換器8,10を通過して前記高温発生器1A内に
至る稀溶液管16を設けている。
Between the refrigerant vapor region above the high temperature generator 1A and the inner bottom portion of the condenser 2, the refrigerant vapor generated by the high temperature generator 1A passes through the low temperature generator 1B and then the condenser. A refrigerant vapor pipe 7 for sending to the second side is provided, and a high temperature heat exchanger 8 is provided in the middle between the absorbing solution region of the high temperature generator 1A and the upper inner side of the low temperature generator 1B.
An intermediate solution pipe 9 for sending the absorbing solution in the high-temperature generator 1A to the low-temperature generator 1B is provided, and an inner bottom side of the low-temperature generator 1B and an upper inner side of the spray body 51 provided in the absorber 5 are provided. And a low temperature heat exchanger 10 in the middle, and a concentrated solution pipe 11 for supplying the concentrated solution stored in the inner bottom portion of the low temperature generator 1B to the upper side of the absorber 5 is provided. Further, between the inner bottom portion of the condenser 2 and the evaporator 4, there is provided a refrigerant liquid pipe 12 for feeding the refrigerant liquid stored in the inner bottom portion of the condenser 2 into the evaporator 4, and A refrigerant liquid pipe 14 having a refrigerant pump 13 interposed is connected between the inner bottom portion of the evaporator 4 and the spraying body 41, and the absorber 5
A solution pump 15 is provided in the middle of the inner bottom of the
A dilute solution pipe 16 is provided which passes through the low heat exchangers 8 and 10 and reaches the high temperature generator 1A.

【0025】さらに、前記吸収器5の外部側から、該吸
収器5と前記凝縮器2の内部を経て外方に至る冷却水管
17を設けると共に、前記蒸発器4の内部には冷温水取
出管18を配管して、該取出管18から取出される冷水
又は温水を室内などの冷暖房源として使用するようにし
ている。
Further, a cooling water pipe 17 extending from the outside of the absorber 5 to the outside through the inside of the absorber 5 and the condenser 2 is provided, and a cold / hot water take-out pipe is provided inside the evaporator 4. A pipe 18 is provided so that cold water or hot water taken out from the take-out pipe 18 can be used as a heating and cooling source for a room or the like.

【0026】しかして図1に示したものは、前記高温発
生器1Aと吸収器5との間に、前記高温発生器1Aで発
生した冷媒蒸気が前記低温発生器1Bと凝縮器2とを側
路し、前記冷媒蒸気と前記高温発生器1A内の吸収溶液
とを気液2相流として低圧側となる前記吸収器5へとバ
イパスさせるバイパス管19を設けると共に、このバイ
パス管19に冷水取出時に閉じ温水取出時に開く主とし
て電磁弁から成る開閉弁20を介装させたのである。
In the structure shown in FIG. 1, however, the refrigerant vapor generated in the high temperature generator 1A is located between the high temperature generator 1A and the absorber 5, and the low temperature generator 1B and the condenser 2 are connected to each other. A bypass pipe 19 for bypassing the refrigerant vapor and the absorbing solution in the high temperature generator 1A to the absorber 5 on the low pressure side as a gas-liquid two-phase flow is provided, and cold water is taken out to the bypass pipe 19. The on-off valve 20 mainly made up of an electromagnetic valve which is sometimes closed when hot water is taken out is interposed.

【0027】また、図1に示した実施例では、前記高温
発生器1Aにおける吸収溶液の液面位置で、この高温発
生器1A内における吸収溶液の液域と冷媒蒸気のガス域
とに跨がる位置に設ける液面検出器21の側部に前記バ
イパス管19の一端側を接続して、気液2相流を取出す
ようにしたものである。
Further, in the embodiment shown in FIG. 1, the liquid level position of the absorbing solution in the high temperature generator 1A extends over the liquid region of the absorbing solution and the gas region of the refrigerant vapor in the high temperature generator 1A. The one end side of the bypass pipe 19 is connected to the side portion of the liquid level detector 21 provided at a certain position to take out the gas-liquid two-phase flow.

【0028】また、前記液面検出器21には、電極棒か
ら成る複数の溶液検知センサー22を設け、該センサー
22の検出結果に基づき前記高温発生器1A内のバーナ
ー1aによる加熱量を制御することにより、この高温発
生器1A内における吸収溶液の液面を所定高さに調整す
るのであって、斯く調整する液面高さ位置に前記バイパ
ス管19を接続することにより前記高温発生器1A内の
冷媒蒸気と吸収溶液との気液2相流を有効に取出せるの
である。
Further, the liquid level detector 21 is provided with a plurality of solution detection sensors 22 composed of electrode rods, and the heating amount by the burner 1a in the high temperature generator 1A is controlled based on the detection result of the sensors 22. Thus, the liquid level of the absorbing solution in the high temperature generator 1A is adjusted to a predetermined height, and the bypass pipe 19 is connected to the liquid level height position to be adjusted in the high temperature generator 1A. The gas-liquid two-phase flow of the refrigerant vapor and the absorbing solution can be effectively taken out.

【0029】さらに、図1の実施例では前記蒸発器4の
内底部と前記吸収器5の内底部との間には連通管23を
配管して、該連通管23の途中に温水取出時開き、冷水
取出時閉じる開閉弁24を介装させている。
Further, in the embodiment shown in FIG. 1, a communication pipe 23 is provided between the inner bottom of the evaporator 4 and the inner bottom of the absorber 5, and the communication pipe 23 is opened in the middle of the communication pipe 23 when hot water is taken out. An on-off valve 24 that closes when cold water is taken out is interposed.

【0030】次に、以上の構成による作用について説明
する。先ず、以上の吸収式冷温水機を用いて冷房運転を
行うときには、前記バイパス管19に介装した開閉弁2
0と前記連通管22に介装した切換弁23とを閉鎖して
運転するのであって、前記高温発生器1A内のバーナー
1aにより臭化リチウム溶液などの稀溶液を加熱して高
温の冷媒蒸気を発生させ、この冷媒蒸気が前記冷媒蒸気
管7を介して前記低温発生器1Bへと送られ、前記高温
発生器1Aから高温熱交換器8を備えた前記中間溶液管
9を介して前記低温発生器1Bに導入された中間濃度溶
液と熱交換され、この熱交換により前記冷媒蒸気の一部
が凝縮して液化されると共に中間濃度溶液から冷媒蒸気
が発生して濃溶液となり、この濃溶液が前記濃溶液管1
1から前記低温熱交換器10に送られ、該低温熱交換器
10で冷却されて前記吸収器5の内方上部側へと送られ
る。
Next, the operation of the above configuration will be described. First, when performing the cooling operation using the above absorption-type chiller-heater, the on-off valve 2 installed in the bypass pipe 19 is used.
0 and the switching valve 23 installed in the communication pipe 22 are closed to operate, and a burner 1a in the high temperature generator 1A heats a dilute solution such as a lithium bromide solution to obtain a high temperature refrigerant vapor. This refrigerant vapor is sent to the low temperature generator 1B through the refrigerant vapor pipe 7, and the low temperature is generated from the high temperature generator 1A through the intermediate solution pipe 9 having the high temperature heat exchanger 8. Heat is exchanged with the intermediate concentration solution introduced into the generator 1B, and due to this heat exchange, a part of the refrigerant vapor is condensed and liquefied, and at the same time refrigerant vapor is generated from the intermediate concentration solution to become a concentrated solution. Is the concentrated solution tube 1
1 is sent to the low temperature heat exchanger 10, cooled by the low temperature heat exchanger 10 and sent to the inner upper side of the absorber 5.

【0031】また、前記冷媒蒸気との熱交換により前記
低温発生器1Bにおいて中間濃度溶液から発生した冷媒
蒸気は、前記高温発生器1Aで発生して前記低温発生器
1Bに送られた冷媒蒸気と共に、前記胴体3に設けた仕
切壁31の上部隙間から前記凝縮器2に送られて前記冷
却管17を通る冷却水で凝縮液化され、この凝縮液冷媒
が前記冷媒液管12を介して前記蒸発器4内へと送ら
れ、該蒸発器4の内底部から前記冷媒ポンプ13を設け
た冷媒液管14により前記蒸発器4内の散布体41へと
汲上げられ、該散布体41から内下方へと散布されて前
記冷温水取出管18と接触し、この取出管18内を通過
する水が冷却されて冷房熱源として外部に取出される。
The refrigerant vapor generated from the intermediate concentration solution in the low temperature generator 1B by heat exchange with the refrigerant vapor is generated together with the refrigerant vapor generated in the high temperature generator 1A and sent to the low temperature generator 1B. , Is condensed and liquefied by the cooling water that is sent to the condenser 2 from the upper gap of the partition wall 31 provided in the body 3 and that passes through the cooling pipe 17, and the condensed liquid refrigerant is evaporated through the refrigerant liquid pipe 12. Is sent to the inside of the evaporator 4, is pumped up from the inner bottom portion of the evaporator 4 to the spraying body 41 in the evaporator 4 by the refrigerant liquid pipe 14 provided with the refrigerant pump 13, and is then inwardly downward from the spraying body 41. The water that has been sprayed to and comes into contact with the cold / hot water take-out pipe 18, and the water passing through the take-out pipe 18 is cooled and taken out to the outside as a cooling heat source.

【0032】さらに、前記蒸発器4内で前記取出管18
との接触により蒸発された冷媒蒸気は、前記エリミネー
タ61を介して前記吸収器5へと流入され、一方、該吸
収器5内においては、前記低温発生器1Bから中間に低
温熱交換器10をもつ濃溶液管11を介して濃溶液が供
給され、この濃溶液が前記散布体51から前記吸収器5
の内下方に散布されているため、該吸収器5内に流入し
た前記冷媒蒸気は前記濃溶液に吸収されるのであり、ま
た、この濃溶液は前記冷媒蒸気を吸収することで稀溶液
となって、前記溶液ポンプ15を備えた稀溶液管16に
より前記高,低熱交換器8,10を通過して前記高温発
生器1Aへと戻される。
Further, in the evaporator 4, the extraction pipe 18
The refrigerant vapor evaporated by the contact with the refrigerant flows into the absorber 5 via the eliminator 61, and in the absorber 5, the low temperature heat exchanger 10 is inserted in the middle from the low temperature generator 1B. A concentrated solution is supplied through the concentrated solution pipe 11 which holds the concentrated solution from the spray body 51 to the absorber 5
The refrigerant vapor flowing into the absorber 5 is absorbed by the concentrated solution because it is sprayed inward and downward, and the concentrated solution becomes a rare solution by absorbing the refrigerant vapor. Then, it is returned to the high temperature generator 1A through the high and low heat exchangers 8 and 10 by the dilute solution pipe 16 equipped with the solution pump 15.

【0033】次に、以上の吸収式冷温水機で暖房運転を
行うときには、前記バイパス管19に介装した開閉弁2
0と前記連通管23に介装した開閉弁24とが開放さ
れ、かつ、前記冷媒ポンプ13が停止されると共に、前
記冷却管17への通水が停止される。そして、前記高温
発生器1A内のバーナー1aを点火して、その内部の稀
溶液を加熱することにより発生する高温の冷媒蒸気は前
記高温発生器1A内の吸収溶液と共に気液2相流となっ
て、前記液面検出器21に接続されたバイパス管19か
ら暖房運転時に開放される前記開閉弁20を経て吸収器
5へと送られ、この吸収器5から気液2相流中の冷媒蒸
気が前記蒸発器4へと送られ、該蒸発器4が凝縮器とな
ってその内部に配管された前記取出管18内の水を加熱
して、この加熱された温水が暖房源として使用される。
Next, when performing the heating operation with the above absorption-type chiller-heater, the on-off valve 2 installed in the bypass pipe 19 is used.
0 and the on-off valve 24 interposed in the communication pipe 23 are opened, the refrigerant pump 13 is stopped, and the water flow to the cooling pipe 17 is stopped. Then, the high temperature refrigerant vapor generated by igniting the burner 1a in the high temperature generator 1A and heating the dilute solution therein becomes a gas-liquid two-phase flow together with the absorbing solution in the high temperature generator 1A. From the bypass pipe 19 connected to the liquid level detector 21 to the absorber 5 via the on-off valve 20 opened during heating operation, and from the absorber 5, the refrigerant vapor in the gas-liquid two-phase flow. Is sent to the evaporator 4, and the evaporator 4 serves as a condenser to heat the water in the take-out pipe 18 which is piped therein, and the heated hot water is used as a heating source. .

【0034】また、前記蒸発器4内で前記取出管18と
の熱交換に伴い凝縮された冷媒は、前記蒸発器4の内底
部に接続された前記連通管23から暖房運転時に開放さ
れる前記開閉弁24を経て前記吸収器5の内底部へと戻
され、前記バイパス管19から前記吸収器5内に供給さ
れた気液2相流中の吸収溶液に吸収され、稀溶液となっ
て前記溶液ポンプ15により前記稀溶液管16から高温
発生器1Aへと戻される。
The refrigerant condensed in the evaporator 4 due to heat exchange with the take-out pipe 18 is released from the communicating pipe 23 connected to the inner bottom of the evaporator 4 during heating operation. It is returned to the inner bottom portion of the absorber 5 via the on-off valve 24, and is absorbed by the absorbing solution in the gas-liquid two-phase flow supplied from the bypass pipe 19 into the absorber 5 to become a dilute solution. The solution pump 15 returns the diluted solution pipe 16 to the high temperature generator 1A.

【0035】以上のように前記高温発生器1Aと吸収器
5との間に凝縮器3を側路し、気液2相流で前記吸収器
5にバイパスするバイパス管19を設けて、該バイパス
管19に温水取出時開き、冷水取出時閉じる1つの開閉
弁20を介装し、温水取出運転時に、前記開閉弁20を
開き前記バイパス管19を介して前記高温発生器1Aで
発生する冷媒蒸気と吸入溶液との気液2相流を前記吸収
器5側へと流入させて温水取出しを行えるようにしたか
ら、図6に示した従来例のように冷媒蒸気分岐管Pと溶
液分岐管Rとの2系統を各別に設けていたものに比較し
て配管を簡単にできると共に、開閉弁を1つ減少できる
のである。
As described above, the bypass pipe 19 is provided between the high temperature generator 1A and the absorber 5 to bypass the condenser 3 and bypass the absorber 5 with a gas-liquid two-phase flow. The refrigerant vapor generated in the high-temperature generator 1A via the bypass pipe 19 is opened in the pipe 19 through one opening / closing valve 20 which is opened during hot water extraction and closed during cold water extraction. Since a two-phase gas-liquid flow of the suction solution and the suction solution is made to flow into the absorber 5 side so that hot water can be taken out, the refrigerant vapor branch pipe P and the solution branch pipe R as in the conventional example shown in FIG. It is possible to simplify the piping and reduce the number of on-off valves by one compared to the case where the two systems are separately provided.

【0036】従って、真空洩れの原因となる開閉弁を減
少できるから真空洩れによる能力ダウンを少なくできる
し、また、真空洩れによる空気の侵入で生ずる腐食の問
題も少なくでき、その信頼性を向上できると共に冷温水
取出切換えの操作性も向上できるのである。
Therefore, since the number of on-off valves that cause vacuum leakage can be reduced, it is possible to reduce the performance reduction due to vacuum leakage, and also to reduce the problem of corrosion caused by the invasion of air due to vacuum leakage and improve its reliability. At the same time, the operability of switching between hot and cold water extraction can be improved.

【0037】また、以上の実施例のように、前記高温発
生器1Aに前記バイパス管19を接続するにあたって、
前記高温発生器1Aにおける吸収溶液の液面位置で、該
高温発生器1A内における吸収溶液の液域と冷媒蒸気の
ガス域とに跨がって設ける液面検出器21の側部に前記
バイパス管19を接続する場合には、簡単な構成で前記
開閉弁20を開いたとき、前記バイパス管19を介して
前記高温発生器1Aで発生する気液2相流を前記吸収器
5側に確実に送ることができ、全体としてその構成を合
理的に簡単化できコストダウンを有効に図れるのであ
る。
When connecting the bypass pipe 19 to the high temperature generator 1A as in the above embodiment,
At the liquid level position of the absorbing solution in the high temperature generator 1A, the bypass is provided on a side portion of the liquid level detector 21 provided across the liquid region of the absorbing solution and the gas region of the refrigerant vapor in the high temperature generator 1A. When the pipe 19 is connected, when the on-off valve 20 is opened with a simple structure, the gas-liquid two-phase flow generated in the high temperature generator 1A via the bypass pipe 19 is surely transferred to the absorber 5 side. Therefore, the structure can be reasonably simplified and the cost can be effectively reduced as a whole.

【0038】さらに、前記バイパス管19を前記高温発
生器1Aに接続するにあたっては、図2で示したよう
に、前記バイパス管19の接続部19aを前記高温発生
器1A内における吸収溶液の液域から内方に突入させ、
その突入部位を上方側に屈曲させて、その先端部19b
を前記高温発生器1A内における冷媒蒸気のガス域に開
口させると共に、前記液域への突入部位で前記先端部1
9bから所定距離だけ離れた下方位置に、前記液域に開
口する溶液取入口19cを形成するようにしてもよい。
Further, when connecting the bypass pipe 19 to the high temperature generator 1A, as shown in FIG. 2, the connecting portion 19a of the bypass pipe 19 is connected to the liquid region of the absorbing solution in the high temperature generator 1A. From inside,
The tip portion 19b is formed by bending the entry portion upward.
Is opened in the gas region of the refrigerant vapor in the high temperature generator 1A, and the tip portion 1 is formed at the position where it enters the liquid region.
You may make it form the solution inlet 19c which opens in the said liquid area in the downward position which is separated from 9b by a predetermined distance.

【0039】以上の構成とする場合には、前記高温発生
器1A内の液域に臨む前記取入口19cと、同ガス域に
臨む前記接続部19の先端部19bとの間に所定距離を
確保することが可能となって、前記高温発生器1Aの液
面に若干の高低変動があっても、温水取出運転時に前記
高温発生器1A内の気液2相流を前記バイパス管19を
介して前記吸収器5側に確実に送ることができる。
In the case of the above configuration, a predetermined distance is secured between the inlet 19c facing the liquid region in the high temperature generator 1A and the tip end 19b of the connecting portion 19 facing the gas region. Therefore, even if the liquid level of the high temperature generator 1A varies slightly, the gas-liquid two-phase flow in the high temperature generator 1A is passed through the bypass pipe 19 during the hot water extraction operation. It can be reliably sent to the absorber 5 side.

【0040】さらに、図3で示したように、前記吸収器
5の外部側に、該吸収器5内と連通する低圧ボックス5
2を設け、この低圧ボックス52内に前記バイパス管1
9の途中を介入させ、この介入部位に前記開閉弁20を
介装するのが好ましい。斯くすることにより前記開閉弁
20における真空洩れを少なくでき、開閉弁の使用数減
少と相俟って能力ダウンや腐食の問題をより有効に解消
できるのである。
Further, as shown in FIG. 3, the low pressure box 5 communicating with the inside of the absorber 5 is provided outside the absorber 5.
2 is provided, and the bypass pipe 1 is provided in the low pressure box 52.
It is preferable to intervene in the middle of 9 and insert the opening / closing valve 20 at the intervention site. By doing so, vacuum leakage in the on-off valve 20 can be reduced, and in combination with the reduction in the number of use of the on-off valve, the problems of performance reduction and corrosion can be solved more effectively.

【0041】また、図3に示した実施例では、前記バイ
パス管19の一端側を前記高温発生器1Aから延びる中
間溶液管9の途中に接続し、かつ、前記バイパス管19
の途中で前記開閉弁20に対する高温発生器1A側に蒸
気エゼクター26を設け、この蒸気エゼクター26に前
記冷媒蒸気管7から分岐する分岐蒸気管71を接続する
ようにしている。また、前記バイパス管19における前
記蒸気エゼクター26と開閉弁20との間には逆止弁1
9dを介装させると共に、前記蒸発器4の液部に途中に
逆止弁27aを備えた冷媒液管27を接続して、この冷
媒液管27の先端側を前記バイパス管19における開閉
弁20と前記逆止弁19dとの間に突入し、該エゼクタ
ー28を構成している。
In the embodiment shown in FIG. 3, one end of the bypass pipe 19 is connected to the middle of the intermediate solution pipe 9 extending from the high temperature generator 1A, and the bypass pipe 19 is connected.
A steam ejector 26 is provided on the side of the high-temperature generator 1A with respect to the on-off valve 20, and a branch steam pipe 71 branched from the refrigerant steam pipe 7 is connected to the steam ejector 26. A check valve 1 is provided between the steam ejector 26 and the on-off valve 20 in the bypass pipe 19.
9d is interposed, and a refrigerant liquid pipe 27 having a check valve 27a is connected to the liquid portion of the evaporator 4, and the tip end side of the refrigerant liquid pipe 27 is provided with an opening / closing valve 20 in the bypass pipe 19. And the check valve 19d, which constitutes the ejector 28.

【0042】以上の構成とする場合にも、前記開閉弁2
0を開いたとき、前記蒸気エゼクター26のエゼクター
作用により前記分岐蒸気管71からの蒸気冷媒と前記バ
イパス管19からの冷媒溶液とが混合されて気液2相流
となり、この気液2相流を前記バイパス管19を介して
開閉弁20から前記吸収器5側に確実に送ることができ
る。また、図4で示したように、前記バイパス管19に
おける開閉弁20の下流側に液エゼクター28を介装す
ると共に、前記蒸発器4の液部から延びる冷媒液管27
の先端側を前記液エゼクター28内に突入させるように
してもよい。
In the case of the above structure, the on-off valve 2 is also provided.
When 0 is opened, the vapor refrigerant from the branch vapor pipe 71 and the refrigerant solution from the bypass pipe 19 are mixed by the ejector action of the vapor ejector 26 to form a gas-liquid two-phase flow. Can be reliably sent from the on-off valve 20 to the absorber 5 side via the bypass pipe 19. Further, as shown in FIG. 4, a liquid ejector 28 is provided downstream of the on-off valve 20 in the bypass pipe 19, and a refrigerant liquid pipe 27 extending from the liquid portion of the evaporator 4 is provided.
The tip side of the liquid ejector 28 may be projected into the liquid ejector 28.

【0043】図3及び図4のように液エゼクター28を
設けることにより、前記高温発生器1A側と蒸発器4側
との圧力差に基づく前記液エゼクター28のエゼクター
作用により、前記冷媒液管27から前記蒸発器4内の冷
媒溶液を吸入させ得るのであるから、図1に示した実施
例のように前記連通管23に開閉弁24を介装する構成
を省略でき、より一層開閉弁の数を減少できる。
By providing the liquid ejector 28 as shown in FIGS. 3 and 4, the ejector action of the liquid ejector 28 based on the pressure difference between the high temperature generator 1A side and the evaporator 4 side causes the refrigerant liquid pipe 27 to operate. Since the refrigerant solution in the evaporator 4 can be sucked from the inside of the evaporator 4, it is possible to omit the configuration in which the opening / closing valve 24 is interposed in the communication pipe 23 as in the embodiment shown in FIG. Can be reduced.

【0044】さらに、以上の吸収式冷温水機において
は、図5に示したように、侵入する空気を前記凝縮器2
や蒸発器4及び吸収器5内から抽気する抽気装置を併用
するのが好ましい。即ち、図5に示した抽気装置は前記
凝縮器2と蒸発器4及び吸収器5の各上部側に第1〜第
3抽気管29,30,31の一端側を接続すると共に、
前記溶液ポンプ15の吐出側における稀溶液管16の途
中から稀溶液分岐管37を分岐させ、この分岐管37
を、途中にエゼクター32を介装した吸引管40,41
を介して気液分離器33に接続し、この気液分離器33
の底部液域を、液戻管34を介して吸収器5に接続し、
上部の気体域にエアパージ管35を介してパージタンク
36を接続する一方、前記吸引管40のエゼクター32
に前記第1及び第2抽気管29,30を合流した他端側
を接続し、前記吸引管41のエゼクター32に前記第3
抽気管31の他端側を接続し、更に前記分岐管37の途
中に、温水取出時には前記冷温水取出管18の温水戻り
側温水を取込み、また、冷水取出時には冷却水管17の
吸収器入口側冷却水を取込んで、前記分岐管37を流れ
る稀溶液と熱交換させる熱交換器38を設けたものであ
る。
Further, in the above absorption-type chiller-heater, as shown in FIG.
It is preferable to use the extraction device for extracting the air from inside the evaporator 4 and the absorber 5 together. That is, in the bleeding device shown in FIG. 5, one end side of the first to third bleeding pipes 29, 30, 31 is connected to the upper sides of the condenser 2, the evaporator 4 and the absorber 5, respectively, and
The dilute solution branch pipe 37 is branched from the middle of the dilute solution pipe 16 on the discharge side of the solution pump 15,
The suction pipes 40, 41 with the ejector 32 interposed therebetween.
Is connected to the gas-liquid separator 33 via the
The bottom liquid region of the is connected to the absorber 5 via the liquid return pipe 34,
A purge tank 36 is connected to the upper gas region via an air purge pipe 35, while the ejector 32 of the suction pipe 40 is connected.
Is connected to the other end side where the first and second extraction pipes 29, 30 are joined, and the ejector 32 of the suction pipe 41 is connected to the third end.
The other end of the bleed pipe 31 is connected, and in the middle of the branch pipe 37, the hot water return side of the cold / hot water take-out pipe 18 is taken in at the time of taking out hot water, and the absorber inlet side of the cooling water pipe 17 at the time of taking out cold water. A heat exchanger 38 for taking in cooling water and exchanging heat with the dilute solution flowing through the branch pipe 37 is provided.

【0045】尚、前記熱交換器38における熱交換水の
入口38aは、図示していないが、切換弁を介して前記
冷温水取出管18の温水戻り側と冷却水管17の吸収器
5への冷却水入口側とに切換可能に接続されており、ま
た出口38bは、図示していないが切換弁を介して、前
記冷温水取出管18の温水出口側と、冷却水管17の凝
縮器2からの出口側とに切換可能に接続されている。
Although not shown, the heat exchange water inlet 38a of the heat exchanger 38 is connected to the hot water return side of the cold / hot water take-out pipe 18 and the absorber 5 of the cooling water pipe 17 through a switching valve. It is switchably connected to the cooling water inlet side, and the outlet 38b is connected to a hot water outlet side of the cold / hot water take-out pipe 18 and a condenser 2 of the cooling water pipe 17 via a switching valve (not shown). The switch is connected to the outlet side of the switch.

【0046】しかして、以上の構成により抽気する場
合、冷水取出時及び温水取出時の何れにも、吸引管4
0,41を流れる高圧で、かつ高温の稀溶液が冷却水又
は温度の低い戻り温水により冷却され、この冷却で前記
吸引管40,41に介装するエゼクター32,32の蒸
気圧を下げることができるから、エゼクター32,32
による吸引と、前記各抽気管29,30,31を接続す
る蒸発器4、吸収器5及び凝縮器3における胴内圧力と
の差圧により有効に抽気できるのであって、特に温水取
出時最も圧力が低くなる蒸発器4からの抽気が可能とな
るし、また、冷水取出時最も圧力が低くなる吸収器5か
らの抽気も可能になるのである。
In the case of bleeding with the above construction, the suction pipe 4 is used both when cold water is taken out and when hot water is taken out.
The high-pressure and high-temperature dilute solution flowing through 0, 41 is cooled by cooling water or low-temperature return warm water, and this cooling can lower the vapor pressure of the ejectors 32, 32 interposed in the suction pipes 40, 41. Because it is possible, ejector 32, 32
It is possible to effectively extract the air by the differential pressure between the suction pressure by the suction pipe and the internal pressure in the evaporator 4, the absorber 5 and the condenser 3 which connect the respective extraction pipes 29, 30, 31. It is possible to bleed air from the evaporator 4 which has a low temperature, and it is also possible to bleed air from the absorber 5 which has the lowest pressure when cold water is taken out.

【0047】尚、各図の実施例においては、前記吸収器
5と前記高温発生器1Aとの間に前記バイパス管19を
接続させるようにしたが、このバイパス管19は前記蒸
発器4側に接続させるようにしてもよい。また、以上に
は、前記発生器1として高温発生器1Aと低温発生器1
Bとを用いた二重効用形のものを示したが、本発明で
は、前記高温発生器1Aだけを使用した単効用形のもの
にも適用することができる。
In each of the embodiments shown in the figures, the bypass pipe 19 is connected between the absorber 5 and the high temperature generator 1A, but the bypass pipe 19 is connected to the evaporator 4 side. You may make it connect. Further, as described above, the high temperature generator 1A and the low temperature generator 1 are used as the generator 1.
Although the double effect type using B and B is shown, the present invention can also be applied to the single effect type using only the high temperature generator 1A.

【0048】[0048]

【発明の効果】以上説明したように、本発明は、発生器
1,凝縮器2及び吸収器5,蒸発器4とを備え、この蒸
発器4から冷水又は温水を取出すようにした吸収式冷温
水機において、前記発生器1側と吸収器5及び蒸発器4
の低圧容器側との間に、前記発生器1で発生した冷媒蒸
気が前記凝縮器2を側路し前記冷媒蒸気と吸収溶液との
気液2相流で前記低圧容器にバイパスするバイパス管1
9を設けると共に、該バイパス管19に冷水取出時閉
じ、温水取出時開く開閉弁20を介装させたから、図6
に示した従来例のように冷媒蒸気分岐管Pと溶液分岐管
Rとの2系統を各別に設けていたものに比較して配管を
簡単にできると共に、開閉弁を1つ減少できるのであ
る。従って、真空漏洩れの原因となる開閉弁を減少でき
るから真空洩れによる能力ダウンを少なくできるし、ま
た、真空洩れによる空気の侵入で生ずる腐食の問題も少
なくでき、その信頼性を向上できると共に冷温水取出切
換えの操作性も向上できるのである。
As described above, the present invention is provided with the generator 1, the condenser 2, the absorber 5, and the evaporator 4, and the absorption type cold temperature in which cold water or hot water is taken out from the evaporator 4. In the water machine, the generator 1 side, the absorber 5 and the evaporator 4
A bypass pipe 1 for bypassing the refrigerant vapor generated in the generator 1 to the low pressure vessel by bypassing the condenser 2 with a gas-liquid two-phase flow of the refrigerant vapor and the absorbing solution.
9 is provided, and the bypass pipe 19 is provided with an opening / closing valve 20 that is closed when cold water is taken out and opened when hot water is taken out.
As compared with the conventional example shown in FIG. 2 in which two systems of the refrigerant vapor branch pipe P and the solution branch pipe R are separately provided, the piping can be simplified and the number of open / close valves can be reduced by one. Therefore, it is possible to reduce the number of on-off valves that cause vacuum leakage, so that the performance reduction due to vacuum leakage can be reduced, and the problem of corrosion caused by the intrusion of air due to vacuum leakage can be reduced, and the reliability can be improved and the cold temperature can be improved. The operability of switching the water extraction can be improved.

【0049】また、前記バイパス管19を、前記発生器
1における吸収溶液の液面位置で、かつ、通路開口部が
前記発生器1における吸収溶液の液域と冷媒蒸気のガス
域とに開口する位置に接続させることにより、簡単な構
成で前記発生器1で発生する冷媒蒸気と吸収溶液との気
液2相流を前記低圧容器側に確実に送ることができ、従
って、全体としてその配管構成を合理的に簡単化でき、
コストダウンが可能となるのである。
Further, the bypass pipe 19 is opened at the liquid level position of the absorbing solution in the generator 1, and the passage opening portion is opened to the liquid region of the absorbing solution and the gas region of the refrigerant vapor in the generator 1. By connecting to the position, the gas-liquid two-phase flow of the refrigerant vapor and the absorbing solution generated in the generator 1 can be surely sent to the low-pressure container side with a simple structure, and therefore the piping structure as a whole. Can be reasonably simplified,
The cost can be reduced.

【0050】さらに、前記バイパス管19の一端側を前
記発生器1に接続すると共に、この接続部19aを前記
発生器1における吸収溶液の液域から突入させて、その
突入先端部を冷媒蒸気のガス域に開口させる一方、前記
液域への突入部に、該液域に開口する溶液取入口19c
を設けることにより、この取入口19cとガス域に臨む
前記接続部19aの先端側との間に所定距離を確保でき
て、前記発生器1の液面に若干の高低変動があっても、
温水取出運転時に前記気液2相流を前記バイパス管19
を介して低圧容器側に確実に送ることができる。
Further, one end side of the bypass pipe 19 is connected to the generator 1, and the connecting portion 19a is made to protrude from the liquid region of the absorbing solution in the generator 1 so that the protruding end portion thereof is a refrigerant vapor. A solution inlet 19c that opens to the liquid region while being opened to the gas region at the protrusion to the liquid region
By providing the above, a predetermined distance can be secured between the intake 19c and the tip side of the connecting portion 19a facing the gas region, and even if the liquid level of the generator 1 slightly fluctuates,
During the hot water extraction operation, the gas-liquid two-phase flow is applied to the bypass pipe 19
Can be reliably sent to the low-pressure container side via.

【0051】また、前記バイパス管19の一端を前記発
生器1側の液部に接続すると共に、前記バイパス管19
の途中で、かつ、前記開閉弁20に対し発生器1側に蒸
気エゼクター26を介装し、この蒸気エゼクター26に
前記発生器1から凝縮器2に延びる冷媒蒸気管7から分
岐する分岐蒸気管71を接続することにより、前記開閉
弁20を開いたとき前記発生器1と低圧容器との器内圧
力差を利用し、前記蒸気エゼクター26のエゼクター作
用により前記分岐蒸気管71からの蒸気冷媒と前記バイ
パス管19からの冷媒溶液とを混合して気液2相流とな
し得るのであって、前記発生器1での液面高さに変動が
あっても、前記気液2相流を前記バイパス管19を介し
て前記低圧容器側により確実に送ることができる。さら
に、前記バイパス管19の途中に液エゼクター28を介
装すると共に、前記蒸発器4の液部に冷媒液管27を接
続して、この冷媒液管27を前記液エゼクター28に接
続することにより、暖房運転時に前記液エゼクター28
のエゼクター作用により、前記冷媒液管27を介して前
記蒸発器4内の冷媒液を吸入し、この冷媒液を前記バイ
パス管19からの気液2相流とを混合させて前記低圧容
器側に確実に送ることができ、従って、図6に示した従
来例のように第3電磁弁Uをもった第1連絡配管Tや、
第4電磁弁Wをもった第2連絡配管Vを省略でき、より
一層電磁弁(開閉弁)の個数を減少でき、電磁弁からの
真空洩れをより一層少なくできるのである。
Further, one end of the bypass pipe 19 is connected to the liquid portion on the side of the generator 1, and the bypass pipe 19 is connected.
In the middle of, and a steam ejector 26 is provided on the generator 1 side with respect to the on-off valve 20, and a branch steam pipe is branched from the refrigerant vapor pipe 7 extending from the generator 1 to the condenser 2 in the vapor ejector 26. By connecting 71, the internal pressure difference between the generator 1 and the low-pressure container is utilized when the on-off valve 20 is opened, and the ejector action of the vapor ejector 26 causes the vapor refrigerant from the branch vapor pipe 71 to flow. The gas-liquid two-phase flow can be mixed with the refrigerant solution from the bypass pipe 19 to form a gas-liquid two-phase flow. It can be reliably sent to the low-pressure container side via the bypass pipe 19. Further, by inserting the liquid ejector 28 in the middle of the bypass pipe 19, connecting the refrigerant liquid pipe 27 to the liquid portion of the evaporator 4, and connecting the refrigerant liquid pipe 27 to the liquid ejector 28. , The liquid ejector 28 during heating operation
By the ejector action of, the refrigerant liquid in the evaporator 4 is sucked through the refrigerant liquid pipe 27, and the refrigerant liquid is mixed with the gas-liquid two-phase flow from the bypass pipe 19 to the low pressure container side. Therefore, the first communication pipe T having the third solenoid valve U as in the conventional example shown in FIG.
The second communication pipe V having the fourth solenoid valve W can be omitted, the number of solenoid valves (open / close valves) can be further reduced, and the vacuum leakage from the solenoid valves can be further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸収式冷温水機を示す配管図である。FIG. 1 is a piping diagram showing an absorption chiller-heater of the present invention.

【図2】他の実施例を示す配管図である。FIG. 2 is a piping diagram showing another embodiment.

【図3】同じく他の実施例を示す配管図である。FIG. 3 is a piping diagram showing another embodiment of the present invention.

【図4】同じく他の実施例を示す配管図である。FIG. 4 is a piping diagram showing another embodiment of the present invention.

【図5】同じく他の実施例を示す配管図である。FIG. 5 is a piping diagram showing another embodiment of the present invention.

【図6】従来の吸収式冷温水機を示す配管図である。FIG. 6 is a piping diagram showing a conventional absorption chiller-heater.

【符号の説明】[Explanation of symbols]

1 発生器 2 凝縮器 4 蒸発器 5 吸収器 7 冷媒蒸気管 71 分岐蒸気管 19 バイパス管 19a 接続部 19c 取入口 20 開閉弁 26 蒸気エゼクター 27 冷媒液管 28 液エゼクター 1 Generator 2 Condenser 4 Evaporator 5 Absorber 7 Refrigerant Steam Pipe 71 Branch Steam Pipe 19 Bypass Pipe 19a Connection 19c Inlet 20 Open / Close Valve 26 Steam Ejector 27 Refrigerant Liquid Pipe 28 Liquid Ejector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 敬士 大阪府摂津市西一津屋1番1号 ダイキン 工業株式会社淀川製作所内 (72)発明者 瀧川 孝寿 大阪府摂津市西一津屋1番1号 ダイキン 工業株式会社淀川製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Keiji Fujii, 1-1 Nishiichitsuya, Settsu-shi, Osaka Daikin Industries, Ltd. Yodogawa Manufacturing Co., Ltd. (72) Takahisa Takigawa 1-1, Nishiichitsuya, Settsu-shi, Osaka Daikin Industries Yodogawa Manufacturing Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発生器(1),凝縮器(2)及び吸収器
(5),蒸発器(4)とを備え、この蒸発器(4)から
冷水又は温水を取出す吸収式冷温水機において、前記発
生器(1)側と吸収器(5)及び蒸発器(4)の低圧容
器側との間に、前記発生器(1)で発生した冷媒蒸気が
前記凝縮器(2)を側路し前記冷媒蒸気と吸収溶液との
気液2相流で前記低圧容器にバイパスするバイパス管
(19)を設けると共に、このバイパス管(19)に冷
水取出時閉じ、温水取出時開く開閉弁(20)を介装し
ていることを特徴とする吸収式冷温水機。
1. An absorption chiller-heater comprising a generator (1), a condenser (2), an absorber (5), and an evaporator (4), from which cold water or hot water is taken out. , The refrigerant vapor generated in the generator (1) bypasses the condenser (2) between the generator (1) side and the low pressure vessel side of the absorber (5) and the evaporator (4). A bypass pipe (19) for bypassing the low-pressure container by a gas-liquid two-phase flow of the refrigerant vapor and the absorbing solution is provided, and an opening / closing valve (20) which is closed when cold water is taken out and is opened when hot water is taken out (20). ) Is an absorption type chiller-heater.
【請求項2】 バイパス管(19)を、発生器(1)に
おける吸収溶液の液面位置で、かつ、通路開口部が前記
発生器(1)における吸収溶液の液域と冷媒蒸気のガス
域とに開口する位置に接続している請求項1記載の吸収
式冷温水機。
2. The bypass pipe (19) is located at the liquid level position of the absorbing solution in the generator (1), and the passage opening is in the liquid region of the absorbing solution and the gas region of the refrigerant vapor in the generator (1). The absorption chiller-heater according to claim 1, which is connected to a position opened to and.
【請求項3】 バイパス管(19)の一端側を発生器
(1)に接続すると共に、この接続部(19a)を前記
発生器(1)における吸収溶液の液域から突入させて、
その突入先端部を冷媒蒸気のガス域に開口させる一方、
前記液域への突入部に、該液域に開口する溶液取入口
(19c)を設けている請求項1記載の吸収式冷温水
機。
3. The bypass pipe (19) is connected to the generator (1) at one end side thereof, and the connecting portion (19a) is projected from the liquid region of the absorbing solution in the generator (1),
While opening the rush tip into the gas area of the refrigerant vapor,
The absorption type chiller-heater according to claim 1, wherein a solution inlet (19c) opening to the liquid region is provided at the entry portion into the liquid region.
【請求項4】 バイパス管(19)の一端側を発生器
(1)側の液部に接続すると共に、前記バイパス管(1
9)の途中で、かつ、開閉弁(20)に対し発生器側に
蒸気エゼクター(26)を介装し、この蒸気エゼクター
(26)に前記発生器(1)から凝縮器(2)に延びる
冷媒蒸気管(7)から分岐する分岐蒸気管(71)を接
続している請求項1記載の吸収式冷温水機。
4. The bypass pipe (19) is connected to one end of the bypass pipe (19) with a liquid portion of the generator (1), and the bypass pipe (1) is connected.
9) In the middle of 9), a steam ejector (26) is provided on the generator side of the on-off valve (20), and the steam ejector (26) extends from the generator (1) to the condenser (2). The absorption chiller-heater according to claim 1, wherein a branch steam pipe (71) branched from the refrigerant steam pipe (7) is connected.
【請求項5】 バイパス管(19)の途中に液エゼクタ
ー(28)を介装すると共に、蒸発器(4)の液部に冷
媒液管(27)を接続して、この冷媒液管(27)を前
記液エゼクター(28)に接続している請求項1記載の
吸収式冷温水機。
5. A refrigerant liquid pipe (27) is connected to the liquid portion of the evaporator (4) while a liquid ejector (28) is provided in the middle of the bypass pipe (19). ) Is connected to the liquid ejector (28).
JP04545693A 1993-03-05 1993-03-05 Absorption chiller / heater Expired - Fee Related JP3314441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04545693A JP3314441B2 (en) 1993-03-05 1993-03-05 Absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04545693A JP3314441B2 (en) 1993-03-05 1993-03-05 Absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH06257883A true JPH06257883A (en) 1994-09-16
JP3314441B2 JP3314441B2 (en) 2002-08-12

Family

ID=12719861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04545693A Expired - Fee Related JP3314441B2 (en) 1993-03-05 1993-03-05 Absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3314441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525869A (en) * 2012-08-13 2015-09-07 三星重工業株式会社Samsungheavy Ind.Co.,Ltd. Absorption refrigerator
JP2019215136A (en) * 2018-06-14 2019-12-19 Jfeエンジニアリング株式会社 Absorption type refrigeration unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525869A (en) * 2012-08-13 2015-09-07 三星重工業株式会社Samsungheavy Ind.Co.,Ltd. Absorption refrigerator
JP2019215136A (en) * 2018-06-14 2019-12-19 Jfeエンジニアリング株式会社 Absorption type refrigeration unit

Also Published As

Publication number Publication date
JP3314441B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
JP2825432B2 (en) Cooling and heating air conditioner
US10393417B2 (en) Heat pump unit control system with enhanced vapor injection capabilities for upstream and downstream liquid extraction
CN106403373A (en) Heat pump system, control method and refrigerating unit
CN108759142A (en) A kind of special overlapping air source high-temperature heat pump cooling/warming system
CN108458511A (en) It is a kind of to be in direct contact condensation refrigerating system with hot gas defrosting
US5027616A (en) Air-cooled absorption type cooling and heating apparatus
JP3314441B2 (en) Absorption chiller / heater
CN110671834A (en) Heat pump system and defrosting method thereof
JP3209927B2 (en) Absorption refrigeration equipment
CN210463646U (en) Heat pump system
CN107588581B (en) Heat pump unit system and flash tank structure thereof
JP2017053499A (en) Absorption type refrigerator
JP3048817B2 (en) Non-condensable gas discharge device
KR100188892B1 (en) Absorption air-conditioning apparatus
JP3416289B2 (en) Pressure difference sealing device for absorption refrigerators and water heaters
JP3318302B2 (en) Absorbent liquid concentrator and absorption refrigerator using the same
KR0180599B1 (en) Absorptive type refrigerator
JP3036755B2 (en) Absorption refrigerator
JP3031847B2 (en) Absorption air conditioner
JP4205896B2 (en) Absorption refrigerator
JPH05332632A (en) Hot water multi-circuit taking-out absorption type cold water-hot water feeding machine and automatic changing-over method for taking-out hot water
JP3429904B2 (en) Absorption refrigerator
JP2000055497A (en) Triple effect absorption type refrigerator
JPS631510B2 (en)
JPH03225167A (en) Gas extraction and discharging device for air-cooled absorption cooling and heating device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees