JP3048817B2 - Non-condensable gas discharge device - Google Patents

Non-condensable gas discharge device

Info

Publication number
JP3048817B2
JP3048817B2 JP6012853A JP1285394A JP3048817B2 JP 3048817 B2 JP3048817 B2 JP 3048817B2 JP 6012853 A JP6012853 A JP 6012853A JP 1285394 A JP1285394 A JP 1285394A JP 3048817 B2 JP3048817 B2 JP 3048817B2
Authority
JP
Japan
Prior art keywords
condensable gas
refrigerant
gas
evaporator
refrigerant liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6012853A
Other languages
Japanese (ja)
Other versions
JPH07218050A (en
Inventor
正弥 伊豆
澄雄 池田
陽子 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6012853A priority Critical patent/JP3048817B2/en
Publication of JPH07218050A publication Critical patent/JPH07218050A/en
Application granted granted Critical
Publication of JP3048817B2 publication Critical patent/JP3048817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に設けられ
る不凝縮ガス排出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-condensable gas discharge device provided in an absorption refrigerator.

【0002】[0002]

【従来の技術】例えば、実開昭60ー111854号公
報には、吸収式冷凍機内の吸収液を用いて蒸発器あるい
は吸収器内の不凝縮ガスを抽気するガス抽気装置と、こ
の抽気装置に抽気された不凝縮ガスを貯えるガス貯室
と、このガス貯室に接続され不凝縮ガス中の水素を透過
させて外部へ放出するパラジウム金属あるいはパラジウ
ム合金製の水素放出管とを備えた吸収冷凍機が開示され
ている。
2. Description of the Related Art For example, Japanese Unexamined Utility Model Publication No. 60-111854 discloses a gas bleeding device for bleeding non-condensable gas in an evaporator or an absorber using an absorbing liquid in an absorption refrigerator, and a gas bleeding device. Absorption refrigeration equipped with a gas storage chamber for storing the extracted non-condensable gas, and a hydrogen discharge tube made of palladium metal or palladium alloy connected to the gas storage chamber and transmitting hydrogen in the non-condensable gas to the outside. Machine is disclosed.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の技
術において、吸収冷凍機の運転中ガス抽気装置に水素な
どの不凝縮ガスとともに蒸発器あるいは吸収器の冷媒蒸
気が抽気され、この冷媒蒸気がガス貯室に流入すると水
素放出管の表面に冷媒蒸気が付着し、水素放出管の水素
透過量が減少して水素排出能力が低下するという問題が
発生する。そして、水素排出水素排出能力が低下した状
態が長時間継続すると、ガス貯室の圧力が上昇してガス
抽気装置の抽気能力も低下し、機器内の不凝縮ガス濃度
が上昇して再生器の温度高或いは圧力高が発生し、吸収
冷凍機の異常停止装置が働き異常停止するという問題も
発生する。
In the prior art as described above, during operation of an absorption refrigerator, refrigerant vapor of an evaporator or an absorber is extracted together with non-condensable gas such as hydrogen into a gas extraction device, and the refrigerant vapor is removed. When the gas flows into the gas storage chamber, the refrigerant vapor adheres to the surface of the hydrogen discharge tube, which causes a problem that the hydrogen permeation amount of the hydrogen discharge tube is reduced and the hydrogen discharge capability is reduced. If the state in which the hydrogen discharge capacity has been reduced continues for a long time, the pressure in the gas storage chamber increases, the bleeding capacity of the gas bleeding apparatus also decreases, the concentration of non-condensable gas in the equipment increases, and the There is also a problem that a high temperature or a high pressure is generated, and an abnormal stop device of the absorption refrigerator operates to abnormally stop.

【0004】本発明は、ガス貯室からの水素放出能力を
確保し、吸収式冷凍機の運転を安定するものである。
The present invention secures the ability to release hydrogen from a gas storage chamber and stabilizes the operation of an absorption refrigerator.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、請求項1の発明によれば、吸収器2、高
温発生器4、凝縮器7及び蒸発器1を配管接続して吸収
液及び冷媒の循環路を形成した吸収冷凍機の機内の吸収
液を用いて機内の不凝縮ガスを抽気するガス抽気装置3
7と、このガス抽気装置37に連通し抽気した不凝縮ガ
スを蓄える不凝縮ガスタンク50と、この不凝縮ガスタ
ンク50に連通し抽気し不凝縮ガス中の水素ガスを透過
させて放出するパラジウムセル51とを備えた不凝縮ガ
ス排出装置において、凝縮器7から蒸発器1へ至り凝縮
器7の冷媒液が流入する冷媒配管52を備え、この冷媒
配管52の途中に不凝縮ガスタンク50を冷却してパラ
ジウムセル51に水蒸気を付きにくくする為の熱交換器
54が設けられ且つ熱交換器より上流にオリフィス53
が設けられていることを特徴とする不凝縮ガス排出装置
を提供するものである。
According to the first aspect of the present invention, an absorber 2, a high-temperature generator 4, a condenser 7, and an evaporator 1 are connected by piping. Gas extraction device 3 for extracting non-condensable gas inside the absorption chiller using the absorption liquid inside the absorption chiller in which a circulation path for the absorption liquid and the refrigerant is formed.
7, an uncondensable gas tank 50 that communicates with the gas extraction device 37 to store the extracted non-condensable gas, and a palladium cell 51 that communicates with the non-condensable gas tank 50 to extract and permeate and release the hydrogen gas in the non-condensable gas. A refrigerant pipe 52 from the condenser 7 to the evaporator 1 and into which the refrigerant liquid of the condenser 7 flows. The non-condensable gas tank 50 is cooled in the middle of the refrigerant pipe 52. The palladium cell 51 is provided with a heat exchanger 54 for preventing water vapor from adhering thereto, and an orifice 53 is provided upstream of the heat exchanger.
Is provided, and a non-condensable gas discharge device is provided.

【0006】また、請求項2に記載された発明によれ
ば、 蒸発器1下部の冷媒液溜と蒸発器上部の冷媒液散
布装置とを配管接続し途中に冷媒液循環ポンプ21を有
した冷媒液循環配管20と、冷媒液循環ポンプの出口側
の冷媒液循環配管から分岐して凝縮器7へ至り途中に不
凝縮ガスタンク50を冷却する熱交換器62が設けられ
た冷媒配管61とを備えた不凝縮ガス排出装置を提供す
るものである。
According to the second aspect of the present invention, a refrigerant having a refrigerant liquid circulation pump 21 in the middle of a pipe connecting a refrigerant liquid reservoir at a lower part of the evaporator 1 and a refrigerant liquid spraying device at an upper part of the evaporator. A liquid circulation pipe 20 and a refrigerant pipe 61 provided with a heat exchanger 62 for branching from the refrigerant liquid circulation pipe on the outlet side of the refrigerant liquid circulation pump to the condenser 7 and cooling the non-condensable gas tank 50 on the way. And a non-condensable gas discharging device.

【0007】さらに、請求項3に記載された発明によれ
ば、蒸発器下部の冷媒液溜と蒸発器上部の冷媒液散布装
置とを配管接続し途中に冷媒液循環ポンプ21を有した
冷媒液循環配管20を備え、この冷媒液循環配管の冷媒
液循環ポンプ出口側配管は不凝縮ガスタンク50を貫通
した不凝縮ガス排出装置を提供するものである。また、
請求項4に記載された発明によれば、凝縮器7から流出
した冷媒液が蒸発した後或いは蒸発器から流出した冷媒
液が流れ不凝縮ガスタンク50を冷却する熱交換器54
と、不凝縮ガスタンク50に配管接続され途中に開閉弁
58を有したガス供給管56と、不凝縮ガスタンクの底
部に配管接続され途中に開閉弁57を有した凝縮水排出
管55とを備えた不凝縮ガス排出装置を提供するもので
ある。
Further, according to the third aspect of the present invention, the refrigerant liquid in the lower part of the evaporator and the refrigerant liquid dispersing device in the upper part of the evaporator are connected by piping, and the refrigerant liquid has a refrigerant liquid circulation pump 21 in the middle. A circulation pipe 20 is provided, and a refrigerant liquid circulation pump outlet side pipe of the refrigerant liquid circulation pipe provides an uncondensable gas discharge device penetrating the noncondensable gas tank 50. Also,
According to the invention described in claim 4, the heat exchanger 54 cools the non-condensable gas tank 50 after the refrigerant liquid flowing out of the condenser 7 evaporates or the refrigerant liquid flowing out of the evaporator flows.
A gas supply pipe 56 connected to the non-condensable gas tank 50 by piping and having an on-off valve 58 on the way, and a condensed water discharge pipe 55 connected to the bottom of the non-condensable gas tank by piping and having an on-off valve 57 on the way. A non-condensable gas discharge device is provided.

【0008】また、請求項5に記載された発明によれ
ば、凝縮器7ら流出した冷媒液が蒸発した後或いは蒸発
器1から流出した冷媒液が流れ不凝縮ガスタンク50を
冷却する熱交換器と、不凝縮ガスタンク50の底部から
ガス抽気装置37へ至り途中に開閉弁57を有した凝縮
水排出配管55とを備えた不凝縮ガス排出装置を提供す
るものである。
According to the fifth aspect of the invention, the heat exchanger cools the non-condensable gas tank 50 after the refrigerant liquid flowing out of the condenser 7 evaporates or the refrigerant liquid flowing out of the evaporator 1 flows. And a condensed water discharge pipe 55 having an on-off valve 57 on the way from the bottom of the non-condensable gas tank 50 to the gas extraction device 37.

【0009】[0009]

【作用】請求項1の発明によれば、不凝縮ガスと共に流
入した水蒸気は不凝縮ガスタンク50内に設けられ低温
の冷媒蒸気が流れる熱交換器54によって冷却され凝縮
し、パラジウムセル51の表面即ち水素透過面への水蒸
気の付着を抑えパラジウムセル51の水素排出能力を維
持することができ、この結果、機器内の不凝縮ガス特に
水素ガス濃度の上昇を回避して吸収式冷凍機の運転を安
定することが可能になる。
According to the first aspect of the present invention, the steam that has flowed in with the non-condensable gas is cooled and condensed by the heat exchanger 54 provided in the non-condensable gas tank 50 and through which the low-temperature refrigerant vapor flows. Adhesion of water vapor to the hydrogen permeable surface can be suppressed, and the hydrogen discharge capability of the palladium cell 51 can be maintained. As a result, the operation of the absorption refrigerator can be prevented by avoiding an increase in the concentration of non-condensable gas, particularly hydrogen gas, in the equipment. It becomes possible to be stable.

【0010】また、請求項2の発明によれば、不凝縮ガ
スと共に流入した水蒸気は不凝縮ガスタンク50に設け
られ低温の冷媒液が流れる熱交換器62によって冷却さ
れ凝縮し、パラジウムセル51の表面即ち水素透過面へ
の水蒸気の付着を抑えパラジウムセル51の水素排出能
力を維持することが可能になり、且つ、熱交換器62で
温度上昇した冷媒液は凝縮器7へ戻され、冷媒液溜り7
7に溜まっている冷媒液と共に蒸発器1へ流れるため、
冷媒ポンプ21から吐出した冷媒液には熱交換器62を
通過して温度上昇した冷媒液が混入することはなく、冷
媒ポンプ21から吐出した冷媒液はほとんど温度上昇す
ることなくそのまま蒸発器1で散布され、蒸発器1で冷
却効率を維持することが可能になる。
According to the second aspect of the present invention, the steam which has flowed in with the non-condensable gas is cooled and condensed by the heat exchanger 62 provided in the non-condensable gas tank 50 and through which the low-temperature refrigerant liquid flows. That is, it becomes possible to suppress the adhesion of water vapor to the hydrogen permeable surface and maintain the hydrogen discharge capability of the palladium cell 51, and the refrigerant liquid whose temperature has risen in the heat exchanger 62 is returned to the condenser 7, and the refrigerant liquid pool 7
7 flows to the evaporator 1 together with the refrigerant liquid stored in
The refrigerant liquid discharged from the refrigerant pump 21 does not mix with the refrigerant liquid whose temperature has increased through the heat exchanger 62, and the refrigerant liquid discharged from the refrigerant pump 21 has almost no temperature increase in the evaporator 1 as it is. It is sprayed and the cooling efficiency can be maintained in the evaporator 1.

【0011】また、請求項3の発明によれば、不凝縮ガ
スと共に流入した水蒸気は不凝縮ガスタンク50を貫通
し低温の冷媒液が流れる熱交換器63によって冷却され
凝縮し、パラジウムセル51の表面即ち水素透過面への
水蒸気の付着を抑えパラジウムセル51の水素排出能力
を維持することができ、この結果、機器内の不凝縮ガス
特に水素ガス濃度の上昇を回避して吸収冷温水機の運転
を安定することができ、且つ、熱交換器63には冷媒循
環配管20を流れる冷媒液の全量が流れるので、熱交換
器63での水蒸気凝縮量は増加し、不凝縮ガスタンク5
0内の水蒸気量を極僅かに抑えることができ、この結
果、パラジウムセル51の水素排出能力を一層向上する
ことが可能になる。
According to the third aspect of the present invention, the water vapor that has flowed in along with the non-condensable gas is cooled and condensed by the heat exchanger 63 through which the low-temperature refrigerant flows through the non-condensable gas tank 50, and the surface of the palladium cell 51 is condensed. That is, the adhesion of water vapor to the hydrogen permeable surface can be suppressed, and the hydrogen discharge capability of the palladium cell 51 can be maintained. As a result, the operation of the absorption chiller / heater can be performed while avoiding an increase in the concentration of non-condensable gas, particularly hydrogen gas, in the equipment. And the entire amount of the refrigerant liquid flowing through the refrigerant circulation pipe 20 flows through the heat exchanger 63, so that the amount of steam condensed in the heat exchanger 63 increases and the non-condensable gas tank 5
The amount of water vapor in 0 can be suppressed very slightly, and as a result, the hydrogen discharge capacity of the palladium cell 51 can be further improved.

【0012】また、請求項4の発明によれば、不凝縮ガ
スタンク50に溜まった凝縮水を開閉弁58及び59の
開閉を切り換えて不凝縮ガスタンクの底部から外部へ排
出ことができるので、不凝縮ガスタンク50内に凝縮水
が多量に溜まり熱交換器54まで達することを回避で
き、熱交換器54による水蒸気の凝縮作用を継続させ、
長期にわたって不凝縮ガスタンク内の水蒸気量を僅かに
抑えることが可能になる。
According to the fourth aspect of the present invention, the condensed water accumulated in the non-condensable gas tank 50 can be discharged from the bottom of the non-condensable gas tank to the outside by switching the open / close valves 58 and 59. A large amount of condensed water can be prevented from accumulating in the gas tank 50 and reaching the heat exchanger 54, and the condensation of water vapor by the heat exchanger 54 can be continued,
It becomes possible to slightly suppress the amount of water vapor in the non-condensable gas tank for a long time.

【0013】さらに、請求項5の発明によれば、ガス供
給管56及び開閉弁58を設ける必要はなく、構成を簡
略化することができ、且つ外部と連通する配管などを設
ける必要が無く吸収冷温水機の機密を一層確実に保ち外
部からの不凝縮ガスの侵入を回避することが可能にな
る。
Further, according to the fifth aspect of the present invention, there is no need to provide the gas supply pipe 56 and the on-off valve 58, so that the structure can be simplified, and there is no need to provide a pipe or the like that communicates with the outside. The confidentiality of the chiller / heater can be more reliably maintained, and invasion of non-condensable gas from the outside can be avoided.

【0014】[0014]

【実施例】以下、本発明の請求項1に関する第1の実施
例を図面に基づいて詳細に説明する。図1は冷媒に例え
ば水、吸収液(溶液)に臭化リチウム(LiBr)溶液
を用いた吸収式冷凍機である吸収冷温水機の概略構成図
であり、1は蒸発器、2は吸収器、3は蒸発器1及び吸
収器2を収納した蒸発器吸収器胴(以下、下胴とい
う)、4は例えばガスバーナ5を備え高温熱源によって
加熱される高温再生器、6は低温再生器、7は凝縮器、
8は低温再生器6及び凝縮器7を収納した低温再生器凝
縮器胴(以下、上胴という)、9は低温熱交換器、10
は高温熱交換器、11ないし15は吸収液配管、16は
吸収液配管11の途中に設けられた吸収液ポンプ、17
ないし19は冷媒配管、20は冷媒循環配管、21は冷
媒ポンプ、22はガスバ−ナ5に接続されたガス配管、
23は加熱量制御弁、24は途中に蒸発器熱交換器25
が設けられた冷水配管であり、それぞれは図1に示した
ように配管接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an absorption chiller / heater which is an absorption refrigerator using, for example, water as a refrigerant and a lithium bromide (LiBr) solution as an absorption liquid (solution), wherein 1 is an evaporator, and 2 is an absorber. Reference numeral 3 denotes an evaporator absorber body (hereinafter, referred to as a lower body) containing the evaporator 1 and the absorber 2, 4 denotes a high-temperature regenerator equipped with, for example, a gas burner 5 and is heated by a high-temperature heat source, 6 denotes a low-temperature regenerator, 7 Is a condenser,
Reference numeral 8 denotes a low-temperature regenerator condenser body (hereinafter, referred to as an upper body) housing the low-temperature regenerator 6 and the condenser 7, 9 denotes a low-temperature heat exchanger, 10
Is a high-temperature heat exchanger; 11 to 15 are absorbent pipes; 16 is an absorbent pump provided in the middle of the absorbent pipe 11;
19 to 19 are refrigerant pipes, 20 is a refrigerant circulation pipe, 21 is a refrigerant pump, 22 is a gas pipe connected to the gas burner 5,
23 is a heating amount control valve, and 24 is an evaporator heat exchanger 25 on the way.
Are provided, and are connected to each other as shown in FIG.

【0015】また、26は冷却水配管であり、この冷却
水配管26の途中に吸収器熱交換器27及び凝縮器熱交
換器28が設けられている。29は蒸発器1の冷媒溜り
30と吸収器2の吸収液溜り31とを配管接続する冷媒
バイパス管、32は開閉弁、33は吸収液配管12と吸
収器2とを接続する吸収液バイパス管、34は開閉弁、
35は冷媒配管17と吸収器2とを接続する冷媒蒸気バ
イパス管、36は開閉弁であり、各開閉弁32、34、
36は冷水の供給時に閉じ、温水の供給時に開く。
Reference numeral 26 denotes a cooling water pipe, and an absorber heat exchanger 27 and a condenser heat exchanger 28 are provided in the cooling water pipe 26. 29 is a refrigerant bypass pipe connecting the refrigerant reservoir 30 of the evaporator 1 to the absorbent reservoir 31 of the absorber 2, 32 is an on-off valve, and 33 is an absorbent bypass pipe connecting the absorbent pipe 12 and the absorber 2. , 34 is an on-off valve,
35 is a refrigerant vapor bypass pipe connecting the refrigerant pipe 17 and the absorber 2, and 36 is an on-off valve.
36 is closed when cold water is supplied and opened when hot water is supplied.

【0016】37は吸収冷温水機から抽気した不凝縮ガ
スを分離して貯留する従来周知の不凝縮ガス抽気装置で
ある。38は不凝縮ガス抽気装置37の容器であり、こ
の容器38は上部に抽気室39を、中間部に貯室40
を、下部に分離室41を備えている。そして、抽気室3
9にエゼクター42が設けられ、抽気室39から下方へ
不凝縮ガス及び吸収液の流下管39Aが延びている。抽
気室39に吸収液配管11の途中吸収液ポンプ16の吐
出側配管から分岐した吸収液供給管42の吐出端が開口
している。43は吸収液供給管42の途中に設けられ、
吸収器熱交換器27へ送られる冷却水の一部が流れて吸
収液を冷却する吸収液冷却器である。
Reference numeral 37 denotes a conventionally known non-condensable gas extraction device for separating and storing the non-condensable gas extracted from the absorption chiller / heater. Reference numeral 38 denotes a container of the non-condensable gas extraction device 37. The container 38 has an extraction chamber 39 in the upper part and a storage chamber 40 in the middle part.
Is provided with a separation chamber 41 at the bottom. And bleed chamber 3
An ejector 42 is provided at 9, and a down pipe 39 </ b> A for the non-condensable gas and the absorbing liquid extends downward from the bleed chamber 39. The discharge end of an absorption liquid supply pipe 42 branched from the discharge side pipe of the absorption liquid pump 16 in the absorption liquid pipe 11 is open to the bleed chamber 39. 43 is provided in the middle of the absorbent supply pipe 42,
An absorber cooler in which part of the cooling water sent to the absorber heat exchanger 27 flows to cool the absorber.

【0017】44は一端が吸収器2の気相部に開口し他
端が抽気室39に開口した第1の抽気管、45は一端が
凝縮器7の気相部に開口し他端が抽気室39に開口した
第2の抽気管である。46は不凝縮ガス排出管であり、
この不凝縮ガス排出管46は途中に開閉弁47を有し、
真空ポンプ(図示せず)に接続されている。48は連絡
管であり、この連絡管48の途中には開閉弁49が設け
られ一端は抽気室39に接続され他端は不凝縮ガスタン
ク50に接続されている。不凝縮ガスタンク50には例
えばパラジウムから成るパラジウムセル51が複数個接
続されている。また、52は凝縮器7の冷媒液溜り77
から蒸発器30に至る冷媒管であり、この冷媒管52の
途中には例えばオリフィスである冷媒蒸発機構53と設
けられ、この冷媒蒸発機構53より下流側の冷媒管52
の一部が不凝縮ガスタンク50内を通過し熱交換器54
として作用する。
Reference numeral 44 denotes a first bleed pipe having one end open to the gas phase of the absorber 2 and the other end open to the bleed chamber 39, and 45 denotes one end open to the gas phase of the condenser 7 and the other end to bleed. This is a second bleed tube opened to the chamber 39. 46 is a non-condensable gas discharge pipe,
This non-condensable gas discharge pipe 46 has an on-off valve 47 in the middle,
It is connected to a vacuum pump (not shown). Reference numeral 48 denotes a communication pipe. An on-off valve 49 is provided in the middle of the communication pipe 48, one end of which is connected to the bleed chamber 39, and the other end of which is connected to the non-condensable gas tank 50. A plurality of palladium cells 51 made of, for example, palladium are connected to the non-condensing gas tank 50. 52 is a refrigerant pool 77 of the condenser 7
A refrigerant pipe extending from the refrigerant evaporator 30 to the evaporator 30. A refrigerant evaporator 53, for example, an orifice is provided in the middle of the refrigerant pipe 52, and a refrigerant pipe 52 downstream of the refrigerant evaporator 53 is provided.
Is passed through the non-condensable gas tank 50 and the heat exchanger 54
Act as

【0018】さらに、不凝縮ガスタンク50には図1に
示したように凝縮水排出管55とガス供給管56とが接
続され、凝縮水排出管55とガス供給管56との途中に
は開閉弁57、58が設けられている。そして、吸収式
冷温水機の通常の運転時には開閉弁49は開いており、
開閉弁47、57及び58は閉じている。また、60は
分離室41から吸収器2の気相部へ至る吸収液戻し管で
ある。
Further, a condensed water discharge pipe 55 and a gas supply pipe 56 are connected to the non-condensable gas tank 50 as shown in FIG. 57 and 58 are provided. And, during normal operation of the absorption chiller / heater, the on-off valve 49 is open,
The on-off valves 47, 57 and 58 are closed. Reference numeral 60 denotes an absorption liquid return pipe extending from the separation chamber 41 to the gas phase of the absorber 2.

【0019】上記吸収式冷凍機の冷水供給の運転時、従
来の吸収式冷凍機と同様に高温再生器4で蒸発した冷媒
は低温再生器6を経て凝縮器7へ流れ、凝縮器熱交換器
28を流れる冷却水と熱交換して凝縮液化した後冷媒配
管19を介して蒸発器1へ流れる。そして、冷媒が蒸発
器熱交換器24を流れる水と熱交換して蒸発し、気化熱
によって蒸発器熱交換器25を流れる水が冷却される。
そして、冷水が負荷に循環する。また、蒸発器1で蒸発
した冷媒は吸収器2で吸収液に吸収される。冷媒を吸収
して濃度が薄くなった吸収液が吸収液ポンプ16の運転
によって低温熱交換器9及び高温熱交換器10を経て高
温再生器4へ送られる。高温再生器4へ送られた吸収液
はバ−ナ5によって加熱されて冷媒が蒸発し、中濃度の
吸収液が高温熱交換器10を経て低温再生器6は流れ
る。低温再生器6で吸収液は高温再生器10から冷媒配
管17を流れてきた冷媒蒸気によって加熱され、さらに
冷媒蒸気が分離され濃度が高くなる。高濃度になった吸
収液は低温熱交換器9を経て温度低下して吸収器2へ送
られ、散布される。
During the operation of supplying cold water of the absorption refrigerator, the refrigerant evaporated in the high-temperature regenerator 4 flows to the condenser 7 through the low-temperature regenerator 6 as in the case of the conventional absorption refrigerator, and the heat exchanger is connected to the condenser. After being condensed and liquefied by exchanging heat with the cooling water flowing through 28, it flows to the evaporator 1 via the refrigerant pipe 19. Then, the refrigerant exchanges heat with the water flowing through the evaporator heat exchanger 24 to evaporate, and the water flowing through the evaporator heat exchanger 25 is cooled by the heat of vaporization.
Then, cold water circulates through the load. Further, the refrigerant evaporated in the evaporator 1 is absorbed by the absorbing liquid in the absorber 2. The absorption liquid whose concentration has been reduced by absorbing the refrigerant is sent to the high-temperature regenerator 4 via the low-temperature heat exchanger 9 and the high-temperature heat exchanger 10 by the operation of the absorption liquid pump 16. The absorbing liquid sent to the high-temperature regenerator 4 is heated by the burner 5 to evaporate the refrigerant, and the medium-density absorbing liquid flows through the high-temperature heat exchanger 10 to the low-temperature regenerator 6. In the low-temperature regenerator 6, the absorbing liquid is heated by the refrigerant vapor flowing from the high-temperature regenerator 10 through the refrigerant pipe 17, and the refrigerant vapor is further separated to increase the concentration. The high-concentration absorbent is cooled down through the low-temperature heat exchanger 9 and sent to the absorber 2 where it is dispersed.

【0020】以上のように、吸収式冷凍機が運転されて
いるときの不凝縮ガスの排出運転について説明する。吸
収液ポンプ16から吐出された吸収液の一部は吸収液配
管42へ流入し、途中を吸収液冷却器43で温度低下し
て抽気室39へ送られ、エゼクタ42に吐出される。抽
気室39では吐出された吸収液によるエゼクタ作用によ
り第1の抽気管44及び第2の抽気管45を介して吸収
器2及び凝縮器7の水素ガス及びその他の酸素などの不
凝縮ガスあるいは水蒸気が抽気される。抽気された不凝
縮ガスなどは流下管39Aを吸収液と共に流下し、分離
室41にて吸収液と分離した不凝縮ガスは貯室40に溜
まる。
The operation of discharging the non-condensable gas when the absorption refrigerator is operated as described above will be described. A part of the absorbing liquid discharged from the absorbing liquid pump 16 flows into the absorbing liquid pipe 42, and the temperature thereof is lowered in the absorbing liquid cooler 43, sent to the bleed chamber 39, and discharged to the ejector 42. In the bleeding chamber 39, the ejected absorbent causes an ejector action to pass through the first bleeding pipe 44 and the second bleeding pipe 45, thereby causing the non-condensable gas such as hydrogen gas and other oxygen in the absorber 2 and the condenser 7 or water vapor. Is bled. The extracted non-condensable gas and the like flow down the downflow pipe 39A together with the absorbing liquid, and the non-condensing gas separated from the absorbing liquid in the separation chamber 41 accumulates in the storage chamber 40.

【0021】貯室40に溜まった不凝縮ガスあるいは水
蒸気は連絡管48を経て不凝縮ガスタンク50へ流れ、
不凝縮ガスのうち水素ガスはパラジウムセル51から外
部へ放出される。また、凝縮器7から冷媒管52に流入
した液冷媒は冷媒蒸発機構53にて蒸発し熱交換器54
へ流れる。このため、不凝縮ガスタンク50に流入した
水蒸気は熱交換器54にて冷却されて凝縮する。
The non-condensable gas or water vapor stored in the storage chamber 40 flows to the non-condensable gas tank 50 through the connecting pipe 48,
Among the non-condensable gas, hydrogen gas is released from the palladium cell 51 to the outside. The liquid refrigerant flowing from the condenser 7 into the refrigerant pipe 52 evaporates in the refrigerant evaporating mechanism 53 and is cooled by the heat exchanger 54.
Flows to Therefore, the steam flowing into the non-condensing gas tank 50 is cooled by the heat exchanger 54 and condensed.

【0022】以上のように不凝縮ガスタンク50に流入
した水蒸気が凝縮し、吸収式冷温水機の運転及び不凝縮
ガス抽気装置37の運転に伴い次第に不凝縮ガスタンク
50内の凝縮水の量が増加する。このため、所定期間経
過時にあるいは吸収冷温水機の定期点検時に吸収冷温水
機の運転管理者が開閉弁49を閉じ、開閉弁58を開き
不凝縮ガスタンク50にガス供給管56から例えば窒素
ガスを送る。その後に開閉弁58を閉じ開閉弁57を開
くことによって不凝縮ガスタンク50の溜まっていた凝
縮水が凝縮水排出管55を介して外部へ排出される。
As described above, the water vapor flowing into the non-condensable gas tank 50 is condensed, and the amount of condensed water in the non-condensable gas tank 50 gradually increases with the operation of the absorption chiller / heater and the operation of the non-condensable gas extraction device 37. I do. For this reason, the operator of the absorption chiller / heater closes the opening / closing valve 49, opens the opening / closing valve 58, and supplies nitrogen gas, for example, from the gas supply pipe 56 to the non-condensable gas tank 50 after a lapse of a predetermined period or during periodic inspection of the absorption chiller / heater. send. Thereafter, the on-off valve 58 is closed and the on-off valve 57 is opened, so that the condensed water stored in the non-condensable gas tank 50 is discharged to the outside through the condensed water discharge pipe 55.

【0023】凝縮水の排出後、開閉弁57を閉じ開閉弁
47を閉じた状態で下流の真空ポンプを所定時間運転す
る。その後、開閉弁47及び開閉弁49を開くことによ
って不凝縮ガスタンク50及び連絡管48内の窒素ガス
その他のガスを連絡管48、貯室40及び不凝縮ガス排
出管46を介して排出する。そして、開閉弁47を閉じ
たることによって再び不凝縮ガスが貯室40から不凝縮
ガスタンク50へ流入し上記と同様に水素ガスが排出さ
れると共に水蒸気は凝縮して不凝縮ガスタンク50に溜
まる。また、開閉弁47を閉じた後所定時間真空ポンプ
は運転を継続される。
After discharging the condensed water, the downstream vacuum pump is operated for a predetermined time while the on-off valve 57 is closed and the on-off valve 47 is closed. Thereafter, by opening the on-off valve 47 and the on-off valve 49, the nitrogen gas and other gases in the non-condensable gas tank 50 and the communication pipe 48 are discharged through the communication pipe 48, the storage chamber 40, and the non-condensable gas discharge pipe 46. Then, by closing the on-off valve 47, the non-condensable gas flows into the non-condensable gas tank 50 again from the storage chamber 40, the hydrogen gas is discharged in the same manner as described above, and the steam is condensed and accumulated in the non-condensable gas tank 50. The operation of the vacuum pump is continued for a predetermined time after the on-off valve 47 is closed.

【0024】上記実施例によれば、不凝縮ガスと共に流
入した水蒸気は不凝縮ガスタンク50内に設けられた熱
交換器54によって冷却され凝縮し、パラジウムセル5
1の表面即ち水素透過面への水蒸気の付着を抑えパラジ
ウムセル51の水素排出能力を維持することができ、こ
の結果、機器内の不凝縮ガス特に水素ガス濃度の上昇を
回避して吸収冷温水機の運転を安定することができる。
According to the above-described embodiment, the water vapor flowing in with the non-condensable gas is cooled and condensed by the heat exchanger 54 provided in the non-condensable gas tank 50, and the palladium cell 5
1 can suppress the adhesion of water vapor to the surface, that is, the hydrogen permeable surface, and can maintain the hydrogen discharge capability of the palladium cell 51. As a result, it is possible to avoid an increase in the concentration of non-condensable gas, particularly hydrogen gas, in the equipment and absorb the cold and hot water. The operation of the machine can be stabilized.

【0025】また、上記実施例おいて、不凝縮ガスタン
ク50に溜まった凝縮水を開閉弁49、58及び59の
開閉を切り換えて不凝縮ガスタンクの底部から外部へ排
出ことができるので、不凝縮ガスタンク50内に凝縮水
が多量に溜まり熱交換器54まで達することを回避で
き、この結果、熱交換器54による水蒸気の凝縮作用を
継続させ、長期にわたって不凝縮ガスタンク内の水蒸気
量を僅かに抑えることができる。
In the above embodiment, the condensed water accumulated in the non-condensable gas tank 50 can be discharged from the bottom of the non-condensable gas tank to the outside by switching the open / close valves 49, 58 and 59. A large amount of condensed water can be prevented from accumulating in the heat exchanger 50 and reaching the heat exchanger 54. As a result, the steam condensing action of the heat exchanger 54 can be continued, and the amount of water vapor in the non-condensable gas tank can be slightly suppressed for a long time. Can be.

【0026】なお、例えば凝縮水排出管55を一点鎖線
にて示したように不凝縮ガス抽気装置37の貯室40に
配管接続する。そして、所定期間毎あるいは定期点検時
に開閉弁57を開き、溜まっていた凝縮水を不凝縮ガス
抽気装置37に戻すようにしても良い。この場合には、
上記開閉弁49、ガス供給管56及び開閉弁58を設け
る必要はなく、構成を簡略化することができ、且つ外部
と連通する配管などを設ける必要が無く吸収冷温水機の
機密を一層確実に保つことができるまた、熱交換器54
を不凝縮ガスタンク50の外壁に沿って配管し、熱交換
器54からの熱伝導によって不凝縮ガスタンク50の壁
面を冷却し、内壁に水蒸気を凝縮させるようにしても良
い。
For example, the condensed water discharge pipe 55 is connected to the storage chamber 40 of the non-condensable gas bleeding device 37 as shown by a dashed line. Then, the on-off valve 57 may be opened at predetermined intervals or at the time of periodic inspection, and the accumulated condensed water may be returned to the non-condensable gas extraction device 37. In this case,
There is no need to provide the open / close valve 49, the gas supply pipe 56, and the open / close valve 58, so that the configuration can be simplified, and there is no need to provide a pipe or the like that communicates with the outside, and the confidentiality of the absorption chiller / heater is more reliably secured. Can also keep the heat exchanger 54
May be piped along the outer wall of the non-condensable gas tank 50 to cool the wall surface of the non-condensable gas tank 50 by heat conduction from the heat exchanger 54 and condense water vapor on the inner wall.

【0027】以下、本発明の請求項2に関する第2の実
施例について図2に基づいて説明する。なお、特に説明
がない構成については上記第1の実施例と同様のものと
して詳細な説明は省略する。61は冷媒循環配管20の
冷媒ポンプ21の吐出側配管の途中から分岐して凝縮器
7の気相部に至る冷媒配管であり、この冷媒配管61の
途中には不凝縮ガスタンク50内に配設された熱交換器
62が設けられている。
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. It should be noted that a configuration that is not particularly described is the same as that of the first embodiment, and a detailed description is omitted. Reference numeral 61 denotes a refrigerant pipe that branches from the middle of the discharge-side pipe of the refrigerant pump 21 of the refrigerant circulation pipe 20 and reaches the gas phase portion of the condenser 7. The refrigerant pipe 61 is disposed in the non-condensable gas tank 50 halfway. A heat exchanger 62 is provided.

【0028】吸収式冷温水機の運転時、上記第1の実施
例と同様に不凝縮ガスタンク50に不凝縮ガスが流入
し、水素ガスがパラジウムセル51を介して外部へ排出
される。また、冷媒ポンプ21から吐出された冷媒液の
一部が冷媒配管61に流入し、例えば7〜8℃の冷媒液
が熱交換器62に流れる。不凝縮ガスタンク50に不凝
縮ガスと共に流入した水蒸気は冷媒液が流れる熱交換器
62にて熱交換して冷却され、凝縮して不凝縮ガスタン
ク50の底に次第に溜まる。また、熱交換器62を通過
した冷媒液は凝縮器7へ流入し、冷媒溜り77の冷媒液
と共に蒸発器1へ流れる。
During operation of the absorption chiller / heater, non-condensable gas flows into the non-condensable gas tank 50 as in the first embodiment, and hydrogen gas is discharged to the outside through the palladium cell 51. In addition, a part of the refrigerant liquid discharged from the refrigerant pump 21 flows into the refrigerant pipe 61, and a refrigerant liquid of, for example, 7 to 8 ° C. flows into the heat exchanger 62. The water vapor flowing into the non-condensable gas tank 50 together with the non-condensable gas is cooled by exchanging heat in the heat exchanger 62 through which the refrigerant liquid flows, condensed, and gradually accumulates at the bottom of the non-condensable gas tank 50. The refrigerant liquid that has passed through the heat exchanger 62 flows into the condenser 7 and flows to the evaporator 1 together with the refrigerant liquid in the refrigerant pool 77.

【0029】以上のように不凝縮ガスタンク50に流入
した水蒸気が凝縮し、吸収式冷温水機の運転及び不凝縮
ガス抽気装置37の運転に伴い次第に不凝縮ガスタンク
50内の凝縮水の量が増加する。このため、所定期間経
過時にあるいは吸収冷温水機の定期点検時に吸収冷温水
機の運転管理者が開閉弁57を開き不凝縮ガスタンク5
0に溜まっていた凝縮水が凝縮水排出管55を介して不
凝縮ガス抽気装置37の貯室40へ流れる。凝縮水の排
出後は、開閉弁57を閉じることによって再び不凝縮ガ
スが貯室40から連絡管48を通り不凝縮ガスタンク5
0へ流入し上記と同様に水素ガスが排出されると共に水
蒸気は凝縮して不凝縮ガスタンク50に溜まる。ここ
で、上記請求項1に関する実施例と同様に不凝縮ガスタ
ンク50に開閉弁58を有したガス供給管56を接続
し、連絡管48に開閉弁49を設け、凝縮水排出管55
を外部に開口して凝縮水を外部へ排出するようにしても
良い。
As described above, the steam flowing into the non-condensable gas tank 50 is condensed, and the amount of condensed water in the non-condensable gas tank 50 gradually increases with the operation of the absorption chiller / heater and the operation of the non-condensable gas bleeder 37. I do. For this reason, the operator of the absorption chiller / heater opens the opening / closing valve 57 when the predetermined period elapses or during the periodic inspection of the absorption chiller / heater, and the non-condensable gas tank 5 is opened.
The condensed water accumulated at 0 flows through the condensed water discharge pipe 55 to the storage chamber 40 of the non-condensable gas extraction device 37. After discharging the condensed water, the on-off valve 57 is closed so that the non-condensable gas flows again from the storage chamber 40 through the connecting pipe 48 to the non-condensable gas tank 5.
0, the hydrogen gas is discharged in the same manner as described above, and the water vapor condenses and accumulates in the non-condensable gas tank 50. Here, a gas supply pipe 56 having an on-off valve 58 is connected to the non-condensable gas tank 50, an on-off valve 49 is provided on the connecting pipe 48, and a condensed water discharge pipe 55 is provided in the same manner as in the first embodiment.
May be opened to the outside to discharge the condensed water to the outside.

【0030】また、熱交換器62を不凝縮ガスタンク5
0の外壁に沿って配管し、熱交換器62からの熱伝導に
よって不凝縮ガスタンク50の壁面を冷却し、内壁に水
蒸気を凝縮させるようにしても良い。上記実施例によれ
ば、不凝縮ガスと共に流入した水蒸気は不凝縮ガスタン
ク50に設けられ低温の冷媒液が流れる熱交換器62に
よって冷却され凝縮し、パラジウムセル51の表面即ち
水素透過面への水蒸気の付着を抑えパラジウムセル51
の水素排出能力を維持することができ、この結果、機器
内の不凝縮ガス特に水素ガス濃度の上昇を回避して吸収
冷温水機の運転を安定することができる。
The heat exchanger 62 is connected to the non-condensable gas tank 5.
0 may be provided along the outer wall to cool the wall surface of the non-condensable gas tank 50 by heat conduction from the heat exchanger 62 and condense water vapor on the inner wall. According to the above-described embodiment, the water vapor flowing in with the non-condensable gas is cooled and condensed by the heat exchanger 62 provided in the non-condensable gas tank 50 through which the low-temperature refrigerant liquid flows, and the water vapor flows to the surface of the palladium cell 51, that is, the hydrogen permeable surface. Palladium cell 51
As a result, it is possible to avoid an increase in the concentration of non-condensable gas, particularly hydrogen gas, in the equipment and to stabilize the operation of the absorption chiller / heater.

【0031】また、熱交換器62で温度上昇した冷媒液
は凝縮器7へ戻され、冷媒液溜り77に溜まっている冷
媒液と共に蒸発器1へ流れるため、冷媒ポンプ21から
吐出した冷媒液には熱交換器62を通過して温度上昇し
た冷媒液が混入することはない。この結果、冷媒ポンプ
21から吐出した冷媒液はほとんど温度上昇することな
くそのまま蒸発器1で散布され、蒸発器1で冷却効率を
維持することができる。
The refrigerant liquid whose temperature has risen in the heat exchanger 62 is returned to the condenser 7 and flows to the evaporator 1 together with the refrigerant liquid stored in the refrigerant liquid reservoir 77. Does not mix with the refrigerant liquid whose temperature has increased after passing through the heat exchanger 62. As a result, the refrigerant liquid discharged from the refrigerant pump 21 is sprayed by the evaporator 1 as it is with almost no temperature rise, and the cooling efficiency can be maintained in the evaporator 1.

【0032】以下本発明の請求項3に関する第3の実施
例について図3に基づいて説明する。なお、特に説明が
ない構成については上記第1及び第2の実施例と同様の
ものとして詳細な説明は省略する。図3に破線にて示し
たように冷媒循環配管20の途中は不凝縮ガスタンク5
0のほぼ中央を上下方向に貫通して熱交換器63が形成
されている。
Hereinafter, a third embodiment of the present invention will be described with reference to FIG. It is to be noted that a configuration that is not particularly described is the same as that of the first and second embodiments, and a detailed description is omitted. As shown by the broken line in FIG.
A heat exchanger 63 is formed so as to penetrate substantially the center of 0 in the vertical direction.

【0033】吸収式冷温水機の運転時、上記第1及び第
2の実施例と同様に不凝縮ガスタンク50に不凝縮ガス
が流入し、水素ガスがパラジウムセル51を介して外部
へ排出される。また、冷媒ポンプ21から吐出された例
えば7〜8℃の冷媒液が熱交換器63に流れる。そし
て、不凝縮ガスタンク50に不凝縮ガスと共に流入した
水蒸気は冷媒液が流れる熱交換器63にて熱交換して冷
却され、熱交換器63の外壁に凝縮して下方へ流れて不
凝縮ガスタンク50の底に次第に溜まる。また、熱交換
器63を通過した冷媒液は蒸発器1で散布される。
At the time of operation of the absorption chiller / heater, as in the first and second embodiments, the non-condensable gas flows into the non-condensable gas tank 50, and the hydrogen gas is discharged to the outside through the palladium cell 51. . Further, the refrigerant liquid of, for example, 7 to 8 ° C. discharged from the refrigerant pump 21 flows to the heat exchanger 63. Then, the water vapor flowing into the non-condensable gas tank 50 together with the non-condensable gas is cooled by exchanging heat in the heat exchanger 63 in which the refrigerant liquid flows, condensed on the outer wall of the heat exchanger 63 and flows downward to be condensed. Gradually accumulates at the bottom of The refrigerant liquid that has passed through the heat exchanger 63 is sprayed by the evaporator 1.

【0034】以上のように不凝縮ガスタンク50に流入
した水蒸気が熱交換器63で凝縮し、吸収式冷温水機の
運転及び不凝縮ガス抽気装置37の運転に伴い次第に不
凝縮ガスタンク50内の凝縮水の量が増加する。このた
め、所定期間経過時にあるいは吸収冷温水機の定期点検
時に吸収冷温水機の運転管理者が開閉弁57を開き不凝
縮ガスタンク50に溜まっていた凝縮水が凝縮水排出管
55を介して不凝縮ガス抽気装置37の貯室40へ流れ
る。凝縮水の排出後は、開閉弁57を閉じることによっ
て再び不凝縮ガスが貯室40から連絡管48を通り不凝
縮ガスタンク50へ流入し上記と同様に水素ガスが排出
されると共に水蒸気は凝縮して不凝縮ガスタンク50に
溜まる。ここで、上記請求項1及び2に関する実施例と
同様に不凝縮ガスタンク50に開閉弁58を有したガス
供給管56を接続し、連絡管48に開閉弁49を設け、
凝縮水排出管55を外部に開口して凝縮水を外部へ排出
するようにしても良い。
As described above, the water vapor flowing into the non-condensable gas tank 50 is condensed in the heat exchanger 63, and gradually condenses in the non-condensable gas tank 50 with the operation of the absorption type chiller / heater and the operation of the non-condensable gas extraction device 37. The amount of water increases. For this reason, the condensed water accumulated in the non-condensable gas tank 50 is opened via the condensed water discharge pipe 55 when the operation manager of the absorption chiller / heater opens the opening / closing valve 57 when the predetermined period elapses or at the time of the periodic inspection of the absorption chiller / heater. It flows to the storage chamber 40 of the condensed gas extraction device 37. After discharging the condensed water, the on-off valve 57 is closed, whereby the non-condensable gas flows into the non-condensable gas tank 50 again from the storage chamber 40 through the connecting pipe 48, and the hydrogen gas is discharged and the water vapor condenses as described above. And accumulates in the non-condensable gas tank 50. Here, a gas supply pipe 56 having an on-off valve 58 is connected to the non-condensable gas tank 50, and an on-off valve 49 is provided on the communication pipe 48, as in the first and second embodiments.
The condensed water discharge pipe 55 may be opened to the outside to discharge the condensed water to the outside.

【0035】上記実施例によれば、不凝縮ガスと共に流
入した水蒸気は不凝縮ガスタンク50を貫通し低温の冷
媒液が流れる熱交換器63によって冷却され凝縮し、パ
ラジウムセル51の表面即ち水素透過面への水蒸気の付
着を抑えパラジウムセル51の水素排出能力を維持する
ことができ、この結果、機器内の不凝縮ガス特に水素ガ
ス濃度の上昇を回避して吸収冷温水機の運転を安定する
ことができる。
According to the above embodiment, the water vapor flowing in along with the non-condensable gas is cooled and condensed by the heat exchanger 63 through which the low-temperature refrigerant liquid flows through the non-condensable gas tank 50, and the surface of the palladium cell 51, that is, the hydrogen permeable surface. It is possible to suppress the adhesion of water vapor to the palladium cell 51 and to maintain the hydrogen discharge capability of the palladium cell 51. As a result, it is possible to avoid an increase in the concentration of non-condensable gas, particularly hydrogen gas, in the equipment and to stabilize the operation of the absorption chiller / heater. Can be.

【0036】また、熱交換器63には冷媒循環配管20
を流れる冷媒液の全量が流れるので、熱交換器63での
水蒸気凝縮量は増加し、不凝縮ガスタンク50内の水蒸
気量を極僅かに抑えることができ、この結果、パラジウ
ムセル51の水素排出能力を一層向上することができ
る。
The heat exchanger 63 has a refrigerant circulation pipe 20.
, The amount of water vapor condensed in the heat exchanger 63 increases, and the amount of water vapor in the non-condensable gas tank 50 can be suppressed very slightly. As a result, the hydrogen discharge capacity of the palladium cell 51 can be reduced. Can be further improved.

【0037】[0037]

【発明の効果】本発明は上記実施例のように構成された
不凝縮ガス排出装置であり、請求項1の発明によれば、
凝縮器から蒸発器へ至り凝縮器の冷媒液が流入する冷媒
配管の途中に不凝縮ガスタンクを冷却する熱交換器が設
けられ、この熱交換器より上流に冷媒蒸発機構が設けら
れているので、不凝縮ガスと共に不凝縮ガスタンクに流
れた水蒸気は不凝縮ガスタンクに設けられ低温の冷媒蒸
気が流れる熱交換器によって冷却され凝縮し、水素放出
器の表面即ち水素透過面への水蒸気の付着を抑え水素排
出能力を維持することができ、この結果、機器内の不凝
縮ガス特に水素ガス濃度の上昇を回避して吸収式冷凍機
の運転を安定することができる。
According to the present invention, there is provided a non-condensable gas discharging device constructed as in the above embodiment.
Since a heat exchanger that cools the non-condensable gas tank is provided in the middle of the refrigerant pipe where the refrigerant liquid of the condenser flows from the condenser to the evaporator, and a refrigerant evaporating mechanism is provided upstream of this heat exchanger, The water vapor that has flowed into the non-condensable gas tank together with the non-condensable gas is cooled and condensed by the heat exchanger provided in the non-condensable gas tank and through which low-temperature refrigerant vapor flows. The discharge capacity can be maintained, and as a result, the operation of the absorption refrigerator can be stabilized by avoiding an increase in the concentration of non-condensable gas, particularly hydrogen gas, in the equipment.

【0038】また、請求項2に記載された発明によれ
ば、 蒸発器下部の冷媒液溜と蒸発器上部の冷媒液散布
装置とを配管接続した冷媒液循環配管の途中の冷媒液循
環ポンプの出口側の冷媒液循環配管から分岐して凝縮器
へ至る冷媒配管の途中に不凝縮ガスタンクを冷却する熱
交換器が設けられているので、不凝縮ガスと共に流入し
た水蒸気は不凝縮ガスタンクに設けられた低温の冷媒液
が流れる熱交換器によって冷却され凝縮し、水素放出器
の表面即ち水素透過面への水蒸気の付着を抑え水素放出
器の水素排出能力を維持することができ、この結果、機
器内の不凝縮ガス特に水素ガス濃度の上昇を回避して吸
収冷温水機の運転を安定することができる。
According to the second aspect of the present invention, a refrigerant liquid circulation pump in the middle of a refrigerant liquid circulation pipe in which a refrigerant liquid reservoir at a lower part of an evaporator and a refrigerant liquid spraying device at an upper part of an evaporator are connected. Since a heat exchanger that cools the non-condensable gas tank is provided in the middle of the refrigerant pipe that branches from the refrigerant liquid circulation pipe on the outlet side to the condenser, the steam that flows in with the non-condensable gas is provided in the non-condensable gas tank. The cooled low-temperature refrigerant liquid is cooled and condensed by the flowing heat exchanger, and the adhesion of water vapor to the surface of the hydrogen discharger, that is, the hydrogen permeable surface can be suppressed to maintain the hydrogen discharge capability of the hydrogen discharger. The operation of the absorption chiller / heater can be stabilized by avoiding an increase in the concentration of non-condensable gas, especially hydrogen gas, therein.

【0039】また、熱交換器で温度上昇した冷媒液は凝
縮器へ戻され、凝縮器に溜まっている冷媒液と共に蒸発
器へ流れるため、蒸発器で散布される冷媒液の温度上昇
を回避でき、この結果、蒸発器で冷却効率を維持するこ
とができる。さらに、請求項3に記載された発明によれ
ば、蒸発器下部の冷媒液溜と蒸発器上部の冷媒液散布装
置とを配管接続し途中に冷媒液循環ポンプを有した冷媒
液循環配管の冷媒液循環ポンプ出口側配管は不凝縮ガス
タンクを貫通しているので、不凝縮ガスと共に不凝縮ガ
スタンクに流れた水蒸気は不凝縮ガスタンクを貫通し低
温の冷媒液が流れる冷媒液循環配管によって冷却され凝
縮し、水素放出器の表面即ち水素透過面への水蒸気の付
着を抑え水素放出器の水素排出能力を維持することがで
き、この結果、機器内の不凝縮ガス特に水素ガス濃度の
上昇を回避して吸収冷温水機の運転を安定することがで
きる。
Further, the refrigerant liquid whose temperature has risen in the heat exchanger is returned to the condenser and flows to the evaporator together with the refrigerant liquid accumulated in the condenser, so that the temperature rise of the refrigerant liquid sprayed in the evaporator can be avoided. As a result, the cooling efficiency can be maintained in the evaporator. Furthermore, according to the invention described in claim 3, the refrigerant in the refrigerant liquid circulation pipe has a refrigerant liquid circulation pump which is connected to the refrigerant liquid reservoir in the lower part of the evaporator and the refrigerant liquid dispersion device in the upper part of the evaporator by piping. Since the liquid circulation pump outlet pipe penetrates the non-condensable gas tank, the water vapor flowing into the non-condensable gas tank together with the non-condensable gas is cooled and condensed by the refrigerant liquid circulation pipe through which the low-temperature refrigerant liquid flows. Therefore, it is possible to suppress the adhesion of water vapor to the surface of the hydrogen discharger, that is, the hydrogen permeable surface, and to maintain the hydrogen discharge capability of the hydrogen discharger. The operation of the absorption chiller / heater can be stabilized.

【0040】また、不凝縮ガスタンクを貫通した冷媒循
環配管20には循環する冷媒液の全量が流れるので、不
凝縮ガスタンクでの水蒸気凝縮量は増加し、不凝縮ガス
タンク内の水蒸気量を極僅かに抑えることができ、この
結果、水素放出器の水素排出能力を一層向上することが
できる。また、請求項4に記載された発明によれば、凝
縮器から流出した冷媒液が蒸発した後或いは蒸発器から
流出した冷媒液が流れ不凝縮ガスタンクを冷却する熱交
換器と、不凝縮ガスタンクに配管接続され途中に開閉弁
を有したガス注入配管と、不凝縮ガスタンクの底部に配
管接続され途中に開閉弁を有した凝縮水排出配管とを備
えているので、不凝縮ガスタンクに溜まった凝縮水を開
閉弁の開閉を切り換えて不凝縮ガスタンクの底部から外
部へ排出ことができ、不凝縮ガスタンク内に凝縮水が多
量に溜まり熱交換器まで達することを回避でき、この結
果、熱交換器による水蒸気の凝縮作用を継続させ、長期
にわたって不凝縮ガスタンク内の水蒸気量を僅かに抑え
ることができる。
Further, since the entire amount of the circulating refrigerant liquid flows through the refrigerant circulation pipe 20 penetrating the non-condensable gas tank, the amount of water vapor condensed in the non-condensable gas tank increases, and the amount of water vapor in the non-condensable gas tank is reduced to a very small amount. As a result, the hydrogen discharge capability of the hydrogen discharger can be further improved. Further, according to the invention described in claim 4, after the refrigerant liquid flowing out of the condenser evaporates or the refrigerant liquid flowing out of the evaporator flows and cools the non-condensable gas tank, Since there is a gas injection pipe connected to the pipe and having an on-off valve in the middle and a condensed water discharge pipe connected to the bottom of the non-condensable gas tank and having an on-off valve in the middle, the condensed water accumulated in the non-condensable gas tank The open / close valve can be switched to open and close to discharge from the bottom of the non-condensable gas tank to the outside, preventing a large amount of condensed water from accumulating in the non-condensable gas tank and reaching the heat exchanger. And the amount of water vapor in the non-condensable gas tank can be slightly suppressed over a long period of time.

【0041】また、請求項5に記載された発明によれ
ば、凝縮器から流出した冷媒液が蒸発した後或いは蒸発
器から流出した冷媒液が流れ不凝縮ガスタンクを冷却す
る熱交換器と、不凝縮ガスタンクの底部からガス抽気装
置に至り途中に開閉弁を有した凝縮水排出配管とを備え
ているので、開閉弁を有した複数の配管を接続する必要
はなく、構成を簡略化することができ、且つ外部と連通
する配管などを設ける必要が無いため、吸収式冷凍機の
機密を一層確実に保つことができ、不凝縮ガスによる運
転効率の低下を抑えることができる。
According to the fifth aspect of the present invention, there is provided a heat exchanger for cooling the non-condensable gas tank after the refrigerant liquid flowing out of the condenser evaporates or the refrigerant liquid flowing out of the evaporator flows. Since there is provided a condensed water discharge pipe having an on-off valve on the way from the bottom of the condensed gas tank to the gas extraction device, there is no need to connect a plurality of pipes having an on-off valve, and the configuration can be simplified. Since there is no need to provide a pipe or the like that communicates with the outside, the confidentiality of the absorption refrigerator can be more reliably maintained, and a decrease in operating efficiency due to non-condensable gas can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の請求項1、請求項4及び請求項5に関
する一実施例を示す吸収冷温水機の概略構成図である。
FIG. 1 is a schematic configuration diagram of an absorption chiller / heater showing an embodiment according to claims 1, 4 and 5 of the present invention.

【図2】本発明の請求項2及び請求項5に関する一実施
例を示す吸収冷温水機の概略構成図である。
FIG. 2 is a schematic configuration diagram of an absorption chiller / heater showing an embodiment according to claims 2 and 5 of the present invention.

【図3】本発明の請求項3及び請求項5に関する一実施
例を示す吸収冷温水機の概略構成図である。
FIG. 3 is a schematic configuration diagram of an absorption chiller / heater showing an embodiment according to claims 3 and 5 of the present invention.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 4 高温再生器 6 低温再生器 9 低温熱交換器 10 高温熱交換器 20 冷媒循環配管 21 冷媒ポンプ 37 不凝縮ガス抽気装置 48 連絡管 49 開閉弁 50 不凝縮ガスタンク 51 パラジウムセル 52 冷媒配管 55 凝縮水排出管 56 ガス供給管 57 開閉弁 58 開閉弁 61 冷媒配管 62 熱交換器 63 熱交換器 DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 4 High temperature regenerator 6 Low temperature regenerator 9 Low temperature heat exchanger 10 High temperature heat exchanger 20 Refrigerant circulation pipe 21 Refrigerant pump 37 Non-condensable gas bleeding device 48 Communication pipe 49 On-off valve 50 Non-condensable gas tank 51 Palladium cell 52 Refrigerant pipe 55 Condensed water discharge pipe 56 Gas supply pipe 57 On-off valve 58 On-off valve 61 Refrigerant pipe 62 Heat exchanger 63 Heat exchanger

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−221671(JP,A) 特開 平3−267665(JP,A) 特開 昭60−205161(JP,A) 実開 昭50−122357(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 43/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-221671 (JP, A) JP-A-3-267665 (JP, A) JP-A-60-205161 (JP, A) 122357 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) F25B 43/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸収器、発生器、凝縮器及び蒸発器を配管
接続して吸収液及び冷媒の循環路を形成した吸収冷凍機
の機内の吸収液を用いて機内の不凝縮ガスを抽気するガ
ス抽気装置と、このガス抽気装置に連通し抽気した不凝
縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガスタ
ンクに連通し抽気し不凝縮ガス中の水素ガスを透過させ
て放出するパラジウム金属もしくはその合金製の水素放
出器とを備えた不凝縮ガス排出装置において、凝縮器か
ら蒸発器へ至り凝縮器の冷媒液が流入する冷媒配管を備
え、この冷媒配管の途中に不凝縮ガスタンクを冷却して
前記パラジウム金属もしくはその合金製の水素放出器に
水蒸気を付きにくくする為の熱交換器が設けられ且つ熱
交換器より上流に冷媒蒸発機構が設けられていることを
特徴とする不凝縮ガス排出装置。
A non-condensable gas in an absorption chiller in which an absorber, a generator, a condenser, and an evaporator are connected by piping to form a circulation path of the absorption liquid and the refrigerant is used to extract non-condensable gas in the equipment. A gas bleeding device, a non-condensable gas tank that communicates with the gas bleed device and stores extracted non-condensable gas, and a palladium metal or a palladium metal that communicates with the non-condensable gas tank and bleeds to allow hydrogen gas in the non-condensable gas to permeate and release. In a non-condensable gas discharge device comprising a hydrogen discharger made of an alloy, a refrigerant pipe from which a refrigerant liquid of the condenser flows from the condenser to the evaporator is provided, and the non-condensable gas tank is cooled in the middle of the refrigerant pipe.
For the hydrogen emitter made of the palladium metal or its alloy
A non-condensable gas discharge device comprising: a heat exchanger for preventing steam from adhering; and a refrigerant evaporation mechanism provided upstream of the heat exchanger.
【請求項2】吸収器、発生器、凝縮器及び蒸発器を配管
接続して吸収液及び冷媒の循環路を形成した吸収冷凍機
の機内の吸収液を用いて機内の不凝縮ガスを抽気するガ
ス抽気装置と、このガス抽気装置に連通し抽気した不凝
縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガスタ
ンクに連通し抽気し不凝縮ガス中の水素ガスを透過させ
て放出するパラジウム金属もしくはその合金製の水素放
出器とを備えた不凝縮ガス排出装置において、蒸発器下
部の冷媒液溜と蒸発器上部の冷媒液散布装置とを配管接
続し途中に冷媒液循環ポンプを有した冷媒液循環配管
と、冷媒液循環ポンプの出口側の冷媒液循環配管から分
岐して凝縮器に至り途中に不凝縮ガスタンクを冷却する
熱交換器が設けられた冷媒配管とを備えたことを特徴と
する不凝縮ガス排出装置。
2. The non-condensable gas in the absorption chiller in which the absorber, the generator, the condenser, and the evaporator are connected by piping to form a circulation path for the absorption liquid and the refrigerant is used to extract non-condensable gas in the equipment. A gas bleeding device, a non-condensable gas tank that communicates with the gas bleed device and stores extracted non-condensable gas, and a palladium metal or a palladium metal that communicates with the non-condensable gas tank and bleeds to allow hydrogen gas in the non-condensable gas to permeate and release. In a non-condensable gas discharge device having a hydrogen discharger made of an alloy, a refrigerant liquid circulation having a refrigerant liquid circulation pump is provided by connecting a refrigerant liquid reservoir below the evaporator and a refrigerant liquid spraying device above the evaporator by piping. A refrigerant pipe provided with a heat exchanger for branching off from the refrigerant liquid circulation pipe on the outlet side of the refrigerant liquid circulation pump to the condenser and cooling the non-condensable gas tank on the way. Condensed gas discharge Location.
【請求項3】吸収器、発生器、凝縮器及び蒸発器を配管
接続して吸収液及び冷媒の循環路を形成した吸収冷凍機
の機内の吸収液を用いて機内の不凝縮ガスを抽気するガ
ス抽気装置と、このガス抽気装置に連通し抽気した不凝
縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガスタ
ンクに連通し抽気し不凝縮ガス中の水素ガスを透過させ
て放出するパラジウム金属もしくはその合金製の水素放
出器とを備えた不凝縮ガス排出装置において、蒸発器下
部の冷媒液溜と蒸発器上部の冷媒液散布装置とを配管接
続し途中うに冷媒液循環ポンプを有した冷媒液循環配管
を備え、この冷媒液循環配管の冷媒液循環ポンプ出口側
配管は不凝縮ガスタンクを貫通したことを特徴とする不
凝縮ガス排出装置。
3. The non-condensable gas in the absorption chiller, in which the absorber, the generator, the condenser, and the evaporator are connected by piping to form a circulation path for the absorption liquid and the refrigerant, is used to extract non-condensable gas in the equipment. A gas bleeding device, a non-condensable gas tank that communicates with the gas bleed device and stores extracted non-condensable gas, and a palladium metal or a palladium metal that communicates with the non-condensable gas tank and bleeds to allow hydrogen gas in the non-condensable gas to permeate and release. In a non-condensable gas discharge device having a hydrogen discharger made of an alloy, a refrigerant liquid circulation pump having a refrigerant liquid circulation pump in the middle of connecting a refrigerant liquid reservoir below an evaporator and a refrigerant liquid spraying device above an evaporator is provided. A non-condensable gas discharge device comprising a pipe, and a refrigerant liquid circulation pump outlet side pipe of the refrigerant liquid circulation pipe penetrates the non-condensable gas tank.
【請求項4】吸収器、発生器、凝縮器及び蒸発器を配管
接続して吸収液及び冷媒の循環路を形成した吸収冷凍機
の機内の吸収液を用いて機内の不凝縮ガスを抽気するガ
ス抽気装置と、このガス抽気装置に連通し抽気した不凝
縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガスタ
ンクに連通し抽気し不凝縮ガス中の水素ガスを透過させ
て放出するパラジウム金属もしくはその合金製の水素放
出器とを備えた不凝縮ガス排出装置において、凝縮器か
ら流出した冷媒液が蒸発した後或いは蒸発器から流出し
た冷媒液が流れ不凝縮ガスタンクを冷却する熱交換器
と、貯室に配管接続され途中に開閉弁を有したガス抽入
配管と、不凝縮ガスタンクの底部に配管接続され途中に
開閉弁を有した凝縮水排出配管とを備えたことを特徴と
する不凝縮ガス排出装置。
4. An uncondensed gas in the absorption chiller, in which an absorber, a generator, a condenser, and an evaporator are connected by piping to form a circulation path for the absorption liquid and the refrigerant, is used to extract non-condensable gas in the equipment. A gas bleeding device, a non-condensable gas tank that communicates with the gas bleed device and stores extracted non-condensable gas, and a palladium metal or a palladium metal that communicates with the non-condensable gas tank and bleeds to allow hydrogen gas in the non-condensable gas to permeate and release. A non-condensable gas discharge device comprising a hydrogen discharger made of an alloy, a heat exchanger for cooling the non-condensable gas tank after the refrigerant liquid flowing out of the condenser evaporates or the refrigerant liquid flowing out of the evaporator flows therethrough; Non-condensable gas comprising a gas extraction pipe connected to a chamber and having an on-off valve on the way, and a condensed water discharge pipe connected to the bottom of the non-condensable gas tank and having an on-off valve on the way. Discharge Location.
【請求項5】吸収器、発生器、凝縮器及び蒸発器を配管
接続して吸収液及び冷媒の循環路を形成した吸収冷凍機
の機内の吸収液を用いて機内の不凝縮ガスを抽気するガ
ス抽気装置と、このガス抽気装置に連通し抽気した不凝
縮ガスを蓄える不凝縮ガスタンクと、この不凝縮ガスタ
ンクに連通し抽気し不凝縮ガス中の水素ガスを透過させ
て放出するパラジウム金属もしくはその合金製の水素放
出器とを備えた不凝縮ガス排出装置において、凝縮器か
ら流出した冷媒液が蒸発した後或いは蒸発器から流出し
た冷媒液が流れ不凝縮ガスタンクを冷却する熱交換器
と、不凝縮ガスタンクの底部に配管接続され途中に開閉
弁を有した凝縮水排出配管とを備えたことを特徴とする
不凝縮ガス排出装置。
5. An uncondensed gas in the absorption chiller in which an absorber, a generator, a condenser, and an evaporator are connected to each other by piping to form a circulation path for the absorption liquid and the refrigerant. A gas bleeding device, a non-condensable gas tank that communicates with the gas bleed device and stores extracted non-condensable gas, and a palladium metal or a palladium metal that communicates with the non-condensable gas tank and bleeds to allow hydrogen gas in the non-condensable gas to permeate and release. In a non-condensable gas discharge device including a hydrogen discharger made of an alloy, a heat exchanger for cooling the non-condensable gas tank after the refrigerant liquid flowing out of the condenser evaporates or the refrigerant liquid flowing out of the evaporator flows, A condensed water discharge pipe connected to a bottom of the condensed gas tank and having an on-off valve in the middle thereof.
JP6012853A 1994-02-04 1994-02-04 Non-condensable gas discharge device Expired - Fee Related JP3048817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6012853A JP3048817B2 (en) 1994-02-04 1994-02-04 Non-condensable gas discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6012853A JP3048817B2 (en) 1994-02-04 1994-02-04 Non-condensable gas discharge device

Publications (2)

Publication Number Publication Date
JPH07218050A JPH07218050A (en) 1995-08-18
JP3048817B2 true JP3048817B2 (en) 2000-06-05

Family

ID=11816967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6012853A Expired - Fee Related JP3048817B2 (en) 1994-02-04 1994-02-04 Non-condensable gas discharge device

Country Status (1)

Country Link
JP (1) JP3048817B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719490B2 (en) * 2000-01-25 2005-11-24 本田技研工業株式会社 Absorption refrigeration system
CN107289791B (en) * 2017-08-14 2023-09-05 江苏江锅智能装备股份有限公司 Condenser

Also Published As

Publication number Publication date
JPH07218050A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
FR2572793A1 (en) REFRIGERATION SYSTEM / HEAT PUMP WITH ABSORPTION, WITH A RESORBATOR, WITH VARIABLE EFFECT
JP2008116173A (en) Absorption type refrigerating machine
JP3048817B2 (en) Non-condensable gas discharge device
JP3209927B2 (en) Absorption refrigeration equipment
JPH03160284A (en) Extractor for absorbing refrigerator
JP2017053499A (en) Absorption type refrigerator
JP3312549B2 (en) Absorption refrigerator
US3555849A (en) Purging absorption refrigeration systems
JP3314441B2 (en) Absorption chiller / heater
JP3215248B2 (en) Refrigerant freezing prevention device for absorption chiller / heater / refrigerator
US3266267A (en) Absorption refrigeration
JP4201418B2 (en) Control method of absorption chiller / heater
JP4020569B2 (en) Absorption chiller / heater
JP3553833B2 (en) Absorption refrigerator
KR970009811B1 (en) Absorption type water cooling/heating machine by ejector circulating type
JP3036755B2 (en) Absorption refrigerator
JP3031847B2 (en) Absorption air conditioner
JP4073219B2 (en) Absorption chiller / heater
JP3138097B2 (en) Hydrogen gas discharge device of absorption refrigerator
JP2021167684A (en) Absorption refrigerator
JP2011220675A (en) Absorption refrigerating machine
JP3587216B2 (en) Bleeding device
JP2001263875A (en) Vacuum keeping device for absorption refrigerating machine
KR100188892B1 (en) Absorption air-conditioning apparatus
JPH0557511B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees