JP4205896B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4205896B2
JP4205896B2 JP2002172839A JP2002172839A JP4205896B2 JP 4205896 B2 JP4205896 B2 JP 4205896B2 JP 2002172839 A JP2002172839 A JP 2002172839A JP 2002172839 A JP2002172839 A JP 2002172839A JP 4205896 B2 JP4205896 B2 JP 4205896B2
Authority
JP
Japan
Prior art keywords
solution
gas
absorber
discharge nozzle
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002172839A
Other languages
Japanese (ja)
Other versions
JP2004019986A (en
Inventor
明 西岡
聡 三宅
正 持田
研治 山田
裕治 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP2002172839A priority Critical patent/JP4205896B2/en
Publication of JP2004019986A publication Critical patent/JP2004019986A/en
Application granted granted Critical
Publication of JP4205896B2 publication Critical patent/JP4205896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビル等の空調設備の熱源として使用される吸収冷凍機に関する。
【0002】
【従来の技術】
吸収冷凍機には吸収液として、一般に臭化リチウム水溶液が使用されている。臭化リチウム水溶液は腐食性が強い溶液であるために、インヒビター(腐食抑制剤)が加えられているが、高温環境では特に腐食が進行する。吸収液による腐食では、吸収液と本体の素材である鉄との反応から水素ガスを発生する。また、吸収冷凍機では、機器全体が大気圧より負圧であるため微量の空気が浸入する。高温再生器で発生した水素ガスを主成分とする不凝縮ガスは、冷媒蒸気とともにまず凝縮器に集まる。凝縮器に流入した冷媒蒸気は伝熱管の表面において凝縮し水滴となって落下するが、不凝縮ガスは凝縮しないため伝熱管の周りに滞留し、冷媒蒸気の流れを阻害する。
【0003】
また、一部の不凝縮ガスは、液冷媒の中に溶け込んで蒸発器に送られる。蒸発器内で開放された不凝縮ガスは、冷媒蒸気とともに吸収器に流れ込む。吸収器において、冷媒蒸気は吸収液に吸収されるが、不凝縮ガスは吸収されることがないため、伝熱管の周りに滞留し蓄積されて冷媒蒸気の流れを阻み熱交換を阻害する。したがって、不凝縮ガスの蓄積は吸収冷凍機の冷凍性能を低下させる。このため、不凝縮ガスを機器外に放出するための抽気装置が必要となる。
【0004】
従来、抽気装置として、たとえば特開平7−120110号公報、特開平9−203568号公報などに開示されるものがあり、吸収液の一部を用いてエゼクタを駆動し、冷媒蒸気とともに不凝縮ガスを抽気している(従来技術1)。
また、特開平10−89814号公報、特開平10−292959号公報などに記載されるように、吐出ノズルと吸引管とを伝熱管に垂直に配置して抽気する抽気装置も知られている(従来技術2)。
【0005】
【発明が解決しようとする課題】
上記従来技術1で知られるように、エゼクタを用いて吸収器の抽気を行うものでは、抽気するガスを吸収器からエゼクタに導く抽気配管が必要となる。不凝縮ガスを抽気するには冷媒蒸気とともに不凝縮ガスを吸引することになるため、抽気配管には不凝縮ガスの何倍もの冷媒蒸気が流れる。そのため、抽気配管には流動抵抗が生じ、吸収器とエゼクタとの間には大きな圧力損失が生じる。吸収器は、通常1/100気圧程度の真空であるため、そこより低圧の環境を作り出してガスを吸引する抽気装置にとっては、抽気配管の圧力損失は大きな効率低下の要因となる。また、吸収器の外側に備えられるエゼクタはそれ自体が大きな空間を占める。
また従来技術2では、吐出ノズルと吸引管とを伝熱管に垂直に配置する構成であるため、吸収器内の上下の部分において伝熱管が障害となり、したがって障害部分の空間において伝熱管を配置することができなくなる、ということに対して配慮されていなかった。
【0006】
本発明の目的は、抽気装置の吐出ノズルと吸引管とによって障害となる伝熱管を減らして省スペース化し、小型化できるとともに、不凝縮ガスを抽気する抽気配管を不要にし圧力損失をなくして抽気効率の向上を図り、小型化ができる吸収冷凍機を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る吸収冷凍機は、蒸発器、水平方向に複数段に延びる伝熱管を内部に配置した吸収器、凝縮器、再生器、溶液循環ポンプを接続して吸収冷凍サイクルを構成し、溶液と不凝縮ガスとを分離する気液分離器を備える吸収冷凍機において、溶液の吐出口を有する吐出ノズルとこの吐出口に対向した吸引口を有する吸引管とを同軸上に有する抽気装置を前記吸収器内に設け、前記吐出ノズルと前記吸引管とを前記伝熱管の間に平行に延びるように配置し、前記吐出ノズルの入口側を、前記溶液循環ポンプの吐出溶液の一部を導く流路に接続するとともに、前記吸引管の出口側を前記溶液循環ポンプの吸入側に導く流路に接続して、前記吐出ノズルの吐出口より噴射する溶液により吸収器内の吐出ノズルの周囲にある冷媒蒸気とともに不凝縮ガスを前記吸引管内に抽気するものである。
係る本発明のより好ましい具体的な構成例は次の通りである。
(1)前記吐出ノズル内に溶液に旋回流を与える羽根を設けること。
(2)前記(1)において、前記吸引管の直線部を、吸引管内径の4倍以上の長さにすること。
(3)前記溶液循環ポンプの吐出溶液の一部を蒸発器内で冷却した後、前記抽気装置の吐出ノズルに導くこと。
(4)前記吸収器を低圧吸収器と高圧吸収器とで構成し、前記低圧吸収器内に抽気装置を設けること。
(5)溶液により駆動される溶液駆動エゼクタ、不凝縮ガスを溜める貯気タンク、貯気タンクに接続する弁、水により駆動する水駆動エゼクタを備え、前記溶液駆動エゼクタを前記溶液循環ポンプの吐出溶液の一部を導いて駆動し、この溶液駆動エゼクタの吸引部を前記凝縮器に接続するとともに、この溶液駆動エゼクタの溶液流出部を前記気液分離器に接続し、この気液分離器より上部に前記貯気タンクを配置し、この気液分離器の気相部と貯気タンクを接続するとともに、この気液分離器の液相部に接続する配管を所定の高さまで立ち上げた後に、前記溶液循環ポンプの吸入側もしくは前記吸収器に接続し、前記貯気タンクと水により駆動する前記水駆動エゼクタの吸引部を弁を介して接続し、この水駆動エゼクタの水の流出部を前記吸収冷凍機の外部に開放し、前記吸収器で抽気した不凝縮ガスを前記溶液循環ポンプにより前記凝縮器に導き、この凝縮器から前記溶液駆動エゼクタおよび気液分離器を通じて貯気タンクに不凝縮ガスを導き、前記水駆動エゼクタで不凝縮ガスを外部に放出すること。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。
図1は、本発明の吸収冷凍機に係る第1の実施例の系統図で、吸収液に臭化リチウム水溶液を使用する例である。
吸収冷凍機は、蒸発器1、吸収器2、凝縮器3、低温再生器4、高温再生器5、溶液循環ポンプ7を主な構成機器として二重効用サイクルを構成する。その他、冷媒である水を循環させ散布するための冷媒ポンプ6、溶液同士で熱交換させる低温熱交換器8及び高温熱交換器9を備えている。
【0012】
蒸発器1には伝熱管10が配置され、管内側に冷水を流し、管外側に冷媒が散布される。蒸発器1及び吸収器2は、ほぼ同程度の1/100気圧程度の圧力であり、蒸発器1は低圧であることから冷媒が蒸発する。この時の蒸発潜熱を伝熱管10内の冷水から奪うことで冷水はより低温となる。蒸発器1で蒸発した冷媒は吸収器2へ流入し、吸収器2内で散布される溶液によって吸収される。吸収器2には伝熱管11が配置され、管内側に冷却水を流し、管外側に吸収液を散布している。吸収液が冷媒蒸気を吸収する時に生じる凝縮潜熱を冷却水が奪うことにより吸収器2での吸収作用が進行する。冷媒を吸収して濃度が低下した吸収液は溶液循環ポンプ7で加圧され、まず低温熱交換器8に流れる。低温熱交換器8では再生器5から戻ってくる高濃度の溶液と熱交換し、低濃度の溶液は温度が上昇する。
【0013】
本実施例は、低温熱交換器8を出て温度が上昇した低濃度の溶液を分岐させ、一方を低温再生器4、他方を高温再生器5側に送る、いわゆるパラレルフローを用いた二重効用サイクルを示している。高温再生器5に送られる溶液はまず、高温熱交換器9を通る。ここでは高温再生器5から戻ってくる溶液と熱交換し、さらに温度が上昇する。この温度が上昇した低濃度の溶液を高温再生器5で加熱することで、溶液から冷媒を蒸発させる。高温再生器5では、燃料(たとえば燃料ガス)を用いた燃焼熱や、ボイラーで生成した蒸気、その他の設備で生じる廃熱などを熱源に用いることで加熱する。高温再生器5で生じた冷媒蒸気は低温再生器4に送られる。
【0014】
高温再生器5で、冷媒を蒸発させて濃度の上昇した溶液は高温熱交換器9に戻り、ここで高温再生器5へ流れる低濃度の溶液と熱交換して温度が低下する。高温熱交換器9を出た高濃度の溶液は低温再生器4から戻ってくる溶液と合流して低温熱交換器8に送られる。低温再生器4には伝熱管13が配置され、管内側に高温再生器5で生じた冷媒蒸気を流し、管外側に吸収液が散布される。低温再生器4に送られた低濃度の溶液は、伝熱管13で加熱されて冷媒蒸気を蒸発させる。冷媒を蒸発させて濃度の上昇した溶液は、低温再生器4をでて高温再生器5からの戻りの溶液と合流する。合流した高濃度の溶液を低温熱交換器8に送るにあたっては、溶液ポンプを使用することもあるが、本実施例では省略している。
【0015】
低濃度の溶液と熱交換器して温度低下した高濃度の溶液は、吸収器2に送られ吸収液として再使用される。高温再生器5で生成された冷媒蒸気は、低温再生器4の伝熱管13で溶液に熱を与えて管内で凝縮し、凝縮した冷媒は凝縮器3に送られる。低温再生器4の管外で蒸発して生成された冷媒蒸気も凝縮器3に送られる。凝縮器3には伝熱管12が配置され、管内側に冷却水を流し、管外側で冷媒蒸気を冷却し、冷媒蒸気を凝縮させている。凝縮器3で生成された液冷媒は配管35によって蒸発器1に送られることで1サイクルが終了し、以下このサイクルが繰り返される。
【0016】
吸収器2内に滞留する不凝縮ガスを抽気するため、抽気装置14が吸収器2内に設けられている(本実施例では、1個の例であるが、たとえば2個であってもよい)。抽気装置14は、溶液循環ポンプ7で加圧された吐出側溶液の一部を分岐させ、配管(もしくは流路)19で送られてくる溶液を駆動流体として使用する。
【0017】
図2は、抽気装置の断面図、図3は、抽気装置の要部斜視図である。配管19に吐出ノズル33が取り付けられており、この吐出ノズル33内には旋回羽根33aが形成されて吐出溶液に旋回流を与え、溶液と不凝縮ガスとの混合を促進し、抽気効率を向上させる作用をしている。吐出ノズル33の吐出口33bに対向して吸引管20が配置され、かつ吐出ノズル33と吸引管20とは伝熱管11と平行に配置されている。吐出ノズル33と吸引管20とを、伝熱管11に平行に配置することによって抽気装置14と伝熱管11との配置上の干渉部分が少なくなり、伝熱管を垂直に配置する場合に比較して伝熱管11を、より多く配置することができ、熱交換効率を高めることができる。もしくは、同等の熱交換量を得る場合には、吸収器2を省スペース化できる。溶液を伝熱管11と平行な方向に噴射することで、冷媒蒸気とともに不凝縮ガスを吸引管20によって吸引し、抽気作用を行う。この吸引管20の内径は吐出口33bの内径より大きくする。すなわち吐出ノズルノズル33の内径を小さくすることによって噴射流速を増加させることができ、これによって吸引作用が、より効果的に行われるようになる。
【0018】
配管19によって送られた溶液は、吐出ノズル33によって噴射され、旋回流となって吐出ノズル33の周囲にある冷媒蒸気とともに不凝縮ガスを抽気して(実線矢印で示す)配管20に吸引される。吐出ノズル33から噴射された溶液が不凝縮ガスを取り込ためには、噴射された溶液と不凝縮ガスとが十分に混じり合って流れることが必要であり、この混合は配管20内で行われる。そのため、配管20の直線部(L)はその流入口から内径(R)の概ね4倍以上の長さにすることが好ましい(すなわちL>4R)。L<4Rであると、溶液と不凝縮ガスとの混合作用が低下して、不凝縮ガスが配管20内に取り込まれず、抽気効率が低下する。
【0019】
図1に戻って、不凝縮ガスを取り込んだ溶液は、溶液循環ポンプ7の吸い込み側配管20に送られる。吸収器2で抽気された不凝縮ガスは、吸収器2を出た溶液とともに溶液循環ポンプ7で加圧され、溶液の循環サイクルで運ばれる。溶液によって運ばれた不凝縮ガスは、低温再生器4及び高温再生器5で溶液が冷媒蒸気を蒸発させるのと同時に放出される。低温再生器4で放出された不凝縮ガスは、冷媒蒸気とともに凝縮器3に流れ込み、高温再生器5で放出された不凝縮ガスは冷媒蒸気とともに低温再生器4を通り、凝縮器3に流れ込む。凝縮器3に集められた不凝縮ガスは、凝縮器3に接続された抽気装置15によって抽気される。
【0020】
抽気装置15の具体的手段として、本実施例では溶液駆動のエゼクタ15を用いている。溶液循環ポンプ7の吐出溶液の一部を配管21で溶液駆動エゼクタ15に導いて溶液駆動エゼクタ15を駆動し、冷媒蒸気とともに不凝縮ガスを抽気する。抽気した溶液は、配管22内で冷媒蒸気を吸収する。配管22は気液分離器16に接続されており、不凝縮ガスと混合した溶液は気液分離器16に導かれる。ここで不凝縮ガスと溶液とは分離され、溶液はその滞留部と溶液循環ポンプ7の吸い込み側とを接続する配管23を流れ、溶液循環ポンプ7の吸い込み側配管に戻される。気液分離器16で分離された不凝縮ガスは、配管25を流れて貯気タンク17に導かれる。
【0021】
貯気タンク17の限られた容積で効率よく不凝縮ガスを貯蔵するには、不凝縮ガスを加圧できることが好ましい。気液分離器16を吸収器2より高圧に保ち、貯気タンク17の不凝縮ガスを加圧するために、気液分離器16から溶液を溶液循環ポンプ7の吸い込み側に戻す際、戻り配管23を所定の高さ(高さは、不凝縮ガスの加圧程度に応じて異なる)まで立ち上げ、立ち上げた最上部に配管24を接続して吸収器2の気相部と連通させ、配管23の最上部を吸収器2と均圧化する。その上で戻り配管23を降ろして溶液循環ポンプ7の吸い込み側に接続する。このような構成にすることで、戻り配管23の最上部と気液分離器16との高さの差分の液圧が気液分離器16にかかる。
【0022】
気液分離器16が加圧されと不凝縮ガスにも等しい圧がかかり、貯気タンク17内の不凝縮ガスが圧縮される。貯気タンク17にある程度不凝縮ガスが貯まると、水駆動のエゼクタ18を働かせ不凝縮ガスを大気に排出する。ただし通常は、貯気タンク17と水駆動エゼクタ18との間の配管26に設けた弁27を閉じておき、水駆動エゼクタ18は作動させない。弁27には、たとえば、水駆動エゼクタ18を作動させる時のみ開放するように制御された電磁弁を用い、安全のために2個直列に用いるとよい。また、同時に弁27には逆止弁も併用して、空気が器内に流入してこないよう二重に防止しておく。水駆動エゼクタ18の駆動には、蒸発器1に流す冷水を用いるのが手近にある駆動源としてよい。冷水を水駆動エゼクタ18に導く配管28には弁29を設け、通常は閉鎖しておく。貯気タンク17に不凝縮ガスが貯まり、ガスを排出する必要が生じた時のみ水駆動エゼクタ18を作動させるため、弁29には電磁弁を用いることが好ましい。
【0023】
本実施例によれば、吸収装置の吐出ノズルと吸引管とを、伝熱管に平行に配置することによって、抽気装置と伝熱管との配置上の干渉部分が少なくなり、伝熱管を垂直に配置する場合に比較して伝熱管を、より多く配置することができ、熱交換効率を高めることができる。もしくは、同等の熱交換量を得る場合には、吸収器を省スペース化し、吸収冷凍機を小型化できる。
また、不凝縮ガスを抽気する抽気作用を吸収器内で行い、抽気配管を不要にすることによって圧力損失をなくし、これによって抽気効率の向上を図ることができる。
【0024】
図4は、本発明の吸収冷凍機に係る第2の実施例の系統図である。図1と同等部分には同一符号を付して説明を省略し、異なる部分についてのみ説明する。
【0025】
本実施例は、溶液循環ポンプ7から抽気装置14の吐出ノズル33に溶液を送る配管31を、吐出ノズル33に接続する前に、蒸発器1の冷媒の滞留部に通していることである。抽気に用いる溶液を、温度の低い蒸発器1の冷媒滞留部に通すことによって、溶液を冷却することができる。溶液の噴射によって不凝縮ガスを吸引する場合、吸引する空間すなわち抽気装置14内は溶液の飽和圧以下には低下することがないため、溶液の飽和圧が高い場合は効率的な抽気を望めない。溶液は温度を下げることにより飽和圧を下げることができるため、抽気溶液の冷却は抽気効率の向上につながる。
【0026】
抽気溶液の冷却手段としては上記以外にも冷却水を用いる方法、冷水を用いる方法がある。本実施例のように冷媒を冷熱源に用いる場合においても、溶液配管31を蒸発器1の内部に通して直接配管と冷媒とを接触させて冷却する方法と、溶液配管31を蒸発器1の壁に接触させて、間接的に冷却する方法とがあるが、いずれの方法によっても有効に冷却することができる。
【0027】
また、蒸発器及び吸収器を2段構成にして、低圧の蒸発・吸収器及び高圧の蒸発・吸収器を構成する場合、抽気のための溶液を冷却することで抽気効果を高めることができる。蒸発器及び吸収器を2段構成にした場合、低圧側の吸収器により不凝縮ガスが集まり易くなるため、抽気装置を低圧側の吸収器に設けることで抽気を効果的に行えるようになる。しかし、溶液は高圧側の吸収器でも吸収を行い、濃度が低下した溶液になっているため、溶液温度に対する飽和圧力は上昇している。このため、この溶液を抽気に用いた場合の抽気能力は低い。よって、溶液を冷却して飽和圧力を下げたうえで抽気に用いることで、効率のよい抽気が可能になる。
【0028】
次に、気液分離器16からの溶液戻り配管32を吸収器2に接続していることである。この場合、配管32と吸収器2との接続場所は気相部であって、気液分離器16に液圧をかけるために、配管32を所定の高さの位置に接続している。これにより、配管を簡略化することができる。
本実施例によれば、抽気のための溶液を冷却することで抽気効果を高めることができ、また配管を簡略化することができる。
【0029】
図5は、本発明の吸収冷凍機に係る第3の実施例の系統図である。図1、2と同等部分には同一符号を付して説明を省略し、異なる部分についてのみ説明する。図1、2の実施例との違いは、凝縮器3の抽気を抽気装置33で行うことである。抽気装置33の構造は、図2に示す抽気装置と同構造のものである。
【0030】
本実施例によれば、凝縮器の抽気を図2に示す抽気装置を用いることによって、凝縮器の省スペース化を図ることができる。
【0031】
【発明の効果】
以上説明したように本発明の吸収冷凍機によれば、抽気装置の吐出ノズルと吸引管とによって障害となる伝熱管を減らして省スペース化し、小型化できるとともに、不凝縮ガスを抽気する抽気配管を不要にし圧力損失をなくして抽気効率の向上を図り、小型化できる。
【図面の簡単な説明】
【図1】本発明の吸収冷凍機に係る第1の実施例の系統図である。
【図2】図1の実施例における抽気装置の拡大図である。
【図3】図1の実施例における抽気装置の要部斜視図である。
【図4】本発明の吸収冷凍機に係る第2の実施例の系統図である。
【図5】本発明の吸収冷凍機に係る第3の実施例の系統図である。
【符号の説明】
1 蒸発器
2 吸収器
3 凝縮器
4 低温再生器
5 高温再生器
7 溶液循環ポンプ
10〜13 伝熱管
14 抽気装置
15 溶液駆動エゼクタ
16 気液分離器
17 貯気タンク
18 水駆動エゼクタ
33 ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator used as a heat source for air conditioning equipment such as buildings.
[0002]
[Prior art]
In an absorption refrigerator, an aqueous lithium bromide solution is generally used as an absorbing solution. Since an aqueous solution of lithium bromide is a highly corrosive solution, an inhibitor (corrosion inhibitor) is added, but corrosion proceeds particularly in a high temperature environment. In the corrosion by the absorbing liquid, hydrogen gas is generated from the reaction between the absorbing liquid and iron which is the material of the main body. Moreover, in the absorption refrigerator, since the whole apparatus is negative pressure from atmospheric pressure, a very small amount of air enters. The non-condensable gas mainly composed of hydrogen gas generated in the high-temperature regenerator first gathers in the condenser together with the refrigerant vapor. The refrigerant vapor flowing into the condenser is condensed on the surface of the heat transfer tube and falls as water droplets, but the non-condensable gas does not condense and stays around the heat transfer tube, thereby obstructing the flow of the refrigerant vapor.
[0003]
Some non-condensable gases are dissolved in the liquid refrigerant and sent to the evaporator. The noncondensable gas released in the evaporator flows into the absorber together with the refrigerant vapor. In the absorber, the refrigerant vapor is absorbed by the absorption liquid, but the non-condensable gas is not absorbed. Therefore, the refrigerant vapor stays and accumulates around the heat transfer tube to block the flow of the refrigerant vapor and inhibit heat exchange. Therefore, accumulation of non-condensable gas reduces the refrigeration performance of the absorption refrigerator. For this reason, the extraction apparatus for discharging | emitting noncondensable gas out of an apparatus is needed.
[0004]
Conventionally, as a bleeder, there are those disclosed in, for example, JP-A-7-120110, JP-A-9-203568, etc., and an ejector is driven using a part of the absorbing liquid, and a non-condensable gas together with refrigerant vapor (Prior art 1).
In addition, as described in JP-A-10-89814, JP-A-10-292959, and the like, there is also known an extraction device that performs extraction by arranging a discharge nozzle and a suction tube perpendicular to a heat transfer tube ( Prior art 2).
[0005]
[Problems to be solved by the invention]
As known from the prior art 1, in the case where the absorber is extracted using an ejector, an extraction pipe for guiding the extracted gas from the absorber to the ejector is required. In order to extract the non-condensable gas, the non-condensable gas is sucked together with the refrigerant vapor. Therefore, the refrigerant vapor flows many times as much as the non-condensable gas in the extraction pipe. Therefore, flow resistance is generated in the bleed piping, and a large pressure loss is generated between the absorber and the ejector. Since the absorber is normally a vacuum of about 1/100 atm, the pressure loss of the extraction pipe causes a large efficiency reduction for the extraction apparatus that creates a low-pressure environment and sucks the gas. Moreover, the ejector provided outside the absorber occupies a large space itself.
Moreover, in the prior art 2, since the discharge nozzle and the suction pipe are arranged perpendicular to the heat transfer pipe, the heat transfer pipe becomes an obstacle in the upper and lower parts in the absorber, and therefore the heat transfer pipe is arranged in the space of the obstacle part. There was no consideration for the inability to do so.
[0006]
An object of the present invention is to reduce the heat transfer tube comprising a discharge nozzle and a suction pipe thus failure of the bleed device and space saving, it is possible to miniaturize, unnecessary and pressure loss extract air pipe you bleed uncondensed gas It is an object of the present invention to provide an absorption refrigerator that can improve the extraction efficiency by reducing the size and reduce the size.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an absorption refrigerator according to the present invention is connected to an evaporator, an absorber having a heat transfer tube extending in a plurality of stages in the horizontal direction, a condenser, a regenerator, and a solution circulation pump. In an absorption refrigerator that constitutes an absorption refrigeration cycle and includes a gas-liquid separator that separates a solution and non-condensable gas, a discharge nozzle having a solution discharge port and a suction tube having a suction port opposed to the discharge port A bleed device having the same axis is provided in the absorber, the discharge nozzle and the suction pipe are arranged so as to extend in parallel between the heat transfer pipes, and the inlet side of the discharge nozzle is connected to the solution circulation pump. The absorber is connected to the flow path leading a part of the discharge solution and the outlet side of the suction pipe is connected to the flow path leading to the suction side of the solution circulation pump, and the solution is ejected from the discharge port of the discharge nozzle Around the discharge nozzle inside It is to bleed the uncondensed gas into the suction pipe with some refrigerant vapor.
A more preferable specific configuration example of the present invention is as follows.
(1) A vane for giving a swirling flow to the solution is provided in the discharge nozzle.
(2) In the above (1), the straight portion of the suction tube has a length that is at least four times the inner diameter of the suction tube.
(3) A part of the solution discharged from the solution circulation pump is cooled in the evaporator and then guided to the discharge nozzle of the extraction device.
(4) The absorber is composed of a low-pressure absorber and a high-pressure absorber, and an extraction device is provided in the low-pressure absorber.
(5) A solution driven ejector driven by a solution , an air storage tank for storing non-condensable gas, a valve connected to the air storage tank, and a water driven ejector driven by water , and discharging the solution driven ejector from the solution circulation pump A part of the solution is driven and driven , and the suction part of the solution-driven ejector is connected to the condenser, and the solution outflow part of the solution-driven ejector is connected to the gas-liquid separator. After placing the gas storage tank in the upper part, connecting the gas phase part of the gas-liquid separator and the gas storage tank, and after raising the pipe connected to the liquid phase part of the gas-liquid separator to a predetermined height , Connected to the suction side of the solution circulation pump or the absorber, and connected to the suction tank of the water-driven ejector driven by water with the storage tank through a valve, and the water outflow portion of the water-driven ejector Sucking Open to the outside of the refrigerator, said absorber in bleed the noncondensable gas guided to the condenser by the solution circulating pump, noncondensable gas in the gas storage tank through the solution driving ejector and the gas-liquid separator from the condenser And discharging the non-condensable gas to the outside with the water-driven ejector.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram of a first embodiment according to the absorption refrigerator of the present invention, which is an example in which an aqueous lithium bromide solution is used as an absorption liquid.
The absorption refrigerator constitutes a double effect cycle with the evaporator 1, the absorber 2, the condenser 3, the low temperature regenerator 4, the high temperature regenerator 5, and the solution circulation pump 7 as main components. In addition, a refrigerant pump 6 for circulating and spraying water as a refrigerant, a low-temperature heat exchanger 8 for exchanging heat between solutions, and a high-temperature heat exchanger 9 are provided.
[0012]
A heat transfer tube 10 is disposed in the evaporator 1, cold water is allowed to flow inside the tube, and a refrigerant is scattered outside the tube. The evaporator 1 and the absorber 2 have substantially the same pressure of about 1/100 atm. Since the evaporator 1 has a low pressure, the refrigerant evaporates. By taking away the latent heat of evaporation at this time from the cold water in the heat transfer tube 10, the cold water becomes cooler. The refrigerant evaporated in the evaporator 1 flows into the absorber 2 and is absorbed by the solution sprayed in the absorber 2. A heat transfer tube 11 is disposed in the absorber 2, cooling water flows inside the tube, and an absorbing solution is sprayed outside the tube. The absorption action in the absorber 2 proceeds by the cooling water taking away the latent heat of condensation that occurs when the absorbing liquid absorbs the refrigerant vapor. The absorbing solution whose concentration has been reduced by absorbing the refrigerant is pressurized by the solution circulation pump 7 and first flows into the low-temperature heat exchanger 8. The low-temperature heat exchanger 8 exchanges heat with the high-concentration solution returned from the regenerator 5, and the temperature of the low-concentration solution rises.
[0013]
In this embodiment, a low-concentration solution whose temperature has risen out of the low-temperature heat exchanger 8 is branched, and one is sent to the low-temperature regenerator 4 and the other is sent to the high-temperature regenerator 5 side. Indicates the utility cycle. The solution sent to the high temperature regenerator 5 first passes through the high temperature heat exchanger 9. Here, heat is exchanged with the solution returning from the high temperature regenerator 5, and the temperature further rises. By heating the low-concentration solution whose temperature has risen with the high-temperature regenerator 5, the refrigerant is evaporated from the solution. In the high-temperature regenerator 5, heating is performed by using, as a heat source, combustion heat using fuel (for example, fuel gas), steam generated by a boiler, waste heat generated in other facilities, and the like. The refrigerant vapor generated in the high temperature regenerator 5 is sent to the low temperature regenerator 4.
[0014]
In the high-temperature regenerator 5, the solution whose concentration has been increased by evaporating the refrigerant returns to the high-temperature heat exchanger 9, where heat is exchanged with the low-concentration solution flowing to the high-temperature regenerator 5 to decrease the temperature. The high-concentration solution exiting the high-temperature heat exchanger 9 joins with the solution returning from the low-temperature regenerator 4 and is sent to the low-temperature heat exchanger 8. A heat transfer tube 13 is disposed in the low temperature regenerator 4, the refrigerant vapor generated in the high temperature regenerator 5 flows inside the tube, and the absorbing liquid is scattered outside the tube. The low concentration solution sent to the low temperature regenerator 4 is heated by the heat transfer tube 13 to evaporate the refrigerant vapor. The solution whose concentration has been increased by evaporating the refrigerant exits the low temperature regenerator 4 and joins the returned solution from the high temperature regenerator 5. A solution pump may be used to send the combined high-concentration solution to the low-temperature heat exchanger 8, but this is omitted in this embodiment.
[0015]
The low concentration solution and the high concentration solution whose temperature has been reduced by the heat exchanger are sent to the absorber 2 and reused as the absorbing solution. The refrigerant vapor generated in the high temperature regenerator 5 heats the solution in the heat transfer tube 13 of the low temperature regenerator 4 and condenses in the tube, and the condensed refrigerant is sent to the condenser 3. Refrigerant vapor generated by evaporation outside the low-temperature regenerator 4 is also sent to the condenser 3. A heat transfer tube 12 is disposed in the condenser 3, cooling water flows inside the tube, the refrigerant vapor is cooled outside the tube, and the refrigerant vapor is condensed. The liquid refrigerant generated in the condenser 3 is sent to the evaporator 1 through the pipe 35, whereby one cycle is completed, and thereafter this cycle is repeated.
[0016]
In order to extract the non-condensable gas staying in the absorber 2, an extraction device 14 is provided in the absorber 2 (in this embodiment, it is one example, but it may be two, for example). ). The bleeder 14 branches a part of the discharge-side solution pressurized by the solution circulation pump 7 and uses the solution sent through the pipe (or channel) 19 as a driving fluid.
[0017]
FIG. 2 is a cross-sectional view of the bleeder, and FIG. 3 is a perspective view of main parts of the bleeder. A discharge nozzle 33 is attached to the pipe 19, and a swirl vane 33a is formed in the discharge nozzle 33 to give a swirl flow to the discharged solution, promoting mixing of the solution and non-condensable gas, and improving extraction efficiency. Has the effect of causing The suction tube 20 is disposed to face the discharge port 33 b of the discharge nozzle 33, and the discharge nozzle 33 and the suction tube 20 are disposed in parallel with the heat transfer tube 11. By disposing the discharge nozzle 33 and the suction pipe 20 in parallel with the heat transfer pipe 11, the interference portion on the arrangement of the extraction device 14 and the heat transfer pipe 11 is reduced, and compared with the case where the heat transfer pipe is arranged vertically. More heat transfer tubes 11 can be arranged, and the heat exchange efficiency can be increased. Or, in order to obtain an equivalent amount of heat exchange, the absorber 2 can be saved in space. By injecting the solution in a direction parallel to the heat transfer tube 11, non-condensable gas is sucked together with the refrigerant vapor by the suction tube 20, and an extraction operation is performed. The inner diameter of the suction tube 20 is made larger than the inner diameter of the discharge port 33b. That is, by reducing the inner diameter of the discharge nozzle nozzle 33, it is possible to increase the jet flow velocity, and thereby the suction action is more effectively performed.
[0018]
The solution sent by the pipe 19 is jetted by the discharge nozzle 33, is turned into a swirling flow, and the non-condensable gas is extracted together with the refrigerant vapor around the discharge nozzle 33 (indicated by the solid line arrow) and sucked into the pipe 20. . To a solution injected from the discharge nozzle 33 is free Captures noncondensable gas, and injected solution and the uncondensed gas is necessary to flow commingled well, this mixing line in the pipe 20 Is called. Therefore, it is preferable that the straight portion (L) of the pipe 20 has a length approximately four times or more the inner diameter (R) from the inlet (ie, L> 4R). When L <4R, the mixing action of the solution and the non-condensable gas is reduced, the non-condensable gas is not taken into the pipe 20, and the extraction efficiency is lowered.
[0019]
Returning to FIG. 1, the solution that has taken in the non-condensable gas is sent to the suction side pipe 20 of the solution circulation pump 7. The non-condensable gas extracted by the absorber 2 is pressurized by the solution circulation pump 7 together with the solution exiting the absorber 2 and is carried in the solution circulation cycle. The noncondensable gas carried by the solution is released at the same time as the solution evaporates the refrigerant vapor in the low temperature regenerator 4 and the high temperature regenerator 5. The non-condensable gas released from the low-temperature regenerator 4 flows into the condenser 3 together with the refrigerant vapor, and the non-condensable gas released from the high-temperature regenerator 5 flows into the condenser 3 through the low-temperature regenerator 4 together with the refrigerant vapor. The non-condensable gas collected in the condenser 3 is extracted by an extraction device 15 connected to the condenser 3.
[0020]
As a specific means of the bleeder 15 , a solution driven ejector 15 is used in this embodiment. A part of the discharge solution having a circulating pump 7 is guided to a solution driven ejector 15 through a pipe 21 by driving the solution driving the ejector 15, bleeds noncondensable gas together with the refrigerant vapor. The extracted solution absorbs the refrigerant vapor in the pipe 22. The pipe 22 is connected to the gas-liquid separator 16, and the solution mixed with the non-condensable gas is guided to the gas-liquid separator 16. Here, the non-condensable gas and the solution are separated, and the solution flows through the pipe 23 connecting the staying portion and the suction side of the solution circulation pump 7 and is returned to the suction side pipe of the solution circulation pump 7. The non-condensable gas separated by the gas-liquid separator 16 flows through the pipe 25 and is guided to the air storage tank 17.
[0021]
In order to efficiently store the non-condensable gas in the limited volume of the air storage tank 17, it is preferable that the non-condensable gas can be pressurized. When returning the solution from the gas-liquid separator 16 to the suction side of the solution circulation pump 7 in order to keep the gas-liquid separator 16 at a higher pressure than the absorber 2 and pressurize the non-condensable gas in the gas storage tank 17, the return pipe 23 Is raised to a predetermined height (the height varies depending on the degree of pressurization of the non-condensable gas), and a pipe 24 is connected to the uppermost part of the raised pipe so as to communicate with the gas phase part of the absorber 2. The top of 23 is equalized with the absorber 2. Then, the return pipe 23 is lowered and connected to the suction side of the solution circulation pump 7. By adopting such a configuration, the liquid pressure corresponding to the difference in height between the uppermost portion of the return pipe 23 and the gas-liquid separator 16 is applied to the gas-liquid separator 16.
[0022]
When the gas-liquid separator 16 is pressurized, an equal pressure is applied to the non-condensable gas, and the non-condensable gas in the gas storage tank 17 is compressed. When the non-condensable gas is stored in the air storage tank 17 to some extent, the water-driven ejector 18 is operated to discharge the non-condensable gas to the atmosphere. However, normally, the valve 27 provided in the pipe 26 between the air storage tank 17 and the water drive ejector 18 is closed, and the water drive ejector 18 is not operated. As the valve 27, for example, an electromagnetic valve controlled to be opened only when the water-driven ejector 18 is operated may be used, and two valves may be used in series for safety. At the same time, a check valve is used together with the valve 27 to prevent air from flowing into the chamber. For driving the water-driven ejector 18, it is possible to use cold water flowing through the evaporator 1 as a driving source in the immediate vicinity. A valve 29 is provided in the pipe 28 for guiding the cold water to the water-driven ejector 18 and is normally closed. In order to operate the water drive ejector 18 only when non-condensable gas is stored in the air storage tank 17 and the gas needs to be discharged, it is preferable to use an electromagnetic valve as the valve 29.
[0023]
According to the present embodiment, by disposing the discharge nozzle and the suction pipe of the absorption device in parallel with the heat transfer tube, the interference part on the arrangement of the extraction device and the heat transfer tube is reduced, and the heat transfer tube is arranged vertically. More heat transfer tubes can be arranged as compared with the case, and the heat exchange efficiency can be increased. Alternatively, when obtaining an equivalent amount of heat exchange, the absorber can be saved in space and the absorption refrigerator can be downsized.
Moreover, the extraction effect | action which extracts non-condensable gas is performed within an absorber, pressure loss is eliminated by making an extraction piping unnecessary, and it can aim at the improvement of extraction efficiency by this.
[0024]
FIG. 4 is a system diagram of a second embodiment according to the absorption refrigerator of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, description thereof will be omitted, and only different parts will be described.
[0025]
In the present embodiment, the pipe 31 that sends the solution from the solution circulation pump 7 to the discharge nozzle 33 of the bleeder 14 is passed through the refrigerant retention portion of the evaporator 1 before being connected to the discharge nozzle 33. The solution can be cooled by passing the solution used for extraction through the refrigerant retention part of the evaporator 1 having a low temperature. When sucking non-condensable gas by jetting the solution, the space to be sucked, that is, the inside of the bleeder 14 does not drop below the saturation pressure of the solution. Therefore, when the saturation pressure of the solution is high, efficient bleed cannot be expected. . Since the saturation pressure of the solution can be lowered by lowering the temperature, cooling of the extraction solution leads to improvement of extraction efficiency.
[0026]
In addition to the above, the extraction solution cooling means includes a method using cooling water and a method using cold water. Even when the refrigerant is used as a cold heat source as in this embodiment, the solution pipe 31 is passed through the inside of the evaporator 1 to directly contact the pipe with the refrigerant and cooled, and the solution pipe 31 is connected to the evaporator 1. Although there is a method of indirect cooling by contacting the wall, any method can be used for effective cooling.
[0027]
Further, when a low-pressure evaporator / absorber and a high-pressure evaporator / absorber are configured with two stages of evaporators and absorbers, the extraction effect can be enhanced by cooling the solution for extraction. When the evaporator and the absorber are configured in two stages, the non-condensable gas is easily collected by the low-pressure side absorber, so that the extraction can be effectively performed by providing the extraction device in the low-pressure side absorber. However, since the solution is also absorbed by the absorber on the high-pressure side and becomes a solution having a reduced concentration, the saturation pressure with respect to the solution temperature is increased. For this reason, the extraction capability when this solution is used for extraction is low. Therefore, efficient extraction can be performed by cooling the solution and lowering the saturation pressure and using it for extraction.
[0028]
Next, the solution return pipe 32 from the gas-liquid separator 16 is connected to the absorber 2. In this case, the connection place between the pipe 32 and the absorber 2 is a gas phase portion, and the pipe 32 is connected to a predetermined height position in order to apply a liquid pressure to the gas-liquid separator 16. Thereby, piping can be simplified.
According to the present embodiment, the extraction effect can be enhanced by cooling the solution for extraction, and the piping can be simplified.
[0029]
FIG. 5 is a system diagram of a third embodiment according to the absorption refrigerator of the present invention. Parts identical to those in FIGS. 1 and 2 are given the same reference numerals and explanation thereof is omitted, and only different parts will be explained. The difference from the embodiment of FIGS. 1 and 2 is that the extraction of the condenser 3 is performed by the extraction device 33. The structure of the bleeder 33 is the same as that of the bleeder shown in FIG.
[0030]
According to the present embodiment, space extraction of the condenser can be achieved by using the extraction device shown in FIG.
[0031]
【The invention's effect】
According to the absorption refrigerator of the present invention as described above, to reduce the heat transfer tube comprising a discharge nozzle and a suction pipe thus failure of the bleed device and space saving, we are possible to miniaturize, to bleed the noncondensable gas that extract the gas-piping to eliminate the need to eliminate the pressure loss aims to improve the extraction efficiency, cut in miniaturization.
[Brief description of the drawings]
FIG. 1 is a system diagram of a first embodiment according to the absorption refrigerator of the present invention.
FIG. 2 is an enlarged view of the bleed device in the embodiment of FIG. 1;
FIG. 3 is a perspective view of essential parts of the bleeder in the embodiment of FIG. 1;
FIG. 4 is a system diagram of a second embodiment according to the absorption refrigerator of the present invention.
FIG. 5 is a system diagram of a third embodiment according to the absorption refrigerator of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 3 Condenser 4 Low temperature regenerator 5 High temperature regenerator 7 Solution circulation pump 10-13 Heat transfer pipe 14 Extraction device 15 Solution drive ejector 16 Gas-liquid separator 17 Gas storage tank 18 Water drive ejector 33 Nozzle

Claims (6)

蒸発器、水平方向に複数段に延びる伝熱管を内部に配置した吸収器、凝縮器、再生器、溶液循環ポンプを接続して吸収冷凍サイクルを構成し、溶液と不凝縮ガスとを分離する気液分離器を備える吸収冷凍機において、
溶液の吐出口を有する吐出ノズルとこの吐出口に対向した吸引口を有する吸引管とを同軸上に有する抽気装置を前記吸収器内に設け、
前記吐出ノズルと前記吸引管とを前記伝熱管の間に平行に延びるように配置し、前記吐出ノズルの入口側を、前記溶液循環ポンプの吐出溶液の一部を導く流路に接続するとともに、前記吸引管の出口側を前記溶液循環ポンプの吸入側に導く流路に接続して、前記吐出ノズルの吐出口より噴射する溶液により吸収器内の吐出ノズルの周囲にある冷媒蒸気とともに不凝縮ガスを前記吸引管内に抽気することを特徴とする吸収冷凍機。
An absorption refrigeration cycle is configured by connecting an evaporator, an absorber having heat transfer tubes extending in multiple stages in the horizontal direction, a condenser, a regenerator, and a solution circulation pump to separate the solution and the non-condensable gas. In an absorption refrigerator equipped with a liquid separator,
A bleed device having a discharge nozzle having a solution discharge port and a suction pipe having a suction port facing the discharge port on the same axis is provided in the absorber.
The discharge nozzle and the suction pipe are arranged so as to extend in parallel between the heat transfer pipes, and the inlet side of the discharge nozzle is connected to a flow path for guiding a part of the discharge solution of the solution circulation pump, The outlet side of the suction pipe is connected to a flow path leading to the suction side of the solution circulation pump, and the non-condensable gas together with the refrigerant vapor around the discharge nozzle in the absorber by the solution sprayed from the discharge port of the discharge nozzle Is extracted into the suction pipe.
前記吐出ノズル内に溶液に旋回流を与える羽根を設けることを特徴とする請求項1記載の吸収冷凍機。  The absorption refrigerator according to claim 1, wherein a blade for providing a swirl flow to the solution is provided in the discharge nozzle. 前記吸引管の直線部を、吸引管内径の4倍以上の長さにすることを特徴とする請求項2記載の吸収冷凍機。  The absorption refrigerator according to claim 2, wherein the straight portion of the suction pipe has a length that is at least four times the inner diameter of the suction pipe. 前記溶液循環ポンプの吐出溶液の一部を蒸発器内で冷却した後、前記抽気装置の吐出ノズルに導くことを特徴とする請求項1記載の吸収冷凍機。The absorption refrigerator according to claim 1, wherein a part of the solution discharged from the solution circulation pump is cooled in an evaporator and then guided to a discharge nozzle of the extraction device. 前記吸収器を低圧吸収器と高圧吸収器とで構成し、前記低圧吸収器内に抽気装置を設けることを特徴とする請求項1記載の吸収冷凍機。  The absorption refrigerator according to claim 1, wherein the absorber comprises a low-pressure absorber and a high-pressure absorber, and an extraction device is provided in the low-pressure absorber. 溶液により駆動される溶液駆動エゼクタ、不凝縮ガスを溜める貯気タンク、貯気タンクに接続する弁、水により駆動する水駆動エゼクタを備え、前記溶液駆動エゼクタを前記溶液循環ポンプの吐出溶液の一部を導いて駆動し、この溶液駆動エゼクタの吸引部を前記凝縮器に接続するとともに、この溶液駆動エゼクタの溶液流出部を前記気液分離器に接続し、この気液分離器より上部に前記貯気タンクを配置し、この気液分離器の気相部と貯気タンクを接続するとともに、この気液分離器の液相部に接続する配管を所定の高さまで立ち上げた後に、前記溶液循環ポンプの吸入側もしくは前記吸収器に接続し、前記貯気タンクと水により駆動する前記水駆動エゼクタの吸引部を弁を介して接続し、この水駆動エゼクタの水の流出部を前記吸収冷凍機の外部に開放し、前記吸収器で抽気した不凝縮ガスを前記溶液循環ポンプにより前記凝縮器に導き、この凝縮器から前記溶液駆動エゼクタおよび気液分離器を通じて貯気タンクに不凝縮ガスを導き、前記水駆動エゼクタで不凝縮ガスを外部に放出することを特徴とする請求項1記載の吸収冷凍機。A solution-driven ejector driven by a solution , an air storage tank for storing non-condensable gas, a valve connected to the air storage tank, and a water-driven ejector driven by water , the solution-driven ejector being one of the discharge solutions of the solution circulation pump The suction portion of the solution driven ejector is connected to the condenser, and the solution outflow portion of the solution driven ejector is connected to the gas-liquid separator, and above the gas-liquid separator After arranging a gas storage tank, connecting the gas phase part of the gas-liquid separator and the gas storage tank, and raising the pipe connected to the liquid phase part of the gas-liquid separator to a predetermined height, the solution and connected to the suction side or the absorber of the circulating pump, connected via a valve to the suction portion of the water driven ejector driven by the gas storage tank and the water, the absorption refrigerating the outflow of water in the water driven ejector The opening on the outside, guide the noncondensable gas bled by the absorber in the condenser by the solution circulation pump leads the noncondensable gas in the gas storage tank from the condenser through the solution driving ejector and the gas-liquid separator The absorption refrigerator according to claim 1, wherein non-condensable gas is discharged to the outside by the water-driven ejector.
JP2002172839A 2002-06-13 2002-06-13 Absorption refrigerator Expired - Lifetime JP4205896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172839A JP4205896B2 (en) 2002-06-13 2002-06-13 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172839A JP4205896B2 (en) 2002-06-13 2002-06-13 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2004019986A JP2004019986A (en) 2004-01-22
JP4205896B2 true JP4205896B2 (en) 2009-01-07

Family

ID=31172289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172839A Expired - Lifetime JP4205896B2 (en) 2002-06-13 2002-06-13 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4205896B2 (en)

Also Published As

Publication number Publication date
JP2004019986A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
KR100378697B1 (en) Double absorption refrigerating machine
JP4542985B2 (en) Absorption heat pump
JP4205896B2 (en) Absorption refrigerator
JP6614873B2 (en) Absorption refrigerator
JP3209927B2 (en) Absorption refrigeration equipment
CN110902740B (en) Low-temperature water distillation system and method
JP4355776B2 (en) Absorption refrigerator
JP2010065917A (en) Absorption heat pump
CN215002363U (en) Absorption refrigerator
JP6971340B2 (en) Absorption chiller
KR100222101B1 (en) Absorption air conditioner
JP2558853Y2 (en) Bleeding device for absorption refrigerator
JP4301747B2 (en) Absorption refrigerator vacuum holding device
CN106642634A (en) Condensate water recovery component for air conditioner
JP2007263461A (en) Absorption refrigerating machine
JPH0548033Y2 (en)
JPH061140B2 (en) Absorption heat pump non-condensable gas discharge device
JPH05280822A (en) Absorption refrigeration system
JP3133441B2 (en) Bleeding device for absorption refrigerator
CN111174463A (en) Synergistic emission reduction energy-saving compressor unit for freezing and refrigerating
JP3031847B2 (en) Absorption air conditioner
JPH03225167A (en) Gas extraction and discharging device for air-cooled absorption cooling and heating device
JPH06257883A (en) Absorption type water cooler-heater
JPH063332B2 (en) Non-condensable gas discharge device for absorption refrigerator
CN108362044A (en) A kind of injection climbing film evaporator and its refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4205896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term