JPH05280822A - Absorption refrigeration system - Google Patents

Absorption refrigeration system

Info

Publication number
JPH05280822A
JPH05280822A JP7686092A JP7686092A JPH05280822A JP H05280822 A JPH05280822 A JP H05280822A JP 7686092 A JP7686092 A JP 7686092A JP 7686092 A JP7686092 A JP 7686092A JP H05280822 A JPH05280822 A JP H05280822A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
absorber
gas
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7686092A
Other languages
Japanese (ja)
Inventor
Shiro Yakushiji
史朗 薬師寺
Yuji Watabe
裕司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP7686092A priority Critical patent/JPH05280822A/en
Publication of JPH05280822A publication Critical patent/JPH05280822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve absorption efficiency within an absorber. CONSTITUTION:In an absorption refrigeration system including a generator 1, a condensor 2, an evaporator 3 and an absorber 4, wherein an ejector 28 is installed at an inlet side of the absorber 4, working liquid from the generator 1 is fed to the ejector 28 as a driving flow, and refrigerant vapor from the evaporator 3 is fed as a secondary flow, the working liquid and the refrigerant vapor are mixed with each other as vapor-liquid mixture flow and further supplied to the absorber, a vapor-liquid separator 30 is installed at the downstream side of the ejector 28 and the vapor-liquid mixture flow BR generated by the ejector 28 is separated again into the working liquid B and the refrigerant vapor R. In addition, the working liquid B and the refrigerant vapor R and supplied in such a manner that they may become an opposing flow within the absorber 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、吸収式冷凍装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system.

【0002】[0002]

【従来の技術】吸収式冷凍装置においては、冷媒と吸収
液とを混合した作動液から発生させた冷媒と吸収液の混
合作動液蒸気を精留して冷媒成分を濃縮する発生器と、
前記濃縮ガス冷媒を凝縮させる凝縮器と、該凝縮器で凝
縮させた液冷媒を蒸発させる蒸発器と該蒸発器で蒸発さ
せた冷媒蒸気を発生器から供給される作動液中に吸収す
る吸収器とをそなえているが、この場合、蒸発器におい
ては器内圧力が低い程蒸発作用が促進され、一方、吸収
器においては器内圧力が高い程吸収作用が促進される。
2. Description of the Related Art In an absorption refrigeration system, a generator for rectifying a mixed working fluid vapor of a refrigerant and an absorbing liquid generated from a working fluid obtained by mixing a refrigerant and an absorbing liquid to concentrate a refrigerant component,
A condenser for condensing the concentrated gas refrigerant, an evaporator for evaporating the liquid refrigerant condensed by the condenser, and an absorber for absorbing the refrigerant vapor evaporated by the evaporator into the working liquid supplied from the generator. In this case, in the evaporator, the lower the internal pressure of the evaporator is, the more the evaporation action is promoted. On the other hand, the higher the internal pressure of the absorber is, the more the absorption action is promoted.

【0003】上記の原理を応用して吸収式冷凍装置の効
率を向上させることを意図したものとしては、たとえば
特開昭62−225871号公報記載の発明がある。
An invention intended to improve the efficiency of an absorption refrigerating apparatus by applying the above principle is disclosed in, for example, Japanese Patent Laid-Open No. 62-225871.

【0004】この従来例の発明は、図5に示すようなエ
ゼクタ128を用いて、発生器より供給される高圧の作
動液Bを駆動流とし、他方、蒸発器より供給される低圧
の冷媒蒸気Rを二次流とし、両者を該エゼクタ128内
で混合流BRとして吸収器へ供給するとともに、該吸収
器内において作動液中への冷媒蒸気の吸収を行わせるよ
うにしている。この従来例の場合は、蒸発器からの冷媒
蒸気がエゼクタ128へ負圧吸引されることにより、蒸
発器内で器内圧力が低下して蒸発作用が促進される一
方、吸収器へは発生器からの作動液が比較的高圧力を維
持したまま導入され、吸収器の器内圧力を高めて吸収作
用を促進させる効果がある。
The invention of this conventional example uses an ejector 128 as shown in FIG. 5 to drive a high-pressure hydraulic fluid B supplied from a generator as a driving flow, and, on the other hand, a low-pressure refrigerant vapor supplied from an evaporator. R is a secondary flow, both are supplied to the absorber as a mixed flow BR in the ejector 128, and the refrigerant vapor is absorbed in the working liquid in the absorber. In the case of this conventional example, the refrigerant vapor from the evaporator is sucked into the ejector 128 at a negative pressure, so that the internal pressure of the evaporator is reduced and the evaporation action is promoted, while the absorber is connected to the generator. The working fluid from is introduced while maintaining a relatively high pressure, which has the effect of increasing the internal pressure of the absorber and promoting the absorbing action.

【0005】[0005]

【発明が解決しようとする課題】ところで、エゼクタ
は、気液混合機能をもっているため、このようなエゼク
タを使用した場合は、吸収器は通常の場合、器内混合吸
収型吸収器となり、対向流吸収型吸収器として構成する
ことができない。
By the way, since the ejector has a gas-liquid mixing function, when such an ejector is used, the absorber is usually an in-vessel mixed absorption type absorber, and the countercurrent is generated. It cannot be configured as an absorption absorber.

【0006】器内混合吸収型の吸収器は、吸収器終端部
での吸収作用が不活発で、全体として高い吸収効率が得
られにくい。これに対して対向流吸収型の吸収器では、
吸収がある程度進行してそれ以上吸収がおこりにくい吸
収器の終端部において蒸発器からの冷媒蒸気が導入され
るので、全体として吸収効率が向上する利点がある。
In the in-vessel mixed absorption type absorber, the absorption action at the end of the absorber is inactive, and it is difficult to obtain high absorption efficiency as a whole. On the other hand, in the countercurrent absorption type absorber,
Since the refrigerant vapor from the evaporator is introduced at the end portion of the absorber where the absorption proceeds to some extent and the absorption is less likely to occur, the absorption efficiency is improved as a whole.

【0007】本願発明では、吸収式冷凍装置においてエ
ゼクタを使用することの利点を活用しつつ、さらに同エ
ゼクタを使用した場合の欠点(吸収器が器内混合吸収型
となる)を改善しようとするものである。
According to the present invention, the advantages of using the ejector in the absorption refrigerating apparatus are utilized, and further, the drawbacks (the absorber becomes the in-container mixed absorption type) when the ejector is used are attempted to be improved. It is a thing.

【0008】[0008]

【課題を解決するための手段】本願発明では、上記課題
を達成するために、図1に例示するように、冷媒と吸収
液とを混合した作動液から発生させた冷媒と吸収液の混
合作動液蒸気を精留して冷媒成分を濃縮する発生器1
と、前記濃縮ガス冷媒成分を凝縮させる凝縮器2と、該
凝縮器2で凝縮させた液冷媒を蒸発させる蒸発器3と、
該蒸発器3で蒸発した冷媒蒸気を前記発生器1から供給
される作動液中に吸収する吸収器4とをそなえた吸収式
冷凍装置において、吸収器4の入口側に、前記発生器1
からの作動液Bを駆動流とし前記蒸発器3からの冷媒蒸
気Rを二次流とするエゼクタ28と、該エゼクタ28で
混合生成された気液混合流BRを作動液Bと冷媒蒸気R
とに分離する気液分離器30とを設けるとともに、該気
液分離器30で分離された作動液Bと冷媒蒸気Rとを吸
収器4において対向流入させるようにしたことを特徴と
するものである。
In the present invention, in order to achieve the above object, as shown in FIG. 1, a mixture operation of a refrigerant and an absorption liquid generated from a working liquid in which a refrigerant and an absorption liquid are mixed. Generator 1 for rectifying liquid vapor to concentrate refrigerant components
A condenser 2 for condensing the concentrated gas refrigerant component; an evaporator 3 for evaporating the liquid refrigerant condensed by the condenser 2;
In an absorption type refrigeration system having an absorber 4 for absorbing the refrigerant vapor evaporated in the evaporator 3 into the working fluid supplied from the generator 1, the generator 1 is provided at the inlet side of the absorber 4.
From the evaporator 3 as a secondary flow, and the ejector 28 as a secondary flow, and the gas-liquid mixed flow BR mixed and produced by the ejector 28 as the working fluid B and the refrigerant vapor R.
And a gas-liquid separator 30 for separating the liquid and the refrigerant are provided, and the working liquid B and the refrigerant vapor R separated by the gas-liquid separator 30 are allowed to flow in the absorber 4 in opposition to each other. is there.

【0009】[0009]

【作用】本願発明にかかる吸収式冷凍装置の作用を説明
するにあたり、同吸収式冷凍装置の一例として図1に示
す吸収式冷凍装置を使用する。
In explaining the operation of the absorption refrigeration system according to the present invention, the absorption refrigeration system shown in FIG. 1 is used as an example of the absorption refrigeration system.

【0010】図1において、符号1は発生器、2は凝縮
器、3は蒸発器、4は吸収器を示している。
In FIG. 1, reference numeral 1 is a generator, 2 is a condenser, 3 is an evaporator, and 4 is an absorber.

【0011】この吸収式冷凍装置は、発生器1において
作動液(たとえばアンモニア水溶液)B(Ba)を加熱する
と、該作動液から冷媒(たとえばアンモニア)と吸収液
(たとえば水)の作動液蒸気Gaが発生し、この作動液蒸
気Gaが発生器1の容器11内に形成されている精留器
部13を通って上昇する。
In this absorption refrigeration system, when the working fluid (for example, aqueous ammonia solution) B (Ba) is heated in the generator 1, the working fluid (for example, ammonia) and the absorption fluid are removed from the working fluid.
A hydraulic fluid vapor Ga of (for example, water) is generated, and the hydraulic fluid vapor Ga rises through the rectifier section 13 formed in the container 11 of the generator 1.

【0012】精留器部13では、下方から上昇する冷媒
と吸収液の混合作動液蒸気Gaが吸収器4から供給され
る濃溶液B(Bc)と接触して、同作動液蒸気中の冷媒濃
度が上昇し、そして該精留器部13で濃縮され(Gc)、
さらに分縮器部(後述する)14において分縮されたガス
冷媒Ra1は凝縮器2へ供給される。凝縮器2では、冷媒
ガスRa1が液化して液冷媒Rbとなる。
In the rectifying section 13, the mixed working liquid vapor Ga of the refrigerant and the absorbing liquid rising from below comes into contact with the concentrated solution B (Bc) supplied from the absorber 4 to bring the refrigerant in the working liquid vapor into contact. The concentration rises and is concentrated in the rectifier section 13 (Gc),
Further, the gas refrigerant Ra 1 that has been subjected to partial condensation in the partial condenser unit (described later) 14 is supplied to the condenser 2. In the condenser 2, the refrigerant gas Ra 1 is liquefied and becomes the liquid refrigerant Rb.

【0013】この液冷媒Rbは蒸発器3において蒸発
し、再度ガス冷媒Ra2となる。このガス冷媒Ra2は吸収
器4へ送給されるのであるが、該ガス冷媒Ra2は、本願
発明にしたがって設けられたエゼクタ28と気液分離器
30を経由して吸収器4へ導入される。
The liquid refrigerant Rb is evaporated in the evaporator 3 and becomes the gas refrigerant Ra 2 again. The gas refrigerant Ra 2 is fed to the absorber 4, and the gas refrigerant Ra 2 is introduced into the absorber 4 via the ejector 28 and the gas-liquid separator 30 provided according to the present invention. It

【0014】以下、これをさらに詳しく説明すると、上
記のエゼクタ28には発生器1から高圧の作動液(希溶
液)Baが駆動流として供給され、他方、蒸発器3からは
低圧のガス冷媒Ra2が二次流として供給される。エゼク
タ28において生成された作動液(希溶液)とガス冷媒の
気液混合流BRは後段の気液分離器30内に流入し、そ
こで再度作動液Bとガス冷媒Rとに分離される。そし
て、この気液分離された一方の作動液Bは吸収器4の上
段部へ、又他方のガス冷媒Rは吸収器4の下段部へそれ
ぞれ供給されて同吸収器4内において対向流とされ、高
効率で吸収作用が行われる。ガス冷媒Rを吸収した作動
液B(Bc)は、ポンプ51によって発生器1に供給され
る。以上のようにして、本願発明を適用した吸収式冷凍
装置の基本冷凍サイクルが実行される。
This will be described in more detail below. The ejector 28 is supplied with a high-pressure working liquid (dilute solution) Ba from the generator 1 as a driving flow, while the evaporator 3 is supplied with a low-pressure gas refrigerant Ra. 2 is supplied as a secondary stream. The gas-liquid mixed flow BR of the working liquid (diluted solution) and the gas refrigerant generated in the ejector 28 flows into the gas-liquid separator 30 in the subsequent stage, where it is separated into the working liquid B and the gas refrigerant R again. Then, one of the gas-liquid separated working fluid B is supplied to the upper stage of the absorber 4, and the other gas refrigerant R is supplied to the lower stage of the absorber 4 to be a counterflow in the absorber 4. , High efficiency absorption. The hydraulic fluid B (Bc) that has absorbed the gas refrigerant R is supplied to the generator 1 by the pump 51. As described above, the basic refrigeration cycle of the absorption refrigeration system to which the present invention is applied is executed.

【0015】[0015]

【発明の効果】図1に示す本願発明適用の吸収式冷凍装
置においては、エゼクタ28によって蒸発器3内のガス
冷媒Ra2が強制吸引されるため、同蒸発器3内の器内圧
力が低下し、冷媒の蒸発が促進されて冷却効果が増進さ
れるとともに、発生器1からの高圧の作動液供給によっ
て気液分離器30内での圧力(静圧)が上昇し、それによ
って吸収器4の器内圧力も上昇して同吸収器4内での冷
媒の吸収作用が増進される効果がある。また、気液分離
器を設けたことにより、吸収器を対向流吸収型吸収器と
して構成することが可能となる。これにより、従来の同
種の吸収式冷凍装置に比して小型高能力の吸収式冷凍装
置を得ることができる。
In the absorption type refrigerating apparatus to which the present invention is applied shown in FIG. 1, the ejector 28 forcibly sucks the gas refrigerant Ra 2 in the evaporator 3, so that the internal pressure in the evaporator 3 decreases. Then, the evaporation of the refrigerant is promoted to enhance the cooling effect, and the pressure (static pressure) in the gas-liquid separator 30 is increased by the supply of the high-pressure hydraulic fluid from the generator 1, which causes the absorber 4 There is an effect that the pressure inside the container also rises and the absorption action of the refrigerant in the absorber 4 is enhanced. Further, by providing the gas-liquid separator, it becomes possible to configure the absorber as a counter flow absorption type absorber. As a result, it is possible to obtain a small-sized and high-capacity absorption refrigeration system as compared with the conventional absorption refrigeration system of the same type.

【0016】[0016]

【実施例】図2及び図3には、本願発明の実施例にかか
る冷暖房運転用の吸収式冷凍装置における溶液及び冷媒
の回路構成が示されている。図2及び図3において符号
1は発生器、2は図2に示す冷房運転時には凝縮器とな
り、図3に示す暖房運転時には蒸発器となる第1の熱交
換器、3は同じく冷房運転時には蒸発器となり、暖房運
転時には凝縮器となる第2の熱交換器、4は吸収器を示
している。
2 and 3 show circuit configurations of a solution and a refrigerant in an absorption refrigerating apparatus for cooling and heating operation according to an embodiment of the present invention. In FIGS. 2 and 3, reference numeral 1 is a generator, 2 is a condenser during the cooling operation shown in FIG. 2, and is a first heat exchanger serving as an evaporator during the heating operation shown in FIG. The second heat exchanger 4 which serves as a heat exchanger and serves as a condenser during heating operation is an absorber.

【0017】ところで、吸収式冷凍サイクルの原理それ
自体は既に周知であるため、図2及び図3の吸収式冷凍
装置において同冷凍サイクルがどのようにして実行され
るかについては以下簡略に説明する。
By the way, since the principle of the absorption refrigeration cycle itself is already well known, how the refrigeration cycle is executed in the absorption refrigeration apparatus of FIGS. 2 and 3 will be briefly described below. ..

【0018】先ず、図2に示す冷房運転時について説明
すると、冷房運転時には、発生器1においてヒータ(バ
ーナ)19によって作動液(この実施例ではアンモニア水
溶液)を加熱すると、該作動液から冷媒(アンモニア)と
吸収液(水)の混合蒸気(作動液蒸気)Gaが発生し、この
混合蒸気Gaが発生器1の容器11内に形成されている
精留器部13を通って上昇する。
First, the cooling operation shown in FIG. 2 will be described. In the cooling operation, when the working fluid (ammonia aqueous solution in this embodiment) is heated by the heater (burner) 19 in the generator 1, the working fluid becomes a refrigerant ( A mixed vapor (working liquid vapor) Ga of (ammonia) and an absorption liquid (water) is generated, and this mixed vapor Ga rises through the rectifier section 13 formed in the container 11 of the generator 1.

【0019】精留器部13では、適宜段数(この実施例
では5段)の貯液部D1〜D5が形成されていて、後述す
る吸収器4側から発生器1に供給される作動液(濃溶液)
Bcが上段の貯液部D5から順次下段の貯液部D4,D3,D
2,D1へ流下するようにされている。
In the rectification section 13, liquid storage sections D 1 to D 5 having an appropriate number of stages (five in this embodiment) are formed, and the operation is to be supplied to the generator 1 from the side of the absorber 4 described later. Liquid (concentrated solution)
Bc is from the upper liquid storage D 5 to the lower liquid storage D 4 , D 3 , D
It is designed to flow down to 2 , D 1 .

【0020】精留器部13では、下方から上昇するアン
モニアと水の混合作動液蒸気が各貯液棚(D1〜D5)を通
過するたびに、温度降下と、上方からの濃溶液との接触
とにより同作動液蒸気中のアンモニア濃度が上昇し、そ
して該精留器部13で濃縮されたアンモニア−水混合蒸
気Gcは、さらに上段の分縮器部(詳しくは後述する)1
4で水分が分離されて約99.8%のアンモニアガス(ガス
冷媒)となる。このガス冷媒は図2において矢印A11,A
12で示すように第1の四路切換弁31を経て凝縮器とな
る第1の熱交換器2へ供給される。第1の熱交換器2で
は、ファン68により空冷されて凝縮熱を放出しアンモ
ニアガスが液化してアンモニア液(液冷媒)となる。
In the rectifier section 13, every time the mixed working fluid vapor of ammonia and water rising from below passes through each storage rack (D 1 to D 5 ), a temperature drop and a concentrated solution from above are produced. The concentration of ammonia in the working fluid vapor increases due to the contact with the working fluid vapor, and the ammonia-water mixed vapor Gc concentrated in the rectifier portion 13 is further divided into the upper dephlegmator portion (details will be described later) 1
The water is separated in 4 to become about 99.8% ammonia gas (gas refrigerant). This gas refrigerant is indicated by arrows A 11 and A in FIG.
As indicated by 12 , the gas is supplied to the first heat exchanger 2 serving as a condenser via the first four-way switching valve 31. In the first heat exchanger 2, the air is cooled by the fan 68 to release the heat of condensation and the ammonia gas is liquefied to become ammonia liquid (liquid refrigerant).

【0021】この液冷媒は図2において矢印A13で示す
ように冷媒間熱交換器(詳しくは後述する)32を通って
減圧器33で減圧された後、二重管構造の第2の熱交換
器(蒸発器)3で室内機からの循環水(循環水配管路3
5内を循環流通する)と熱交換して蒸発し(循環水は冷却
されて冷房用冷熱源となる)、再度ガス冷媒(アンモニア
ガス)となる。このガス冷媒は図2において矢印A14
示すように第2の四路切換弁36を通って前述の冷媒間
熱交換器32へ送られ、そこで熱交換器2からの液冷媒
(コイル32C内を通る)を予冷却した後、前述の第1の
四路切換弁31及び第2の四路切換弁36、さらにはエ
ゼクタ28及び気液分離器30を経て(図2中の矢印A
15、A16、A17)、吸収器4へ送給される。
This liquid refrigerant is passed through an inter-refrigerant heat exchanger (details will be described later) 32 as shown by an arrow A 13 in FIG. Circulating water from the indoor unit (circulating water piping 3
5 circulates and circulates in 5) to evaporate (circulating water is cooled and becomes a cooling heat source for cooling), and becomes a gas refrigerant (ammonia gas) again. This gas refrigerant is sent to the above-mentioned inter-refrigerant heat exchanger 32 through the second four-way switching valve 36 as shown by arrow A 14 in FIG. 2, and the liquid refrigerant from the heat exchanger 2 is there.
After precooling (passing through the coil 32C), the first four-way switching valve 31 and the second four-way switching valve 36, the ejector 28 and the gas-liquid separator 30 (in FIG. 2) are pre-cooled. Arrow A
15 , A 16 , A 17 ) and fed to the absorber 4.

【0022】この実施例の吸収式冷凍装置では、図4に
示すような一体型のエゼクタ28と気液分離器30が使
用されている。図4の例では、気液分離器30の容器9
1の側面に、配管83を通してエゼクタ28に冷媒蒸気
Ra2を導入する冷媒吸入室82が取付けられており、さ
らにこの冷媒吸入室82の中心を貫通して、発生器1か
らの作動液Baを導入する作動液配管81が気液分離器
容器91内へ向けて取付けられている。そして作動液配
管81の先端部は、通路断面積の小さいノズル部84と
されている。冷媒吸入室82は気液分離器容器91内に
向けて開放されているが、その開放面には、作動液配管
81のノズル部84を同心状に囲繞するようにして第2
の大径ノズル部85が設けられている。
In the absorption refrigeration system of this embodiment, an integral ejector 28 and a gas-liquid separator 30 as shown in FIG. 4 are used. In the example of FIG. 4, the container 9 of the gas-liquid separator 30
A refrigerant suction chamber 82 that introduces the refrigerant vapor Ra 2 into the ejector 28 through a pipe 83 is attached to the side surface of No. 1, and the working fluid Ba from the generator 1 is passed through the center of the refrigerant suction chamber 82. The hydraulic fluid pipe 81 to be introduced is attached toward the inside of the gas-liquid separator container 91. The tip of the hydraulic fluid pipe 81 is a nozzle portion 84 having a small passage cross-sectional area. The refrigerant suction chamber 82 is opened toward the inside of the gas-liquid separator container 91, and the opening portion thereof is concentrically surrounded by the second nozzle portion 84 of the hydraulic fluid pipe 81.
The large-diameter nozzle portion 85 is provided.

【0023】図4に示すエゼクタ28は、発生器1から
配管81を通して高圧の(たとえば18ata)作動液Baが
供給されるとき、第1の小径ノズル部84において増速
減圧作用を生じ、それによって配管83を通して熱交換
器3から供給される冷媒蒸気Ra2を吸引し、第2の大径
ノズル部85から気液混合流BRとなって気液分離器3
0内に流入する。
The ejector 28 shown in FIG. 4 produces an accelerated and depressurized action in the first small-diameter nozzle portion 84 when the high-pressure (for example, 18ata) hydraulic fluid Ba is supplied from the generator 1 through the pipe 81, whereby The refrigerant vapor Ra 2 supplied from the heat exchanger 3 is sucked through the pipe 83, and becomes the gas-liquid mixed flow BR from the second large diameter nozzle portion 85 to become the gas-liquid separator 3
It flows into 0.

【0024】気液分離器30内に導入された気液混合流
BRは、前方の凹部92の内面と衝突してその運動エネ
ルギーを消失し(動圧から静圧への転換が行われる)、気
液混合流BRのうちの作動液成分Bは下方へ、又他方の
冷媒蒸気成分Rは上方へと分離される。図4において符
号94は、上記気液分離作用を促進させるためのエリミ
ネータである。
The gas-liquid mixed flow BR introduced into the gas-liquid separator 30 collides with the inner surface of the front concave portion 92 to lose its kinetic energy (the dynamic pressure is converted to the static pressure), The working liquid component B of the gas-liquid mixed flow BR is separated downward, and the other refrigerant vapor component R is separated upward. In FIG. 4, reference numeral 94 is an eliminator for promoting the gas-liquid separation action.

【0025】そして、上記の如く分離された一方の作動
液Bは図2において矢印L1で示す如く吸収器4の上段
部に供給され、他方の冷媒蒸気Rは図2において矢印A
17で示す如く吸収器4の低段部に供給される。すなわ
ち、図示実施例の吸収器4においては、本願発明を通用
して作動液Bと冷媒蒸気Rとが対向流として供給され
る。
The one working fluid B separated as described above is supplied to the upper stage portion of the absorber 4 as indicated by an arrow L 1 in FIG. 2, and the other refrigerant vapor R is indicated by an arrow A in FIG.
It is supplied to the lower part of the absorber 4 as shown at 17 . That is, in the absorber 4 of the illustrated embodiment, the working fluid B and the refrigerant vapor R are supplied as counter flows through the present invention.

【0026】吸収器4は、このガス冷媒Rを作動液B中
に再度吸収する作用を行うもので、次のような方法で同
作用を実行する。
The absorber 4 serves to absorb the gas refrigerant R into the working fluid B again, and carries out the same action in the following manner.

【0027】すなわち、吸収器4の容器41内の最上段
部には作動液Bの散布器42が設けられており、該散布
器42に対して矢印L1で示すように気液分離器30か
ら作動液Bが供給される。この作動液Bは吸収器容器4
1内で散布器42から散布されて同吸収器容器41内に
供給されるガス冷媒Rを吸収して濃溶液Bcとなり、容
器底部液溜り49に落下する。
That is, a sprayer 42 for the working fluid B is provided at the uppermost stage in the container 41 of the absorber 4, and the gas-liquid separator 30 is provided to the sprayer 42 as indicated by an arrow L 1. The hydraulic fluid B is supplied from. This hydraulic fluid B is stored in the absorber container 4
The gas refrigerant R sprayed from the sprayer 42 and supplied into the absorber container 41 in 1 absorbs the gas refrigerant R to form a concentrated solution Bc, which falls into the container bottom liquid pool 49.

【0028】この容器底部液溜り49に貯留される作動
液(濃溶液)Bcは、ポンプ51により、図2中の矢印
2,L3,L4,L5で示すように圧送され、その間分縮器
内熱交換器29及び第1の吸収器内熱交換器46で熱交
換(吸熱)したあと、発生器1内の最上段の貯液棚D5
供給される。吸収器4内には、上記の第1の吸収器内熱
交換器4(吸収器4内で発生する吸収熱の一部を作動液
中に回収するための熱交換器)のほか、第2及び第3の
2つの吸収器内熱交換器47,48が設けられている。
すなわち、上段にある第2の吸収器内熱交換器47は必
要に応じてポンプ54によって給送される水を加熱す
る、すなわち給湯加熱用として作用する熱交換器であ
り、又、その下段にある第3の吸収器内熱交換器48
は、吸収器4内で発生する吸収熱を大気中に放出するた
めのもので、該第3の吸収器内熱交換器48にはポンプ
53により空冷の熱交換器(放熱器)5から矢印S1〜S3
で示すように冷却水配管路60を通して冷却水が供給さ
れ、この冷却水により残余の吸収熱を放出する。放熱器
5は、ファン69によって送風され、空冷される。
The working liquid (concentrated solution) Bc stored in the container bottom liquid pool 49 is pumped by the pump 51 as indicated by arrows L 2 , L 3 , L 4 and L 5 in FIG. After heat exchange (absorption) with the heat exchanger 29 in the partial condenser and the heat exchanger 46 in the first absorber, the heat is supplied to the uppermost liquid storage shelf D 5 in the generator 1. In the absorber 4, in addition to the first heat exchanger 4 in the absorber (heat exchanger for recovering a part of absorption heat generated in the absorber 4 into working fluid), And a third two in-absorber heat exchangers 47, 48 are provided.
That is, the second heat exchanger 47 in the absorber in the upper stage is a heat exchanger that heats the water fed by the pump 54 as necessary, that is, acts as a hot water heater, and in the lower stage. A certain third heat exchanger in the absorber 48
Is for releasing the absorption heat generated in the absorber 4 to the atmosphere, and the third heat exchanger 48 in the absorber has an arrow from the air-cooled heat exchanger (radiator) 5 by the pump 53. S 1 to S 3
Cooling water is supplied through the cooling water piping 60 as indicated by, and the residual absorption heat is released by this cooling water. The radiator 5 is blown by the fan 69 and air-cooled.

【0029】なお、上記冷却水配管路60中には、2個
の三方切換弁62,63が設けられていて、この三方切
換弁62,63の切換えにより放熱器5と第3の吸収器
内熱交換器48との間の冷却水配管路60が開閉され
る。
Incidentally, two three-way switching valves 62, 63 are provided in the cooling water piping 60, and by switching the three-way switching valves 62, 63, the radiator 5 and the third absorber The cooling water piping 60 with the heat exchanger 48 is opened and closed.

【0030】次に、図3に示す暖房運転時について説明
すると、暖房運転時には、先ず、図2に示す冷房運転時
の冷凍回路のうち、第1及び第2の四路切換弁31,3
6が切換り、同冷凍回路を流通するガス冷媒(アンモニ
アガス)の流れ方向が切換えられる(矢印A21〜A29)。
又、それと同時に、冷却水配管路60中の2つの三方切
換弁62,63が切換えられて、放熱器5と第3の吸収
器内熱交換器48の間の冷却水流通が遮断され、それに
かわって、循環水配管路35中の三方切換弁61の切換
えにより、上記第3の吸収器内熱交換器48が循環水配
管路35と接続される(矢印C22〜C23)。
Next, the heating operation shown in FIG. 3 will be described. During the heating operation, first, the first and second four-way switching valves 31, 3 of the refrigeration circuit in the cooling operation shown in FIG.
6 is switched, and the flow direction of the gas refrigerant (ammonia gas) flowing through the refrigeration circuit is switched (arrows A 21 to A 29 ).
At the same time, the two three-way switching valves 62, 63 in the cooling water pipe line 60 are switched, and the cooling water flow between the radiator 5 and the third heat exchanger 48 in the absorber is cut off. instead, by switching the three-way valve 61 in the circulation water pipe passage 35, the third absorber in the heat exchanger 48 is connected to the circulating water pipe passage 35 (arrow C 22 ~C 23).

【0031】図3の冷凍回路においては、発生器1の分
縮器部14で生成されたガス冷媒(濃度99.8%)は、矢印
21〜A23で示すように第1の四路切換弁31及び第2
の四路切換弁36を通って凝縮器として作用する第2の
熱交換器3へ流入し、ここで循環水配管路35を通って
室内機から供給される循環水と熱交換して凝縮する。循
環水はこれにより加熱され、室内機での暖房用熱源とな
る。なお、この実施例では、室内機への循環水は、3つ
の三方切換弁61,62,63の切換えにより凝縮器とな
る第2の熱交換器3に流入する前に矢印C22,C23で示
すように第3の吸収器内熱交換器48を通る。すなわ
ち、図3の吸収式冷凍装置では、暖房運転時には、第3
の吸収器内熱交換器48で得られる吸収熱と第2の熱交
換器3で得られる凝縮熱とをもって暖房用熱源としてい
る。
In the refrigerating circuit of FIG. 3, the gas refrigerant (concentration 99.8%) generated in the dephlegmator section 14 of the generator 1 has a first four-way switching valve as shown by arrows A 21 to A 23. 31 and second
Flows into the second heat exchanger 3 acting as a condenser through the four-way switching valve 36, and is condensed there by exchanging heat with the circulating water supplied from the indoor unit through the circulating water piping 35. .. The circulating water is heated by this and becomes a heat source for heating in the indoor unit. In this embodiment, the circulating water to the indoor units, three-way as the condenser by switching the switching valve 61, 62 and 63 arrows before entering the second heat exchanger 3 C 22, C 23 As shown by, passes through the third heat exchanger 48 in the absorber. That is, in the absorption refrigeration system of FIG.
The absorption heat obtained in the absorber internal heat exchanger 48 and the condensation heat obtained in the second heat exchanger 3 are used as the heating heat source.

【0032】凝縮器として作用する第2の熱交換器3で
液化した冷媒は、矢印A24で示すように減圧器33で減
圧されたあと、蒸発器として作用する第1の熱交換器2
で蒸発し(ファン68による空気熱交換蒸発)、さらに第
1の四路切換弁31、冷媒間熱交換器32、第2の四路
切換弁36を経てエゼクタ28へ供給される(矢印A2 5
〜A28)。
The refrigerant liquefied in the second heat exchanger 3 acting as a condenser is decompressed by the decompressor 33 as shown by an arrow A 24 , and then the first heat exchanger 2 acting as an evaporator.
Is evaporated (air heat exchange evaporation by the fan 68) and further supplied to the ejector 28 via the first four-way switching valve 31, the inter-refrigerant heat exchanger 32, and the second four-way switching valve 36 (arrow A 2 Five
~ A 28 ).

【0033】なお、エゼクタ28における作動液と冷媒
蒸気の気液混合作用と気液分離器30における気液分離
作用、発生器1での水−アンモニア混合作動液蒸気の発
生・精留・分縮作用、吸収器4におけるアンモニアガス
冷媒の吸収作用等は、図2に示す冷房運転時の場合と同
様であり、又、その間の作動液(濃溶液と希溶液)の流れ
も図2の場合と同様であるのでその説明は省略する。
The gas-liquid mixing action of the working liquid and the refrigerant vapor in the ejector 28, the gas-liquid separating action of the gas-liquid separator 30, the generation, rectification and partial condensation of the water-ammonia mixed working liquid vapor in the generator 1. The action, the action of absorbing the ammonia gas refrigerant in the absorber 4, etc. are the same as in the case of the cooling operation shown in FIG. 2, and the flow of the working liquid (concentrated solution and dilute solution) during that time is the same as in the case of FIG. The description is omitted because it is similar.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の対象である吸収式冷凍装置の基本回
路の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a basic circuit of an absorption refrigerating apparatus which is a target of the present invention.

【図2】本願発明の実施例にかかる冷暖房用吸収式冷凍
装置の冷房運転時の冷凍回路図である。
FIG. 2 is a refrigeration circuit diagram of the absorption refrigeration apparatus for cooling and heating according to the embodiment of the present invention during a cooling operation.

【図3】図2に示す冷凍回路の暖房運転時の変化状態説
明図である。
FIG. 3 is an explanatory diagram of a changing state of the refrigeration circuit shown in FIG. 2 during heating operation.

【図4】図2及び図3の実施例で使用されているエゼク
タと気液分離器の拡大断面図である。
FIG. 4 is an enlarged sectional view of an ejector and a gas-liquid separator used in the embodiments of FIGS. 2 and 3.

【図5】従来の吸収式冷凍装置で使用されているエゼク
タの縦断面図である。
FIG. 5 is a longitudinal sectional view of an ejector used in a conventional absorption refrigeration system.

【符号の説明】[Explanation of symbols]

1は発生器、2および3は凝縮器又は蒸発器となる熱交
換器、4は吸収器、5は放熱器、12は蒸気発生部、1
3は精留器部、14は分縮器部、19はヒータ、28は
エゼクタ、30は気液分離器である。
1 is a generator, 2 and 3 are heat exchangers that are condensers or evaporators, 4 is an absorber, 5 is a radiator, 12 is a steam generator, 1
3 is a rectifier section, 14 is a partial condenser section, 19 is a heater, 28 is an ejector, and 30 is a gas-liquid separator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒と吸収液とを混合した作動液から発
生させた冷媒と吸収液の混合作動液蒸気を精留して冷媒
成分を濃縮する発生器(1)と、前記濃縮ガス冷媒成分を
凝縮させる凝縮器(2)と、該凝縮器(2)で凝縮させた液
冷媒を蒸発させる蒸発器(3)と、該蒸発器(3)で蒸発し
た冷媒蒸気を前記発生器(1)から供給される作動液中に
吸収する吸収器(4)とをそなえた吸収式冷凍装置であっ
て、吸収器(4)の入口側に、前記発生器(1)からの作動
液(Ba)を駆動流とし前記蒸発器(3)からの冷媒蒸気を
二次流とするエゼクタ(28)と、該エゼクタ(28)で混
合生成された気液混合流(BR)を作動液(B)と冷媒蒸気
(R)とに分離する気液分離器(30)とを設けるととも
に、該気液分離器(30)で分離された作動液(B)と冷媒
蒸気(R)とを吸収器(4)において対向流入させるように
したことを特徴とする吸収式冷凍装置。
1. A generator (1) for rectifying a refrigerant component by rectifying a mixed working liquid vapor of a refrigerant and an absorbing liquid generated from a working liquid obtained by mixing a refrigerant and an absorbing liquid; and the concentrated gas refrigerant component. A condenser (2) for condensing the refrigerant, an evaporator (3) for evaporating the liquid refrigerant condensed by the condenser (2), and a refrigerant vapor evaporated by the evaporator (3) for the generator (1). An absorption type refrigerating device having an absorber (4) for absorbing the working fluid supplied from the generator, wherein the working fluid (Ba) from the generator (1) is provided at the inlet side of the absorber (4). Is used as a driving flow and a refrigerant vapor from the evaporator (3) is used as a secondary flow, and a gas-liquid mixed flow (BR) mixed and generated by the ejector (28) is used as a working fluid (B). Refrigerant vapor
(R) is provided with a gas-liquid separator (30) which separates the working liquid (B) and the refrigerant vapor (R) separated by the gas-liquid separator (30) in the absorber (4). An absorption type refrigeration system characterized in that they are made to flow in opposition.
JP7686092A 1992-03-31 1992-03-31 Absorption refrigeration system Pending JPH05280822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7686092A JPH05280822A (en) 1992-03-31 1992-03-31 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7686092A JPH05280822A (en) 1992-03-31 1992-03-31 Absorption refrigeration system

Publications (1)

Publication Number Publication Date
JPH05280822A true JPH05280822A (en) 1993-10-29

Family

ID=13617407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7686092A Pending JPH05280822A (en) 1992-03-31 1992-03-31 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JPH05280822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009134957A3 (en) * 2008-04-30 2010-02-18 Honeywell International Inc. Absorption refrigeraton cycles using a lgwp refrigerant
WO2011123592A3 (en) * 2010-04-01 2011-12-15 Honeywell International Inc. Absorption refrigeration cycles using a lgwp refrigerant
JP2019507313A (en) * 2016-01-28 2019-03-14 クール4シー エーピーエスCool4Sea Aps Absorption refrigeration and air conditioning equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009134957A3 (en) * 2008-04-30 2010-02-18 Honeywell International Inc. Absorption refrigeraton cycles using a lgwp refrigerant
US9994751B2 (en) 2008-04-30 2018-06-12 Honeywell International Inc. Absorption refrigeration cycles using a LGWP refrigerant
WO2011123592A3 (en) * 2010-04-01 2011-12-15 Honeywell International Inc. Absorption refrigeration cycles using a lgwp refrigerant
CN102906515A (en) * 2010-04-01 2013-01-30 霍尼韦尔国际公司 Absorption refrigeration cycles using LGWP refrigerant
JP2019507313A (en) * 2016-01-28 2019-03-14 クール4シー エーピーエスCool4Sea Aps Absorption refrigeration and air conditioning equipment
US11236931B2 (en) 2016-01-28 2022-02-01 Cool4Sea Aps Absorption refrigeration and air conditioning devices

Similar Documents

Publication Publication Date Title
JP6441511B2 (en) Multistage plate-type evaporative absorption refrigeration apparatus and method
JPH05280822A (en) Absorption refrigeration system
JPH1030854A (en) Absorption type heat pump
JP2007147148A (en) Absorption heat pump
JPH0320575A (en) Absorption refrigeration machine
JP4355776B2 (en) Absorption refrigerator
JPH06257878A (en) Absorption refrigerator and water cooler-heater with both low temperature regenerator and exhaust heat recovering low temperature regenerator
JP2503315B2 (en) Absorption refrigerator
JPH0979708A (en) Plate fin type condenser and absorbing device
JP2787111B2 (en) Absorption heat pump
JP4205896B2 (en) Absorption refrigerator
JPH04236078A (en) Absorption type refrigerating machine
JP3084650B2 (en) Absorption chiller / heater and its control method
JPH05187736A (en) Absorption type heat pump device
JP2000320918A (en) Ammonia absorption freezer
KR100234062B1 (en) Ammonia absorber cycle
KR200226915Y1 (en) Apparatus Circulating Absorber Solution by Using an Ejector in an Absorption Chiller-Heater
JP2021167684A (en) Absorption refrigerator
JPH09318185A (en) Absorption heat pump and its operation
JP3485495B2 (en) Evaporator of ammonia absorption refrigeration system
KR100307392B1 (en) The desorber column of ammonia absorption heat pump
KR0156395B1 (en) Rectifier of ammonia absorptive type refrigerator
JP3298689B2 (en) Net evaporator with spiral gutter
CN111174462A (en) Efficiency-improving emission-reducing energy-saving central air conditioner
JPH07280395A (en) Gas-liquid separator for absorption refrigerator