JPH07218018A - Absorption refrigerator and operation controlling method therefor - Google Patents

Absorption refrigerator and operation controlling method therefor

Info

Publication number
JPH07218018A
JPH07218018A JP6008331A JP833194A JPH07218018A JP H07218018 A JPH07218018 A JP H07218018A JP 6008331 A JP6008331 A JP 6008331A JP 833194 A JP833194 A JP 833194A JP H07218018 A JPH07218018 A JP H07218018A
Authority
JP
Japan
Prior art keywords
temperature
exhaust heat
low temperature
heat exchanger
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6008331A
Other languages
Japanese (ja)
Other versions
JP2806780B2 (en
Inventor
Hiroshi Kojima
弘 小島
Makoto Nakamura
誠 中村
Masahiro Oka
雅博 岡
Masaru Edera
勝 江寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6008331A priority Critical patent/JP2806780B2/en
Publication of JPH07218018A publication Critical patent/JPH07218018A/en
Application granted granted Critical
Publication of JP2806780B2 publication Critical patent/JP2806780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To reduce in size and weight a structure and to simplify control. CONSTITUTION:The absorption refrigerator comprises a control unit 20 for switching warm water from a cogeneration unit 1 to a waste heat/solution heat exchanger 17 side by a first three-way valve VH at the time of driving a two-heat source or via a drive of only warm water to a low temperature regenerator 13 side by a second three-way valve VS in response to a cooling load CL.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コジェネレーション装
置等の低温排熱と燃料熱との二熱源駆動の吸収冷凍機及
びその運転制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine driven by two heat sources of low temperature exhaust heat and fuel heat in a cogeneration system and the like, and an operation control method thereof.

【0002】[0002]

【従来の技術】例えば図5に示すように、コジェネレー
ション等からの低温排熱すなわち加熱温水又は加熱蒸気
(以下温水という)Wと、高質燃料すなわち都市ガスG
等の二熱源駆動の吸収冷凍機においては、二熱源駆動時
の性能を確保するため、2つの低温再生器(第1再生器
13A及び第2再生器13B)及び凝縮器(第1凝縮器
14A及び第2凝縮器14B)を必要とする。なお、図
中の符号11は吸収器、12は高温再生器、15は蒸発
器、16は低温溶液熱交換器である。
2. Description of the Related Art For example, as shown in FIG. 5, low-temperature exhaust heat from cogeneration or the like, heated hot water or heated steam (hereinafter referred to as hot water) W, and high-quality fuel, namely city gas G
In an absorption refrigerating machine driven by two heat sources such as the above, two low temperature regenerators (first regenerator 13A and second regenerator 13B) and a condenser (first condenser 14A) are provided in order to ensure performance when driving the two heat sources. And a second condenser 14B). In the figure, reference numeral 11 is an absorber, 12 is a high temperature regenerator, 15 is an evaporator, and 16 is a low temperature solution heat exchanger.

【0003】[0003]

【発明が解決しようとする課題】したがって、構造が肥
大化すると共に、制御が複雑になる不具合がある。
Therefore, there is a problem that the structure becomes large and the control becomes complicated.

【0004】本発明は、構造を小型軽量化、単純化する
と共に、制御を簡素化する吸収冷凍機及びその運転制御
方法を提供することを目的としている。
It is an object of the present invention to provide an absorption refrigerating machine and an operation control method for the same, which make the structure small, light and simple and simplify the control.

【0005】[0005]

【課題を解決するための手段】本発明の吸収冷凍機は、
コジェネレーション装置等の低温排熱回路に設けられ低
温排熱を該低温排熱回路下流側又は後記排熱−溶液熱交
換器側に切換える第1三方弁と、吸収器、凝縮器及び蒸
発器と、該吸収器と低温再生器とを接続する回路に設け
られた低温溶液熱交換器、排熱−溶液熱交換器、高温溶
液熱交換器、高温再生器及び前記排熱−溶液熱交換器側
を低温再生器側又は高温溶液熱交換器側に選択的に切換
える第2三方弁と、前記高温再生器の燃料供給回路に設
けられた燃料流量調整弁と、前記低温排熱回路に設けら
れた第1温度センサと、前記蒸発器からの冷房回路に設
けられた第2温度センサと、第1、第2三方弁、燃料流
量調整弁、第1、第2温度センサ及び溶液ポンプがそれ
ぞれ接続された制御ユニットとを備えている。
The absorption refrigerator according to the present invention comprises:
A first three-way valve provided in a low temperature exhaust heat circuit of a cogeneration device or the like for switching the low temperature exhaust heat to a downstream side of the low temperature exhaust heat circuit or an exhaust heat-solution heat exchanger side described later; an absorber, a condenser and an evaporator; , A low temperature solution heat exchanger, a waste heat-solution heat exchanger, a high temperature solution heat exchanger, a high temperature regenerator and the waste heat-solution heat exchanger side provided in a circuit connecting the absorber and the low temperature regenerator To a low temperature regenerator side or a high temperature solution heat exchanger side, a second three-way valve, a fuel flow rate adjusting valve provided in a fuel supply circuit of the high temperature regenerator, and a low temperature exhaust heat circuit. The first temperature sensor, the second temperature sensor provided in the cooling circuit from the evaporator, the first and second three-way valves, the fuel flow rate adjusting valve, the first and second temperature sensors, and the solution pump are respectively connected. And a control unit.

【0006】本発明の運転制御方法は、コジェネレーシ
ョン装置等からの低温排熱の温度が温度設定値以上であ
るか否かを判断し、温度設定値以下の場合はガス焚モー
ドを選択して冷房負荷に応じてガス流量を調節し、温度
設定値以上の場合は冷房負荷が負荷設定値以下であるか
否かを判断し、冷水出口温度が設定値以下の場合は排熱
焚モードを選択し、冷房負荷に応じて低温排熱の低温再
生器への流量を調節し、冷水出口温度が設定値以上の場
合は排熱投入プラスガス焚モードを選定し冷房負荷に応
じてガス流量を調節することを特徴としている。
The operation control method of the present invention determines whether or not the temperature of the low-temperature exhaust heat from the cogeneration device or the like is equal to or higher than the temperature set value, and if the temperature is equal to or lower than the temperature set value, the gas-fired mode is selected. The gas flow rate is adjusted according to the cooling load, and if the temperature is above the set temperature, it is judged whether the cooling load is below the set load.If the chilled water outlet temperature is below the set value, the exhaust heat mode is selected. Then, the flow rate of low-temperature exhaust heat to the low-temperature regenerator is adjusted according to the cooling load, and when the chilled water outlet temperature is above the set value, the exhaust heat input plus gas firing mode is selected and the gas flow rate is adjusted according to the cooling load. It is characterized by doing.

【0007】[0007]

【作用】本発明においては、コジェネレーション装置等
からの温水を、温水の量及び温度に応じて二熱源同時駆
動時は、排熱−溶液熱交換器側へ、温水だけで駆動する
ときは低温再生器側へ切換えて運転する。
In the present invention, the hot water from the cogeneration device or the like is driven to the exhaust heat-solution heat exchanger side at the time of simultaneous driving of two heat sources according to the amount and temperature of the hot water, and at the low temperature when driven by only the hot water. Operate by switching to the regenerator side.

【0008】[0008]

【実施例】以下図面を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1において、コジェネレーション装置1
の温水回路L1には、温水ポンプ2、第1三方弁VH、
三方弁3及び冷却塔4が介装されている。
In FIG. 1, a cogeneration system 1
In the hot water circuit L1 of the hot water pump 2, the first three-way valve VH,
A three-way valve 3 and a cooling tower 4 are provided.

【0010】他方、全体を符号10で示す吸収冷凍機に
は、公知のように、吸収器11、高温再生器12、低温
再生器13、凝縮器14及び蒸発器15が設けられ、そ
れぞれ回路L2〜L5で接続されている。
On the other hand, the absorption refrigerating machine indicated by reference numeral 10 as a whole is provided with an absorber 11, a high temperature regenerator 12, a low temperature regenerator 13, a condenser 14 and an evaporator 15, as is well known, and each has a circuit L2. ~ L5 are connected.

【0011】前記回路L2には、吸収器11側から順
に、溶液ポンプP、低温溶液熱交換器16、排熱−溶液
熱交換器17、第2三方弁VS及び高温溶液熱交換器1
8が介装されている。なお、符号P1は冷媒ポンプであ
る。
In the circuit L2, the solution pump P, the low temperature solution heat exchanger 16, the exhaust heat-solution heat exchanger 17, the second three-way valve VS, and the high temperature solution heat exchanger 1 are arranged in this order from the absorber 11 side.
8 is interposed. In addition, the code | symbol P1 is a refrigerant pump.

【0012】前記第1三方弁VHは、温水回路L1の上
流側を下流側又は排熱−溶液熱交換器17を経由する溶
液回路L6側に選択的に接続し、第2三方弁VSは、吸
収器11側を高温再生器12側又は低温再生器13側に
選択的に接続するようになっている。
The first three-way valve VH selectively connects the upstream side of the hot water circuit L1 to the downstream side or the solution circuit L6 side passing through the waste heat-solution heat exchanger 17, and the second three-way valve VS is The absorber 11 side is selectively connected to the high temperature regenerator 12 side or the low temperature regenerator 13 side.

【0013】他方、温水回路L1には、温度THを検出
する第1温度センサS1が設けられ、蒸発器15から冷
房負荷CLへの冷水回路L7には、冷水出口温度TLを
検出する第2温度センサS2が設けられている。また、
高温再生器12へのガス供給回路L8には、流量調整弁
VFが設けられている。そして、第1、第2三方弁V
H、VS、流量調整弁VF、第1、第2温度センサS
1、S2及び溶液ポンプPは、それぞれ制御ユニット2
0に接続されている。また、各回路L1〜L8には、矢
印で示すように流れるようになっている。
On the other hand, the hot water circuit L1 is provided with a first temperature sensor S1 for detecting the temperature TH, and the cold water circuit L7 from the evaporator 15 to the cooling load CL is provided with a second temperature for detecting the cold water outlet temperature TL. A sensor S2 is provided. Also,
The gas supply circuit L8 to the high temperature regenerator 12 is provided with a flow rate adjusting valve VF. Then, the first and second three-way valves V
H, VS, flow rate adjusting valve VF, first and second temperature sensor S
1, S2 and solution pump P are control unit 2 respectively
It is connected to 0. The circuits L1 to L8 are designed to flow as indicated by arrows.

【0014】次に、運転制御の態様を説明する。Next, the mode of operation control will be described.

【0015】図2において制御ユニット20は、第1、
第2センサS1、S2からの信号に基づき、温水回路L
1の温度TH及び冷水回路L7の温度TLを検出し(ス
テップS1)、温度THが温水回路温度設定値以上か否
かすなわち温排熱があるか否かを判断する(ステップS
2)。以下の場合すなわちNOの場合は、後記するガス
焚モードを選択し(ステップS3)、以上の場合すなわ
ちYESだったら、温度TLが冷水回路温度設定値より
小さいか否か、すなわち冷房負荷が排熱焚モードで充分
であるか否かを判断する(ステップS4)。YESだっ
たら、排熱焚モードを選択し(ステップS5)、NOの
場合は、排熱投入プラスガス焚モードを選択する(ステ
ップS6)。
In FIG. 2, the control unit 20 includes a first
Based on the signals from the second sensors S1 and S2, the hot water circuit L
The temperature TH of 1 and the temperature TL of the cold water circuit L7 are detected (step S1), and it is determined whether the temperature TH is equal to or higher than the hot water circuit temperature set value, that is, whether there is hot exhaust heat (step S).
2). In the following cases, that is, in the case of NO, the gas-fired mode to be described later is selected (step S3), and in the cases of the above, that is, in the case of YES, it is determined whether or not the temperature TL is smaller than the set value of the cooling water circuit temperature, that is, the cooling load is exhaust heat. It is determined whether or not the fire mode is sufficient (step S4). If YES, the exhaust heat burning mode is selected (step S5), and if NO, the exhaust heat input plus gas burning mode is selected (step S6).

【0016】ガス焚モードすなわち温排熱がない場合
は、第1三方弁VHを全閉し、第2三方弁VSを高温溶
液熱交換器18側に切換えて全開し、流量調整弁VFの
開度を調節すると共に、溶液ポンプPの流量をガス焚の
設定循環量に設定する。すなわち、図3に示すように制
御ユニット20は、温度TLを検出して(ステップS1
0)、温度TLが冷水回路温度設定値以下か否かを判断
し(ステップS11)、YESだったら、負荷に応じて
ガスGの流量を減少させる方向に流量調整弁VFの開度
を制御し(ステップS12)。NOの場合は、負荷に応
じてガスGの流量を増加させる方向に流量調整弁VFの
開度を制御する。
In the gas burning mode, that is, when there is no warm exhaust heat, the first three-way valve VH is fully closed, the second three-way valve VS is switched to the high temperature solution heat exchanger 18 side and fully opened, and the flow rate adjusting valve VF is opened. The flow rate of the solution pump P is set to the set circulation amount of the gas fire while adjusting the degree. That is, as shown in FIG. 3, the control unit 20 detects the temperature TL (step S1).
0), it is determined whether or not the temperature TL is equal to or lower than the chilled water circuit temperature set value (step S11). If YES, the opening of the flow rate adjusting valve VF is controlled in the direction of decreasing the flow rate of the gas G according to the load. (Step S12). In the case of NO, the opening degree of the flow rate adjusting valve VF is controlled in the direction of increasing the flow rate of the gas G according to the load.

【0017】排熱焚モード時は、第1三方弁VHを溶液
回路L6側に切換えて温度TH、TLにより流量を調整
し、第2三方弁VSを低温再生器13側に切換えて全開
し、流量調整弁VFを全閉すると共に、溶液ポンプPの
流量を排熱焚の溶液循環量に設定する。すなわち、図4
に示すように制御ユニット20は、温度TLを検出して
(ステップS20)、温度TLが冷房回路温度設定値以
下か否かを判断する(ステップS21)。YESだった
ら、負荷に応じて温水量を減少させる方向に第1三方弁
VHの開度を制御し(ステップS22)、NOの場合
は、負荷に応じて温水量を増加させる方向に第1三方弁
VHの開度を制御する(ステップS23)。
In the exhaust heat burning mode, the first three-way valve VH is switched to the solution circuit L6 side to adjust the flow rate by the temperatures TH and TL, and the second three-way valve VS is switched to the low temperature regenerator 13 side to be fully opened. The flow rate adjusting valve VF is fully closed, and the flow rate of the solution pump P is set to the solution circulation amount of the exhaust heat heating. That is, FIG.
As shown in, the control unit 20 detects the temperature TL (step S20) and determines whether the temperature TL is equal to or lower than the cooling circuit temperature set value (step S21). If YES, the opening degree of the first three-way valve VH is controlled to decrease the hot water amount according to the load (step S22), and if NO, the first three-way direction to increase the hot water amount according to the load. The opening degree of the valve VH is controlled (step S23).

【0018】排熱投入プラスガス焚モードすなわち二熱
源駆動時は、第1三方弁VHを溶液回路L6側に切換え
て全開とし、第2三方弁VSを高温溶液熱交換器18側
に切換えて全開とし、流量調整弁VFを開いて開度を温
度TLにより調節すると共に、溶液ポンプPの流量をガ
ス焚の設定循環量に設定する。
In the exhaust heat input plus gas firing mode, that is, when the two heat sources are driven, the first three-way valve VH is switched to the solution circuit L6 side to be fully opened, and the second three-way valve VS is switched to the high temperature solution heat exchanger 18 side to be fully opened. Then, the flow rate adjusting valve VF is opened to adjust the opening degree by the temperature TL, and the flow rate of the solution pump P is set to the set circulation amount of the gas fire.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、従
来はそれぞれ2つを必要としていた低温再生器及び凝縮
器をそれぞれ1つにし、構造を小型軽量化、単純化する
と共に、制御を簡素化することができる。
As described above, according to the present invention, a low temperature regenerator and a condenser, which conventionally required two, respectively, are provided in a single structure to reduce the size and weight of the structure, simplify the structure, and control the same. It can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体構成図。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】概略の制御フローチャート図。FIG. 2 is a schematic control flowchart.

【図3】ガス焚モードの制御フローチャート図。FIG. 3 is a control flowchart of the gas-fired mode.

【図4】排熱焚モードの制御フローチャート図。FIG. 4 is a control flowchart of an exhaust heat burning mode.

【図5】従来の吸収冷凍機の一例を示す全体構成図。FIG. 5 is an overall configuration diagram showing an example of a conventional absorption refrigerator.

【符号の説明】[Explanation of symbols]

CL・・・冷房負荷 G・・・都市ガス L1・・・温水回路 L2〜L5・・・回路 L6・・・温水回路 L7・・・冷水回路 L8・・・ガス供給回路 P・・・溶液ポンプ P1・・・冷媒ポンプ S1・・・第1温度センサ S2・・・第2温度センサ VH・・・第1三方弁 VS・・・第2三方弁 VF・・・燃料流量調整弁 1・・・コジェネレーション装置 2・・・温水ポンプ 3・・・三方弁 4・・・冷却塔 10・・・吸収冷凍機 11・・・吸収器 12・・・高温再生器 13・・・低温再生器 13A・・・第1低温再生器 13B・・・第2低温再生器 14・・・凝縮器 14A・・・第1凝縮器 14B・・・第2凝縮器 15・・・蒸発器 16・・・低温溶液熱交換器 17・・・排熱−溶液熱交換器 18・・・高温溶液熱交換器 20・・・制御ユニット CL ... Cooling load G ... City gas L1 ... Hot water circuit L2-L5 ... Circuit L6 ... Hot water circuit L7 ... Cold water circuit L8 ... Gas supply circuit P ... Solution pump P1 ... Refrigerant pump S1 ... First temperature sensor S2 ... Second temperature sensor VH ... First three-way valve VS ... Second three-way valve VF ... Fuel flow control valve 1 ... Cogeneration device 2 ... Hot water pump 3 ... Three-way valve 4 ... Cooling tower 10 ... Absorption refrigerator 11 ... Absorber 12 ... High temperature regenerator 13 ... Low temperature regenerator 13A. ..First low temperature regenerator 13B ... Second low temperature regenerator 14 ... Condenser 14A ... First condenser 14B ... Second condenser 15 ... Evaporator 16 ... Low temperature solution Heat exchanger 17 ... Exhaust heat-solution heat exchanger 18 ... High temperature solution heat exchanger 20 ... ··Controller unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コジェネレーション装置等の低温排熱回
路に設けられ低温排熱を該低温排熱回路下流側又は後記
排熱−溶液熱交換器側に切換える第1三方弁と、吸収
器、凝縮器及び蒸発器と、該吸収器と低温再生器とを接
続する回路に設けられた低温溶液熱交換器、排熱−溶液
熱交換器、高温溶液熱交換器、高温再生器及び前記排熱
−溶液熱交換器側を低温再生器側又は高温溶液熱交換器
側に選択的に切換える第2三方弁と、前記高温再生器の
燃料供給回路に設けられた燃料流量調整弁と、前記低温
排熱回路に設けられた第1温度センサと、前記蒸発器か
らの冷房回路に設けられた第2温度センサと、第1、第
2三方弁、燃料流量調整弁、第1、第2温度センサ及び
溶液ポンプがそれぞれ接続された制御ユニットとを備え
たことを特徴とする吸収冷凍機。
1. A first three-way valve provided in a low temperature exhaust heat circuit of a cogeneration system or the like for switching the low temperature exhaust heat to the downstream side of the low temperature exhaust heat circuit or the exhaust heat-solution heat exchanger side described later, an absorber, and a condenser. -Temperature solution heat exchanger, waste heat-solution heat exchanger, high-temperature solution heat exchanger, high-temperature regenerator and waste heat-provided in a circuit connecting the absorber and the evaporator and the absorber and the low-temperature regenerator A second three-way valve for selectively switching the solution heat exchanger side to the low temperature regenerator side or the high temperature solution heat exchanger side, a fuel flow rate adjusting valve provided in the fuel supply circuit of the high temperature regenerator, and the low temperature exhaust heat A first temperature sensor provided in the circuit, a second temperature sensor provided in the cooling circuit from the evaporator, first and second three-way valves, a fuel flow rate adjusting valve, first and second temperature sensors and a solution. The suction pump is characterized in that it has a control unit to which each pump is connected. Storage refrigerator.
【請求項2】 コジェネレーション装置等からの低温排
熱の温度が温度設定値以上であるか否かを判断し、温度
設定値以下の場合はガス焚モードを選択して冷房負荷に
応じてガス流量を調節し、温度設定値以上の場合は冷房
負荷が負荷設定値以下であるか否かを判断し、冷水出口
温度が設定値以下の場合は排熱焚モードを選択し、冷房
負荷に応じて低温排熱の低温再生器への流量を調節し、
冷水出口温度が設定値以上の場合は排熱投入プラスガス
焚モードを選定し冷房負荷に応じてガス流量を調節する
ことを特徴とする吸収冷凍機の運転制御方法。
2. A method of determining whether the temperature of low temperature exhaust heat from a cogeneration device or the like is equal to or higher than a temperature set value, and when the temperature is equal to or lower than the temperature set value, selects a gas-fired mode and selects a gas depending on a cooling load. Adjust the flow rate, and if the temperature is above the set value, determine whether the cooling load is below the set load.If the chilled water outlet temperature is below the set value, select the exhaust heat mode and select the cooling load. Adjust the flow rate of low temperature exhaust heat to the low temperature regenerator,
An operation control method for an absorption chiller, wherein when the chilled water outlet temperature is equal to or higher than a set value, the exhaust heat input plus gas-fired mode is selected and the gas flow rate is adjusted according to the cooling load.
JP6008331A 1994-01-28 1994-01-28 Absorption refrigerator and its operation control method Expired - Lifetime JP2806780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6008331A JP2806780B2 (en) 1994-01-28 1994-01-28 Absorption refrigerator and its operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6008331A JP2806780B2 (en) 1994-01-28 1994-01-28 Absorption refrigerator and its operation control method

Publications (2)

Publication Number Publication Date
JPH07218018A true JPH07218018A (en) 1995-08-18
JP2806780B2 JP2806780B2 (en) 1998-09-30

Family

ID=11690216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6008331A Expired - Lifetime JP2806780B2 (en) 1994-01-28 1994-01-28 Absorption refrigerator and its operation control method

Country Status (1)

Country Link
JP (1) JP2806780B2 (en)

Also Published As

Publication number Publication date
JP2806780B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JP4827307B2 (en) Air conditioner
JPH05332629A (en) Air conditioner
KR930007079B1 (en) Heat pump type heating apparatus and control method therefor
JP2000304375A (en) Latent heat recovery type absorption water cooler heater
JP2806491B2 (en) Absorption refrigerator and its operation control method
JP3418655B2 (en) Absorption cycle operation equipment
JP2806780B2 (en) Absorption refrigerator and its operation control method
US7143592B2 (en) Absorption chiller-heater
JPH07218016A (en) Absorption type chilled and warm water machine
JPH1089791A (en) Controller for multifunctional heat pump system
JPS5844182B2 (en) absorption refrigerator
JP3075944B2 (en) Absorption chiller / heater
JP2000065436A (en) Waste heat utilizing absorption type water heater/cooler refrigerating machine with load variation controlling function
JPH09138024A (en) Air conditioner
JP3228024B2 (en) Vending machine operation method
JPH10232059A (en) Method for feeding heat
JPS5916749Y2 (en) Water chiller/heater operation controller
JPH0893553A (en) Control method and device for heat supply using cogeneration system
JPH0117008Y2 (en)
JP3695087B2 (en) Method and apparatus for controlling multiple units of absorption chiller / heater
JP2002349985A (en) Exhaust gas charging type absorption water cooler and heater, and control method thereof
JP2930286B2 (en) Absorption chiller / heater and operation control method thereof
JP2002372337A (en) Cogeneration system, and its control method
JPS5921957A (en) Absorption cold and hot water machine
JP3326240B2 (en) Control method of absorption refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100724

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110724

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term