JP2930286B2 - Absorption chiller / heater and operation control method thereof - Google Patents

Absorption chiller / heater and operation control method thereof

Info

Publication number
JP2930286B2
JP2930286B2 JP6291788A JP29178894A JP2930286B2 JP 2930286 B2 JP2930286 B2 JP 2930286B2 JP 6291788 A JP6291788 A JP 6291788A JP 29178894 A JP29178894 A JP 29178894A JP 2930286 B2 JP2930286 B2 JP 2930286B2
Authority
JP
Japan
Prior art keywords
temperature regenerator
heat exchanger
absorption chiller
absorber
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6291788A
Other languages
Japanese (ja)
Other versions
JPH08152223A (en
Inventor
弘 小島
誠 中村
勝 江寺
雅博 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6291788A priority Critical patent/JP2930286B2/en
Publication of JPH08152223A publication Critical patent/JPH08152223A/en
Application granted granted Critical
Publication of JP2930286B2 publication Critical patent/JP2930286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、吸収冷温水機及びその
運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller / heater and its operating method.

【0002】[0002]

【従来の技術】従来の吸収冷温水機では、冷房負荷が減
少して、冷水入口温度、冷却水入口温度等が定格温度を
下回った状態(所謂「部分負荷」の状態)になった際に
は、系内の溶液循環量を適正な流量に調節し、効率的な
運転を維持している。すなわち、部分負荷運転時は、定
格運転時に比較して、高温再生器内で必要な加熱液量は
少なくて済むので、吸収器からの送出液を減少させるこ
とにより、必要な高質燃料の消費量を減少させ、その分
だけ運転コストを低下させている。
2. Description of the Related Art In a conventional absorption chiller / heater, when the cooling load is reduced and the chilled water inlet temperature, the chilled water inlet temperature, etc. fall below the rated temperature (so-called "partial load" state). Adjusts the amount of circulating solution in the system to an appropriate flow rate to maintain efficient operation. In other words, during the partial load operation, the amount of heating liquid required in the high-temperature regenerator is smaller than that during the rated operation, so that the required amount of high-quality fuel can be reduced by reducing the amount of liquid discharged from the absorber. The volume is reduced, and the operating costs are reduced accordingly.

【0003】[0003]

【発明が解決しようとする課題】しかし、排熱投入運転
モードの際には、熱交換器を介して系内を循環する溶液
に排熱の熱量が付加される。従って、排熱を有効利用し
て、系内を循環する溶液の液温を定格温度に上昇させる
のに必要な高質燃料の消費量を減少させるためには、該
溶液の流量或いは循環量が多い方が好ましい。換言すれ
ば、系内の溶液循環量を従来通り減少させるという運転
方法では、排熱投入運転モードに際して排熱を有効利用
することが不可能となってしまう、という問題がある。
However, in the exhaust heat input operation mode, the amount of exhaust heat is added to the solution circulating in the system via the heat exchanger. Therefore, in order to effectively use the waste heat and reduce the consumption of high quality fuel required to raise the temperature of the solution circulating in the system to the rated temperature, the flow rate or the circulation amount of the solution must be reduced. More is preferred. In other words, in the operation method of reducing the amount of circulating solution in the system as before, there is a problem that it becomes impossible to effectively use the exhaust heat in the exhaust heat input operation mode.

【0004】一方、排熱を投入しない通常運転モード時
においては、上述した様な部分負荷の状態で溶液循環量
が多いと、高価な高質燃料の消費量が増加してしまう。
On the other hand, in the normal operation mode in which the exhaust heat is not supplied, the consumption of expensive high-quality fuel increases if the solution circulation amount is large under the partial load as described above.

【0005】本発明は上記した従来技術の問題点に鑑み
て提案されたものであり、排熱投入運転モードに際して
は排熱を有効利用することが出来て、しかも排熱投入運
転モードであっても通常運転モードであっても、高価な
高質燃料の消費量を可能な限り低く抑えることが出来る
冷温水機及びその運転制御方法を提供することを目的と
している。
[0005] The present invention has been proposed in view of the above-mentioned problems of the prior art. In the exhaust heat input operation mode, the exhaust heat can be effectively used. It is an object of the present invention to provide a water heater and a water heater capable of suppressing the consumption of expensive high quality fuel as low as possible even in the normal operation mode, and an operation control method thereof.

【0006】[0006]

【課題を解決するための手段】本発明による吸収冷温水
機は、外部から供給される排熱を用いる排熱系と、高質
燃料の燃焼熱を用いる高質燃料系とを有し、前記排熱系
は、溶液ポンプ(P10)を介して吸収器(10)と高
温再生器(11)または低温再生器(12)とを連通す
る配管(L1、L1E)中を流れる溶液に、排熱供給ラ
イン(43)から分岐する排熱投入ライン(L2)に介
装された排熱熱交換器(32)を介して、排熱を供給す
る様に構成されており、高質燃料系のみを用いる通常運
転モードであるか或いは排熱系を介して排熱も投入され
る排熱投入運転モードであるのかを判断する制御手段を
備え、該制御手段は、通常運転モード或いは排熱投入運
転モードのいずれの場合であっても高質燃料の消費量が
最低となる様な運転制御を行う様に、系内の溶液循環量
を調整する手段に対して制御信号を出力する機能を備え
ている。ここで、前記吸収冷温水機はシリーズフロータ
イプに構成されており、前記排熱熱交換器(32)は、
溶液ポンプ(P10)を介して吸収器(10)と高温再
生器(11)とを連通する配管(L1)の、高温再生器
側に介装された第1の熱交換器(14)と吸収器側に介
装された第2の熱交換器(15)との間の範囲に介装さ
れているのが好ましい(図3)。また、前記吸収冷温水
機はシリーズフロータイプに構成されており、前記排熱
熱交換器(32)は、溶液ポンプ(P10)を介して吸
収器(10)と高温再生器(11)とを連通する配管で
あって、高温再生器側に介装された第1の熱交換器(1
4)と吸収器側に介装された第2の熱交換器(15)と
をバイパスする配管(L1)に介装されているのが好ま
しい(図4)。或いは、前記吸収冷温水機はシリーズフ
ロータイプに構成されており、前記排熱熱交換器(3
2)は、溶液ポンプ(P10)を介して吸収器(10)
と高温再生器(11)とを連通する配管であって、吸収
器側に介装された第2の熱交換器(15)とをバイパス
して高温再生器側に介装された第1の熱交換器(14)
と連通する配管(L1)に介装されているのが好ましい
(図5)。そして、前記吸収冷温水機はシリーズフロー
タイプに構成されており、前記排熱熱交換器(32)
は、溶液ポンプ(P10)を介して吸収器(10)と低
温再生器(12)と連通する配管(L1)に介装されて
おり、該配管(L1)は、吸収器(10)と高温再生器
(11)とを連通する配管の、吸収器側に介装された第
2の熱交換器(15)と吸収器(10)の間の範囲から
分岐して、低温再生器(12)と連通しているのが好ま
しい(図6)。さらに、前記吸収冷温水機はパラレルフ
ロータイプに構成されており、前記排熱熱交換器(3
2)が介装されている配管(L1)は、溶液ポンプ(P
10)を介して吸収器(10)と高温再生器(11)或
いは低温再生器(12)とを連通する配管の、吸収器側
に介装された第2の熱交換器(15)と吸収器(10)
の間の範囲から分岐して、高温再生器(12)と連通し
ているのが好ましい(図7)。それに加えて、前記吸収
冷温水機はパラレルフロータイプに構成されており、前
記排熱熱交換器(32)は、溶液ポンプ(P10)を介
して吸収器(10)と低温再生器(12)と連通する配
管(L1)に介装されており、該配管(L1)は、吸収
器(10)と高温再生器(11)とを連通する配管の、
吸収器側に介装された第2の熱交換器(15)と吸収器
(10)の間の範囲から分岐して、低温再生器(12)
と連通しているのが好ましい(図8)。本発明の実施に
際して、前記吸収冷温水機はパラレルフロータイプに構
成されており、前記排熱熱交換器(32)は、溶液ポン
プ(P10)を介して吸収器(10)と高温再生器(1
1)或いは低温再生器(12)とを連通する配管(L
1)の、高温再生器(11)へ連通する配管と低温再生
器(12)へ連通する配管の分岐箇所(DL)と、吸収
器側に介装された第2の熱交換器(15)との間の範囲
に介装されているのが好ましい(図9)。ここで、前記
吸収冷温水機はパラレルフロータイプに構成されてお
り、前記排熱熱交換器(32)は、溶液ポンプ(P1
0)を介して吸収器(10)と高温再生器(11)或い
は低温再生器(12)とを連通する配管(L1)の、高
温再生器(11)へ連通する配管と低温再生器(12)
へ連通する配管の分岐箇所(DL)と、高温再生器側に
介装された第1の熱交換器(14)との間の範囲に介装
されているのが好ましい(図10)。また、前記吸収冷
温水機はリバースフロータイプに構成されており、前記
排熱熱交換器(32)が介装されている配管(L1E)
は、溶液ポンプ(P10)及び低温再生器(12)を介
して吸収器(10)と高温再生器(11)を連通する配
管の、吸収器側に介装された第2の熱交換器(15)と
吸収器(10)との間の範囲から分岐して、高温再生器
側に介装された第1の熱交換器(14)と高温再生器
(11)との間の範囲に合流しているのが好ましい(図
11)。或いは、前記吸収冷温水機はリバースフロータ
イプに構成されており、前記排熱熱交換器(32)が介
装されている配管(L1)は、低温再生器(12)を介
して吸収器(10)と高温再生器(11)を連通する配
管の、吸収器側に介装された第2の熱交換器(15)と
吸収器(10)との間の範囲から分岐して、該第2の熱
交換器(15)と低温再生器(12)との間の範囲に合
流しているのが好ましい(図12)。そして、前記吸収
冷温水機はリバースフロータイプに構成されており、前
記排熱熱交換器(32)は、低温再生器(12)を介し
て吸収器(10)と高温再生器(11)を連通する配管
(L1)の、吸収器側に介装された第2の熱交換器(1
5)と低温再生器(12)との間の範囲に介装されてい
るのが好ましい(図13)。また、前記吸収冷温水機は
リバースフロータイプに構成されており、前記排熱熱交
換器(32)は、低温再生器(12)を介して吸収器
(10)と高温再生器(11)を連通する配管(L1)
の、高温再生器側に介装された第1の熱交換器(14)
と低温再生器(12)との間の範囲に介装されているの
が好ましい(図14)。
The absorption chiller / heater according to the present invention has a waste heat system using waste heat supplied from the outside and a high quality fuel system using combustion heat of high quality fuel. The exhaust heat system supplies an exhaust heat to the solution flowing through the pipes (L1, L1E) connecting the absorber (10) and the high-temperature regenerator (11) or the low-temperature regenerator (12) via the solution pump (P10). Exhaust heat is supplied through an exhaust heat exchanger (32) interposed in an exhaust heat input line (L2) branched from the supply line (43), and only the high-quality fuel system is supplied. A control unit for determining whether the operation mode is a normal operation mode to be used or an exhaust heat input operation mode in which exhaust heat is also input through the exhaust heat system; the control unit includes a normal operation mode or an exhaust heat input operation mode In any case, the operation that minimizes the consumption of high-quality fuel As for controlling, and a function of outputting a control signal to the means for adjusting the solution circulation rate in the system. Here, the absorption chiller / heater is configured as a series flow type, and the exhaust heat exchanger (32) is
The first heat exchanger (14) interposed on the high-temperature regenerator side of the pipe (L1) connecting the absorber (10) and the high-temperature regenerator (11) via the solution pump (P10) and the absorption. It is preferably provided in the area between the second heat exchanger (15) provided on the vessel side (FIG. 3). Further, the absorption chiller / heater is configured as a series flow type, and the exhaust heat exchanger (32) connects the absorber (10) and the high temperature regenerator (11) via a solution pump (P10). The first heat exchanger (1) is connected to the first heat exchanger (1
It is preferable that the pipe is interposed in a pipe (L1) that bypasses the pipe (4) and the second heat exchanger (15) provided on the absorber side (FIG. 4). Alternatively, the absorption chiller / heater is configured as a series flow type, and the exhaust heat exchanger (3
2) is an absorber (10) via a solution pump (P10).
And a high-temperature regenerator (11) communicating with the first heat exchanger (15), bypassing the second heat exchanger (15) interposed on the absorber side. Heat exchanger (14)
It is preferable to be interposed in a pipe (L1) communicating with the pipe (FIG. 5). The absorption chiller / heater is configured as a series flow type, and the exhaust heat exchanger (32)
Is installed in a pipe (L1) communicating with the absorber (10) and the low-temperature regenerator (12) via the solution pump (P10), and the pipe (L1) is connected to the absorber (10) with the high-temperature A low-temperature regenerator (12) branches off from a region between the second heat exchanger (15) and the absorber (10) interposed on the absorber side of a pipe communicating with the regenerator (11). Preferably, it is in communication with (FIG. 6). Furthermore, the absorption chiller / heater is configured as a parallel flow type, and the exhaust heat exchanger (3
The pipe (L1) in which 2) is interposed is a solution pump (P
A second heat exchanger (15) interposed on the absorber side of the pipe connecting the absorber (10) and the high-temperature regenerator (11) or the low-temperature regenerator (12) via the 10). Tableware (10)
It is preferable to branch off from the range between and to communicate with the high-temperature regenerator (12) (FIG. 7). In addition, the absorption chiller / heater is configured as a parallel flow type, and the exhaust heat exchanger (32) is connected to the absorber (10) and the low temperature regenerator (12) via a solution pump (P10). The pipe (L1) is interposed between the absorber (10) and the high temperature regenerator (11).
Branching from the area between the second heat exchanger (15) interposed on the absorber side and the absorber (10), the low temperature regenerator (12)
Preferably, it is in communication with (FIG. 8). In carrying out the present invention, the absorption chiller / heater is configured as a parallel flow type, and the exhaust heat exchanger (32) is connected to the absorber (10) and the high temperature regenerator (10) via a solution pump (P10). 1
1) or a pipe (L) communicating with the low-temperature regenerator (12).
1) the branch point (DL) of the pipe communicating with the high-temperature regenerator (11) and the pipe communicating with the low-temperature regenerator (12), and the second heat exchanger (15) interposed on the absorber side (FIG. 9). Here, the absorption chiller / heater is configured as a parallel flow type, and the exhaust heat exchanger (32) includes a solution pump (P1).
0), the pipe (L1) connecting the absorber (10) and the high temperature regenerator (11) or the low temperature regenerator (12), and the pipe communicating with the high temperature regenerator (11) and the low temperature regenerator (12). )
It is preferably provided in a range between the branch point (DL) of the pipe communicating with the first heat exchanger and the first heat exchanger (14) provided on the high temperature regenerator side (FIG. 10). The absorption chiller / heater is of a reverse flow type, and a pipe (L1E) in which the exhaust heat exchanger (32) is interposed.
Is a second heat exchanger (PID) interposed between the absorber (10) and the high-temperature regenerator (11) via the solution pump (P10) and the low-temperature regenerator (12). 15) and branches off from the area between the absorber (10) and merges into the area between the first heat exchanger (14) and the high temperature regenerator (11) interposed on the high temperature regenerator side. (FIG. 11). Alternatively, the absorption chiller / heater is of a reverse flow type, and the pipe (L1) in which the exhaust heat exchanger (32) is interposed is connected to the absorber (L) through the low temperature regenerator (12). The pipe connecting the high temperature regenerator (11) to the second heat exchanger (15) and the second heat exchanger (15) interposed on the absorber side are branched from the pipe. Preferably, it merges into the area between the second heat exchanger (15) and the low temperature regenerator (12) (FIG. 12). The absorption chiller / heater is configured as a reverse flow type, and the exhaust heat exchanger (32) connects the absorber (10) and the high temperature regenerator (11) via the low temperature regenerator (12). The second heat exchanger (1) interposed on the absorber side of the communicating pipe (L1)
It is preferably interposed between 5) and the low temperature regenerator (12) (FIG. 13). Further, the absorption chiller / heater is configured as a reverse flow type, and the exhaust heat exchanger (32) connects the absorber (10) and the high temperature regenerator (11) via the low temperature regenerator (12). Connecting pipe (L1)
A first heat exchanger (14) interposed on the high-temperature regenerator side
It is preferably interposed in the area between the low-temperature regenerator (12) (FIG. 14).

【0007】また本発明の制御方法は、上述したような
構成を具備する本発明の吸収冷温水機を運転・制御する
吸収冷温水機の運転制御方法において、高質燃料系のみ
を用いる通常運転モードであるか或いは排熱系を介して
排熱も投入される排熱投入運転モードであるのかを判断
する工程と、通常運転モード或いは排熱投入運転モード
のいずれの場合であっても高質燃料の消費量が最低とな
る様な運転制御を行う制御工程、とを含んでいる。
The control method of the present invention is directed to an operation control method of an absorption chiller / heater for operating / controlling the absorption chiller / heater of the present invention having the above-described structure. Determining whether the operation mode is the operation mode or the exhaust heat input operation mode in which the exhaust heat is also input through the exhaust heat system, and whether the operation mode is the normal operation mode or the exhaust heat input operation mode. A control step of performing operation control such that fuel consumption is minimized.

【0008】本発明の実施に際して、通常運転モード或
いは排熱投入運転モードのいずれの場合であっても高質
燃料の消費量が最低となる様な運転制御の態様として
は、例えば、吸収冷温水機の吸収器から溶液を再生器に
送出するポンプの流量を切り換える方式、吸収器から再
生器に至る配管に開度調整弁や絞り弁を介装し且つこれ
等の弁の開閉を制御する方式、ポンプ送出流量の切り換
えと配管に介装された弁の開閉制御とを併用する方式、
等を採用するのが好ましい。但し、具体的な制御の内容
は、吸収冷凍機の仕様、設置条件、運転条件、その他の
要因に基づいて決定されるものであり、所謂「ケース・
バイ・ケース」である。
In carrying out the present invention, the mode of operation control that minimizes the consumption of high-quality fuel in either the normal operation mode or the exhaust heat input operation mode includes, for example, absorption cold and hot water. A method of switching the flow rate of a pump that sends a solution from the absorber of the machine to the regenerator, a method of interposing an opening adjustment valve and a throttle valve in the pipe from the absorber to the regenerator, and controlling the opening and closing of these valves , A method that uses both switching of the pump delivery flow rate and opening and closing control of a valve interposed in the piping,
It is preferable to adopt the following. However, the specific contents of the control are determined based on the specifications, installation conditions, operating conditions, and other factors of the absorption refrigerator, and so-called “case / case”.
"By case".

【0009】[0009]

【作用】上述した様な構成を具備する本発明によれば、
通常運転モードであるか或いは排熱投入運転モードであ
るのかを判断すると共に、通常運転モード或いは排熱投
入運転モードのいずれの場合であっても高質燃料の消費
量が最低となる様に運転制御を行うので、排熱投入運転
モード時において排熱を有効に利用することが出来る。
それと共に、排熱投入運転モードであっても、通常運転
モードであっても、高価な高質燃料の消費量が可能な限
り低く抑えられるので、運転コストの低減に大いに寄与
することが出来る。
According to the present invention having the above-described structure,
Determine whether the operation mode is the normal operation mode or the exhaust heat input operation mode, and operate so that the consumption of high quality fuel is minimized in either the normal operation mode or the exhaust heat input operation mode. Since the control is performed, the exhaust heat can be effectively used in the exhaust heat input operation mode.
At the same time, regardless of whether the operation mode is the exhaust heat input operation mode or the normal operation mode, consumption of expensive high-quality fuel can be suppressed as low as possible, which can greatly contribute to reduction in operation cost.

【0010】[0010]

【実施例】以下図面を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1において、吸収冷温水機20には、蒸
発器9、吸収器10、凝縮器13、高温再生器11及び
排熱熱交換器32が設けられ、冷水ライン6を介して図
示しない冷凍負荷に冷水を供給している。そして、吸収
器10、凝縮器13に冷却水を供給する冷却水ライン3
8と、高温再生器11に高質燃料を供給する調整弁39
を備えた燃料ライン21と、循環量調整手段である調整
弁31を備えた溶液ポンプP10とが設けられている。
また、排熱ライン43からの排熱熱交換器32に例えば
温水を供給する排熱投入ラインL2が設けられ、その排
熱供給ラインL2と排熱ライン43との合流箇所には、
流量調整可能な三方弁V1が設けられている。更に、排
熱ライン43の温度TH を検出する温度センサ45と、
冷却水ライン38の温度TM を検出する温度センサ46
と、冷水ライン6の出口温度TLOを検出する温度センサ
47とが設けられ、それぞれ制御手段である制御装置4
8に接続されている。そして、制御装置48には、調整
弁39、41、溶液ポンプP10及び三方弁V1がそれ
ぞれ接続されている。
In FIG. 1, an absorption chiller / heater 20 is provided with an evaporator 9, an absorber 10, a condenser 13, a high temperature regenerator 11, and a waste heat exchanger 32, not shown via a chilled water line 6. Cold water is supplied to the refrigeration load. Then, a cooling water line 3 for supplying cooling water to the absorber 10 and the condenser 13
8 and a regulating valve 39 for supplying high-quality fuel to the high-temperature regenerator 11
And a solution pump P10 provided with an adjustment valve 31 as a circulation amount adjusting means.
Further, an exhaust heat input line L2 for supplying hot water, for example, to the exhaust heat exchanger 32 from the exhaust heat line 43 is provided, and at the junction of the exhaust heat supply line L2 and the exhaust heat line 43,
A three-way valve V1 capable of adjusting the flow rate is provided. Further, a temperature sensor 45 for detecting the temperature T H of the exhaust heat line 43,
Temperature sensor 46 for detecting temperature T M of cooling water line 38
And a temperature sensor 47 for detecting an outlet temperature T LO of the chilled water line 6.
8 is connected. Further, the control device 48 is connected with the adjustment valves 39 and 41, the solution pump P10, and the three-way valve V1, respectively.

【0012】次に、図2を参照して作用を説明する。Next, the operation will be described with reference to FIG.

【0013】制御装置38は、吸収冷温水機20の稼働
時は、(ステップS1)、所定信号、例えば三方弁V1
の開度信号を受信する(ステップS2)。次いで、三方
弁V1の開度信号に基づき、排熱投入運転モードか否か
を判断する(ステップS3)。なお、この判定のNO
は、三方弁V1が排熱熱交換器32をバイパスする側に
100%開いている場合を意味している。そこで、YE
Sだったら、すなわち排熱投入運転モードと判断したと
きは、調整弁31及び溶液ポンプP10に対し、高質燃
料の消費量が最低となるような排熱投入運転モードの溶
液循環量制御を行う(ステップS4)。
When the absorption chiller / heater 20 is operating (step S1), the control device 38 outputs a predetermined signal, for example, a three-way valve V1.
Is received (step S2). Next, based on the opening signal of the three-way valve V1, it is determined whether or not the operation mode is the exhaust heat input operation mode (step S3). In addition, NO of this determination
Means that the three-way valve V1 is 100% open to the side that bypasses the exhaust heat exchanger 32. So, YE
If it is S, that is, if it is determined that the operation mode is the exhaust heat input operation mode, the control valve 31 and the solution pump P10 perform the solution circulation amount control in the exhaust heat input operation mode so as to minimize the consumption of high quality fuel. (Step S4).

【0014】すなわち、排熱投入運転モードと判断し且
つ部分負荷の状態の場合において、高質燃料の消費量が
最低となる様な運転制御の具体例としては、従来の溶液
循環量に比較して流量を大きくするか、或いは定格流量
を流すことが考えられる。ここで、従来の溶液循環量に
比較して、どの程度まで流量を増加するのかは、個々の
装置の特性や運転条件等によりケース・バイ・ケースで
定められるものであり、画一的に定義することは不可能
である。
That is, as a specific example of the operation control that minimizes the consumption of high-quality fuel when the operation mode is determined to be the exhaust heat input operation mode and the partial load is applied, the operation control is compared with the conventional solution circulation amount. It is conceivable to increase the flow rate or flow the rated flow rate. Here, the extent to which the flow rate is increased compared to the conventional solution circulation amount is determined on a case-by-case basis by the characteristics of each device, operating conditions, and the like, and is uniformly defined. It is impossible to do.

【0015】他方、NOの場合すなわち通常運転モード
と判断したときは、通常運転モードの溶液循環量制御を
行い、高質燃料の消費量が最低となるように制御する
(ステップS5)。
On the other hand, in the case of NO, that is, when it is determined that the operation mode is the normal operation mode, the control of the circulation amount of the solution in the normal operation mode is performed so that the consumption of high quality fuel is minimized (step S5).

【0016】次に、図3以下を参照して、高質燃料の消
費量が最低となる様な制御の具体例について説明する。
なお、図3以下において、符号14及び15は熱交換器
を示している。
Next, a specific example of control for minimizing the consumption of high quality fuel will be described with reference to FIG.
In addition, in FIG. 3 and subsequent figures, reference numerals 14 and 15 indicate heat exchangers.

【0017】図3は、所謂「シリーズフロー」タイプの
吸収冷温水機に対して本発明を適用した一例を示してい
る。図3において、排熱投入運転モード或いは通常運転
モードにおいて高質燃料の消費量を最低にするための一
手段としては、吸収冷温水機20内の溶液循環流量を運
転モードによって切り換えれば良い。そのため、例えば
溶液ポンプPは、その送出流量が(少なくとも2段階
に)切り換え可能なポンプ(例:インバータ付きのポン
プ)により構成することが考えられる。また、図3にお
いて、吸収器10と高温再生器11とを連通する配管L
1中、符号49、50、51、52で示す位置のいずれ
か1箇所に開度調整弁或いは絞り弁を設け、該弁の開度
の制御をすることにより、運転モードに対応して吸収冷
温水機20内の溶液循環流量を変化させれば良い。或い
は、溶液ポンプPを送出流量切り換え可能なポンプによ
り構成すると共に、位置49、50、51、52で示す
位置のいずれか1箇所に、開度調整弁或いは絞り弁を設
けても良い。
FIG. 3 shows an example in which the present invention is applied to a so-called "series flow" type absorption chiller / heater. In FIG. 3, as one means for minimizing the consumption of high quality fuel in the exhaust heat input operation mode or the normal operation mode, the solution circulation flow rate in the absorption chiller / heater 20 may be switched according to the operation mode. Therefore, for example, it is conceivable that the solution pump P is configured by a pump (for example, a pump with an inverter) whose delivery flow rate can be switched (at least in two stages). In FIG. 3, a pipe L connecting the absorber 10 and the high-temperature regenerator 11 is connected.
1, an opening adjustment valve or a throttle valve is provided at any one of the positions indicated by reference numerals 49, 50, 51, and 52, and the opening of the valve is controlled, so that the absorption cooling temperature is adjusted in accordance with the operation mode. What is necessary is just to change the solution circulation flow rate in the water machine 20. Alternatively, the solution pump P may be constituted by a pump capable of switching the delivery flow rate, and an opening adjustment valve or a throttle valve may be provided at any one of the positions 49, 50, 51, and 52.

【0018】図4もシリーズフロータイプの吸収冷温水
機に本発明を適用した例である。この例において、排熱
投入運転モード或いは通常運転モードについて高質燃料
の消費量を最低にするための手段は、以下の通りであ
る。先ず、図3の実施例と同様に、例えば溶液ポンプP
を、その送出流量が(少なくとも2段階に)切り換え可
能なポンプ(例:インバータ付きのポンプ)により構成
し、吸収冷温水機20内の溶液循環流量を運転モードに
よって切り換えることが考えられる。また、符号53、
59で示す位置のいずれか1箇所に絞り弁を設け、該弁
を開閉制御して、吸収冷温水機20内の溶液循環流量を
変化させて、運転モードの切り換えに対処することが考
えられる。或いは、符号54、55、56、57、58
で示す位置のいずれか1箇所に開度調整弁或いは絞り弁
を設け、該弁を開度調整制御しても良い。さらに、符号
53、59で示す位置のいずれか1箇所に開度調整弁或
いは絞り弁を設けると共に、符号54、55、56、5
7、58で示す位置のいずれか1箇所に開度調整弁或い
は絞り弁を設け、これ等の弁を開度調整制御しても良
い。これに加えて、溶液ポンプPを送出流量切り換え可
能なポンプにより構成すると共に、位置54、55、5
6、57、58で示す位置のいずれか1箇所に、開度調
整弁或いは絞り弁を設けても良い。
FIG. 4 also shows an example in which the present invention is applied to a series flow type absorption chiller / heater. In this example, the means for minimizing the consumption of high quality fuel in the exhaust heat input operation mode or the normal operation mode is as follows. First, for example, as in the embodiment of FIG.
May be constituted by a pump (eg, a pump with an inverter) whose delivery flow rate can be switched (at least in two stages), and the solution circulation flow rate in the absorption chiller / heater 20 may be switched according to the operation mode. Reference numeral 53,
It is conceivable to provide a throttle valve at any one of the positions indicated by 59, control the opening and closing of the valve, change the solution circulation flow rate in the absorption chiller / heater 20, and cope with the switching of the operation mode. Alternatively, reference numerals 54, 55, 56, 57, 58
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by, and the opening adjustment control of the valve may be performed. Further, an opening adjustment valve or a throttle valve is provided at any one of the positions indicated by reference numerals 53, 59, and reference numerals 54, 55, 56,
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 7 and 58, and these valves may be subjected to opening adjustment control. In addition to this, the solution pump P is constituted by a pump capable of switching the delivery flow rate, and the positions 54, 55, 5
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 6, 57 and 58.

【0019】図5もシリーズフロータイプの吸収冷温水
機への適用を示している。この例においても、溶液ポン
プPを、インバータ付きのポンプの様に送出流量が切り
換え可能なポンプにより構成し、以て、吸収冷温水機2
0内の溶液循環流量を運転モードによって切り換えるこ
とが出来る。また、符号60、65、66で示す位置の
いずれか1箇所に開度調整弁或いは絞り弁を設け、該弁
を開度調整制御して、吸収冷温水機20内の溶液循環流
量を変化させて、運転モードの切り換えに対処すること
も出来る。或いは、符号61、62、63、64で示す
位置のいずれか1箇所に開度調整弁或いは絞り弁を設
け、該弁を開度調整制御しても良い。さらに、符号6
0、65、66で示す位置のいずれか1箇所に開度調整
弁或いは絞り弁を設けると共に、符号61、62、6
3、64で示す位置のいずれか1箇所に開度調整弁或い
は絞り弁を設け、これ等の弁を開度調整制御しても良
い。これに加えて、溶液ポンプPを送出流量切り換え可
能なポンプにより構成すると共に、位置61、62、6
3、64で示す位置のいずれか1箇所に、開度調整弁或
いは絞り弁を設けても良い。
FIG. 5 also shows an application to a series flow type absorption chiller / heater. Also in this example, the solution pump P is constituted by a pump whose delivery flow rate can be switched, such as a pump with an inverter.
The solution circulation flow rate within 0 can be switched depending on the operation mode. Further, an opening adjustment valve or a throttle valve is provided at any one of the positions indicated by reference numerals 60, 65 and 66, and the opening adjustment control of the valve is performed to change the solution circulation flow rate in the absorption chiller / heater 20. Thus, it is possible to cope with the switching of the operation mode. Alternatively, an opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by reference numerals 61, 62, 63, and 64, and the opening adjustment control of the valve may be performed. Further, reference numeral 6
An opening adjustment valve or a throttle valve is provided at any one of the positions indicated by 0, 65, and 66, and reference numerals 61, 62, and 6 are provided.
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 3 and 64, and these valves may be subjected to opening adjustment control. In addition to this, the solution pump P is constituted by a pump capable of switching the delivery flow rate, and the positions 61, 62, 6
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 3 and 64.

【0020】図6も本発明をシリーズフロータイプの吸
収冷温水機への適用した一例を示している。この例にお
いても、溶液ポンプPを、インバータ付きのポンプの様
に送出流量が切り換え可能なポンプにより構成すること
により、吸収冷温水機20内の溶液循環流量を運転モー
ドによって切り換えることが出来る。また、符号67で
示す位置に開度調整弁或いは絞り弁を設け、該弁を開度
調整制御して運転モードの切り換えに対処することも出
来る。或いは、符号68、69、70、71、72で示
す位置のいずれか1箇所に開度調整弁或いは絞り弁を設
け、該弁を開度調整制御しても良い。さらに、符号67
で示す位置に開度調整弁或いは絞り弁を設けると共に、
符号68、69、70、71、72で示す位置のいずれ
か1箇所に開度調整弁或いは絞り弁を設け、これ等の弁
を開度調整制御しても良い。これに加えて、溶液ポンプ
Pを送出流量切り換え可能なポンプにより構成すると共
に、位置68、69、70、71、72のいずれか1箇
所に、開度調整弁或いは絞り弁を設けても良い。
FIG. 6 also shows an example in which the present invention is applied to a series flow type absorption chiller / heater. Also in this example, by configuring the solution pump P by a pump whose delivery flow rate can be switched like a pump with an inverter, the solution circulation flow rate in the absorption chiller / heater 20 can be switched according to the operation mode. Further, an opening adjustment valve or a throttle valve may be provided at the position indicated by reference numeral 67, and the opening adjustment control of the valve may be performed to cope with switching of the operation mode. Alternatively, an opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by reference numerals 68, 69, 70, 71, and 72, and the opening adjustment control of the valve may be performed. Further, reference numeral 67
In addition to providing an opening adjustment valve or throttle valve at the position indicated by,
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by reference numerals 68, 69, 70, 71, and 72, and these valves may be subjected to opening adjustment control. In addition to this, the solution pump P may be constituted by a pump capable of switching the delivery flow rate, and an opening adjustment valve or a throttle valve may be provided at any one of the positions 68, 69, 70, 71, 72.

【0021】図3−6は本発明をシリーズフロータイプ
の吸収冷温水機へ適用した例を示しているが、以下に説
明する図7−10は、所謂「パラレルフロー」タイプの
吸収冷温水機に本発明を適用した例を示している。
FIG. 3-6 shows an example in which the present invention is applied to a series flow type absorption chiller / heater. FIG. 7-10 described below is a so-called "parallel flow" type absorption chiller / heater. Shows an example to which the present invention is applied.

【0022】図7において、溶液ポンプPを、インバー
タ付きのポンプの様に送出流量が切り換え可能なポンプ
により構成し、以て、吸収冷温水機20内の溶液循環流
量を運転モードによって切り換えることが可能である。
また、符号73、80で示す位置のいずれか1箇所に開
度調整弁或いは絞り弁を設け、該弁を開度調整制御し
て、吸収冷温水機20内の溶液循環流量を変化させて、
運転モードの切り換えに対処することも出来る。或い
は、符号74、75、76、77、78、79で示す位
置のいずれか1箇所に開度調整弁或いは絞り弁を設け、
該弁を開度調整制御しても良い。さらに、符号73、8
0で示す位置のいずれか1箇所に開度調整弁或いは絞り
弁を設けると共に、符号74、75、76、77、7
8、79で示す位置のいずれか1箇所に開度調整弁或い
は絞り弁を設け、これ等の弁を開度調整制御しても良
い。これに加えて、溶液ポンプPを送出流量切り換え可
能なポンプにより構成すると共に、位置74、75、7
6、77、78、79のいずれか1箇所に、開度調整弁
或いは絞り弁を設けても良い。
In FIG. 7, the solution pump P is constituted by a pump whose delivery flow rate can be switched, such as a pump with an inverter, so that the solution circulation flow rate in the absorption chiller / heater 20 can be switched by the operation mode. It is possible.
Further, an opening adjustment valve or a throttle valve is provided at any one of the positions indicated by reference numerals 73 and 80, and the opening adjustment control of the valve is performed to change the solution circulation flow rate in the absorption chiller / heater 20,
It is also possible to cope with switching of the operation mode. Alternatively, an opening adjustment valve or a throttle valve is provided at any one of the positions indicated by reference numerals 74, 75, 76, 77, 78, 79,
The opening degree of the valve may be controlled. Further, reference numerals 73 and 8
An opening adjustment valve or a throttle valve is provided at any one of the positions indicated by 0, and reference numerals 74, 75, 76, 77, and 7 are provided.
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 8 and 79, and these valves may be subjected to opening adjustment control. In addition to this, the solution pump P is constituted by a pump capable of switching the delivery flow rate, and the positions 74, 75, 7
An opening adjustment valve or a throttle valve may be provided at any one of 6, 77, 78, and 79.

【0023】図8においても、溶液ポンプPを、インバ
ータ付きのポンプの様に送出流量が切り換え可能なポン
プにより構成し、以て、吸収冷温水機20内の溶液循環
流量を運転モードによって切り換えることが可能であ
る。また、符号81で示す位置に開度調整弁或いは絞り
弁を設け、この弁を開度調整制御して、吸収冷温水機2
0内の溶液循環流量を変化させて、運転モードの切り換
えに対処することも出来る。或いは、符号82、83、
84、85、86で示す位置のいずれか1箇所に開度調
整弁或いは絞り弁を設け、該弁を開度調整制御しても良
い。さらに、符号81で示す位置に開度調整弁或いは絞
り弁を設けると共に、符号82、83、84、85、8
6で示す位置のいずれか1箇所に開度調整弁或いは絞り
弁を設け、これ等の弁を開度調整制御しても良い。これ
に加えて、溶液ポンプPを送出流量切り換え可能なポン
プにより構成すると共に、位置82、83、84、8
5、86のいずれか1箇所に、開度調整弁或いは絞り弁
を設けても良い。
In FIG. 8 as well, the solution pump P is constituted by a pump whose delivery flow rate can be switched like a pump with an inverter, so that the solution circulation flow rate in the absorption chiller / heater 20 is switched by the operation mode. Is possible. Further, an opening adjustment valve or a throttle valve is provided at a position indicated by reference numeral 81, and the opening adjustment control of this valve is performed to control the absorption chiller / heater 2
It is also possible to cope with the switching of the operation mode by changing the solution circulation flow rate within 0. Alternatively, reference numerals 82, 83,
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 84, 85, and 86, and the opening adjustment control of the valve may be performed. Further, an opening adjustment valve or a throttle valve is provided at a position indicated by reference numeral 81, and reference numerals 82, 83, 84, 85, and 8 are provided.
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by reference numeral 6, and these valves may be subjected to opening adjustment control. In addition to this, the solution pump P is constituted by a pump capable of switching the delivery flow rate, and the positions 82, 83, 84, 8
An opening adjustment valve or a throttle valve may be provided at any one of the positions 5 and 86.

【0024】図9において、吸収冷温水機20内の溶液
循環流量を運転モードによって切り換えるため、溶液ポ
ンプPを送出流量切り換え可能なポンプにより構成する
ことが可能である。また、符号87、88、89で示す
位置のいずれか1箇所に開度調整弁或いは絞り弁を設
け、該弁を開度調整制御することにより、運転モードの
切り換えに対処することも出来る。或いは、符号90、
91、92で示す位置のいずれか1箇所に開度調整弁或
いは絞り弁を設け、該弁の開度調整制御により運転モー
ドの切り換えに対処することが出来る。さらに、符号8
7、88、89で示す位置のいずれか1箇所に開度調整
弁或いは絞り弁を設けると共に、符号90、91、92
で示す位置のいずれか1箇所に開度調整弁或いは絞り弁
を設け、これ等の弁を開度調整制御しても良い。これに
加えて、溶液ポンプPを送出流量切り換え可能なポンプ
により構成すると共に、位置90、91、92のいずれ
か1箇所に、開度調整弁或いは絞り弁を設けても良い。
なお、図中の符号DLは配管の分岐箇所を示している。
In FIG. 9, since the solution circulation flow rate in the absorption chiller / heater 20 is switched according to the operation mode, the solution pump P can be constituted by a pump capable of switching the delivery flow rate. Further, by providing an opening adjustment valve or a throttle valve at any one of the positions indicated by reference numerals 87, 88, and 89 and controlling the opening of the valve, it is possible to cope with switching of the operation mode. Alternatively, reference numeral 90,
An opening adjustment valve or a throttle valve is provided at any one of the positions indicated by 91 and 92, and switching of the operation mode can be dealt with by controlling the opening of the valve. Further, reference numeral 8
An opening adjustment valve or a throttle valve is provided at any one of the positions indicated by reference numerals 7, 88 and 89, and reference numerals 90, 91 and 92 are provided.
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by, and these valves may be subjected to opening adjustment control. In addition to this, the solution pump P may be configured by a pump capable of switching the delivery flow rate, and an opening adjustment valve or a throttle valve may be provided at any one of the positions 90, 91, and 92.
In addition, the code | symbol DL in a figure has shown the branching point of the piping.

【0025】図10においても、溶液ポンプPをインバ
ータ付きのポンプの様に送出流量が切り換え可能なポン
プにより構成し、吸収冷温水機20内の溶液循環流量を
運転モードによって切り換えることが可能である。ま
た、符号93、94で示す位置のいずれか1箇所に開度
調整弁或いは絞り弁を設け、該弁を開度調整制御して、
吸収冷温水機20内の溶液循環流量を変化させて、運転
モードの切り換えに対処することが可能である。或い
は、符号95、96、97、98で示す位置のいずれか
1箇所に開度調整弁或いは絞り弁を設け、該弁を開度調
整制御しても良い。さらに、符号93、94で示す位置
のいずれか1箇所に開度調整弁或いは絞り弁を設けると
共に、符号95、96、97、98で示す位置のいずれ
か1箇所に開度調整弁或いは絞り弁を設け、これ等の弁
を開度調整制御しても良い。これに加えて、溶液ポンプ
Pを送出流量切り換え可能なポンプにより構成すると共
に、位置95、96、97、98のいずれか1箇所に、
開度調整弁或いは絞り弁を設けても良い。
Also in FIG. 10, the solution pump P is constituted by a pump whose delivery flow rate can be switched like a pump with an inverter, and the solution circulation flow rate in the absorption chiller / heater 20 can be switched by the operation mode. . Further, an opening adjustment valve or a throttle valve is provided at any one of the positions indicated by reference numerals 93 and 94, and the opening adjustment control of the valve is performed.
It is possible to cope with the switching of the operation mode by changing the solution circulation flow rate in the absorption chiller / heater 20. Alternatively, an opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by reference numerals 95, 96, 97, and 98, and the opening adjustment control of the valve may be performed. Further, an opening adjustment valve or a throttle valve is provided at any one of the positions indicated by reference numerals 93 and 94, and an opening adjustment valve or a throttle valve is provided at one of the positions indicated by reference numerals 95, 96, 97, and 98. May be provided, and these valves may be controlled for opening adjustment. In addition to this, the solution pump P is constituted by a pump capable of switching the delivery flow rate, and at any one of the positions 95, 96, 97, 98,
An opening adjustment valve or a throttle valve may be provided.

【0026】図7−10本発明をパラレルフロータイプ
の吸収冷温水機へ適用した例を示しているが、以下に説
明する図11−14は、所謂「リバースフロー」タイプ
の吸収冷温水機に本発明を適用した例を示している。
FIG. 7-10 shows an example in which the present invention is applied to a parallel flow type absorption chiller / heater. FIG. 11-14 described below shows a so-called "reverse flow" type absorption chiller / heater. The example which applied the present invention is shown.

【0027】図11において、吸収冷温水機20内の溶
液循環流量を運転モードによって切り換えることが出来
る様に、溶液ポンプPを送出流量が切り換え可能なポン
プにより構成することが出来る。また、符号99、10
5で示す位置のいずれか1箇所に開度調整弁或いは絞り
弁を設け、該弁を開度調整制御することにより運転モー
ドの切り換えに対処することも出来る。或いは、符号1
00、101、102、103、104、106で示す
位置のいずれか1箇所に開度調整弁或いは絞り弁を設
け、該弁を開度調整制御しても良い。さらに、符号9
9、105で示す位置のいずれか1箇所に開度調整弁或
いは絞り弁を設けると共に、符号100、101、10
2、103、104、106で示す位置のいずれか1箇
所に開度調整弁或いは絞り弁を設け、これ等の弁を開度
調整制御しても良い。これに加えて、溶液ポンプPを送
出流量切り換え可能なポンプにより構成すると共に、位
置100、101、102、103、104、106の
いずれか1箇所に、開度調整弁或いは絞り弁を設けても
良い。
In FIG. 11, the solution pump P can be constituted by a pump whose supply flow rate can be switched so that the solution circulation flow rate in the absorption chiller / heater 20 can be switched according to the operation mode. Reference numerals 99, 10
It is also possible to deal with switching of the operation mode by providing an opening adjustment valve or a throttle valve at any one of the positions indicated by 5 and controlling the opening of the valve. Or 1
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 00, 101, 102, 103, 104, and 106, and the opening adjustment control of the valve may be performed. Further, reference numeral 9
An opening adjustment valve or a throttle valve is provided at one of the positions indicated by reference numerals 9 and 105, and reference numerals 100, 101, and 10 are provided.
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 2, 103, 104, and 106, and these valves may be subjected to opening adjustment control. In addition to this, the solution pump P may be configured by a pump capable of switching the delivery flow rate, and an opening adjustment valve or a throttle valve may be provided at any one of the positions 100, 101, 102, 103, 104, and 106. good.

【0028】図12でも、吸収冷温水機20内の溶液循
環流量を運転モードによって切り換えるため、溶液ポン
プPを送出流量が切り換え可能なポンプにより構成する
ことが出来る。また、符号107、112、113、1
14で示す位置のいずれか1箇所に開度調整弁或いは絞
り弁を設け、該弁を開度調整制御することにより運転モ
ードの切り換えに対処することも出来る。或いは、符号
108、109、110、111で示す位置のいずれか
1箇所に開度調整弁或いは絞り弁を設け、該弁を開度調
整制御しても良い。さらに、符号107、112、11
3、114で示す位置のいずれか1箇所に開度調整弁或
いは絞り弁を設けると共に、符号108、109、11
0、111で示す位置のいずれか1箇所に開度調整弁或
いは絞り弁を設け、これ等の弁を開度調整制御しても良
い。これに加えて、溶液ポンプPを送出流量切り換え可
能なポンプにより構成すると共に、位置108、10
9、110、111のいずれか1箇所に、開度調整弁或
いは絞り弁を設けても良い。
In FIG. 12 as well, the solution pump P can be constituted by a pump whose supply flow rate can be switched because the solution circulation flow rate in the absorption chiller / heater 20 is switched according to the operation mode. Reference numerals 107, 112, 113, 1
An opening adjustment valve or a throttle valve is provided at any one of the positions indicated by 14, and the operation mode can be switched by controlling the opening of the valve. Alternatively, an opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by reference numerals 108, 109, 110, and 111, and the opening adjustment control of the valve may be performed. Further, reference numerals 107, 112, 11
An opening adjustment valve or a throttle valve is provided at one of the positions indicated by reference numerals 3 and 114, and reference numerals 108, 109 and 11 are provided.
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 0 and 111, and these valves may be subjected to opening adjustment control. In addition to this, the solution pump P is constituted by a pump that can switch the delivery flow rate, and
An opening adjustment valve or a throttle valve may be provided at any one of 9, 110, and 111.

【0029】図13において、溶液ポンプPを送出流量
が切り換え可能なポンプにより構成して、吸収冷温水機
20内の溶液循環流量を運転モードによって切り換える
ことが可能である。また、符号115、116、117
で示す位置のいずれか1箇所に開度調整弁或いは絞り弁
を設け、該弁を開度調整制御することにより運転モード
の切り換えに対処することも出来る。或いは、符号11
8、119で示す位置のいずれか1箇所に開度調整弁或
いは絞り弁を設け、該弁を開度調整制御しても良い。さ
らに、符号115、116、117で示す位置のいずれ
か1箇所に開度調整弁或いは絞り弁を設けると共に、符
号118、119で示す位置のいずれか1箇所に開度調
整弁或いは絞り弁を設け、これ等の弁を開度調整制御し
ても良い。これに加えて、溶液ポンプPを送出流量切り
換え可能なポンプにより構成すると共に、位置118、
119のいずれか1箇所に、開度調整弁或いは絞り弁を
設けても良い。
In FIG. 13, the solution pump P is constituted by a pump capable of switching the delivery flow rate, and the solution circulation flow rate in the absorption chiller / heater 20 can be switched according to the operation mode. Reference numerals 115, 116, 117
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by, and switching of the operation mode may be dealt with by controlling the opening of the valve. Or the code 11
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 8 and 119, and the opening adjustment control of the valve may be performed. Further, an opening adjustment valve or a throttle valve is provided at one of the positions indicated by reference numerals 115, 116, and 117, and an opening adjustment valve or a throttle valve is provided at one of the positions indicated by reference numerals 118 and 119. These valves may be controlled to adjust the opening degree. In addition to this, the solution pump P is constituted by a pump capable of switching the delivery flow rate, and a position 118,
An opening adjustment valve or a throttle valve may be provided at any one of the positions 119.

【0030】図14でも、吸収冷温水機20内の溶液循
環流量を運転モードによって切り換えるため、溶液ポン
プPを送出流量が切り換え可能なポンプにより構成する
ことが出来る。また、符号120、121で示す位置の
いずれか1箇所に開度調整弁或いは絞り弁を設け、該弁
を開度調整制御することにより運転モードの切り換えに
対処することも出来る。或いは、符号122、123、
124で示す位置のいずれか1箇所に開度調整弁或いは
絞り弁を設け、該弁を開度調整制御しても良い。さら
に、符号120、121で示す位置のいずれか1箇所に
開度調整弁或いは絞り弁を設けると共に、符号122、
123、124で示す位置のいずれか1箇所に開度調整
弁或いは絞り弁を設け、これ等の弁を開度調整制御して
も良い。これに加えて、溶液ポンプPを送出流量切り換
え可能なポンプにより構成すると共に、位置122、1
23、124のいずれか1箇所に、開度調整弁或いは絞
り弁を設けても良い。
In FIG. 14, since the solution circulation flow rate in the absorption chiller / heater 20 is switched according to the operation mode, the solution pump P can be constituted by a pump whose delivery flow rate can be switched. Further, it is also possible to deal with switching of the operation mode by providing an opening adjustment valve or a throttle valve at any one of the positions indicated by reference numerals 120 and 121 and controlling the opening of the valve. Alternatively, reference numerals 122, 123,
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 124, and the opening adjustment control of the valve may be performed. Further, an opening adjustment valve or a throttle valve is provided at any one of the positions indicated by reference numerals 120 and 121,
An opening adjustment valve or a throttle valve may be provided at any one of the positions indicated by 123 and 124, and these valves may be subjected to opening adjustment control. In addition to this, the solution pump P is constituted by a pump that can switch the delivery flow rate, and
An opening adjustment valve or a throttle valve may be provided at any one of 23 and 124.

【0031】なお、図示の実施例はあくまでも例示であ
り、本発明の技術的範囲を限定する趣旨のものではない
旨を付記する。例えば、吸収冷温水機20の吸収器10
から高温再生器11に向かう溶液流量の制御態様として
は、図3−14で述べた例の他にも、オリフィス(可変
オリフィス)その他公知の流量制御手段を適用すること
が可能である。
It should be noted that the illustrated embodiment is merely an example, and is not intended to limit the technical scope of the present invention. For example, the absorber 10 of the absorption water heater 20
As a control mode of the solution flow rate from the flow to the high-temperature regenerator 11, an orifice (variable orifice) and other known flow control means can be applied in addition to the example described in FIG.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、排
熱投入運転モードに際しては排熱の有効利用を図り、し
かも、排熱投入運転モードであっても、通常運転モード
であっても、高価な高質燃料の消費量を可能な限り低く
抑えることができる。
As described above, according to the present invention, the exhaust heat is effectively used in the exhaust heat input operation mode, and the exhaust heat input operation mode and the normal operation mode are used. The consumption of expensive high-quality fuel can be kept as low as possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す制御ブロック図。FIG. 1 is a control block diagram showing one embodiment of the present invention.

【図2】フローチャート図。FIG. 2 is a flowchart.

【図3】本発明をシリーズフロータイプの吸収冷凍機に
適用した1例を示す図。
FIG. 3 is a diagram showing an example in which the present invention is applied to a series flow type absorption refrigerator.

【図4】本発明をシリーズフロータイプの吸収冷凍機に
適用した他の例を示す図。
FIG. 4 is a diagram showing another example in which the present invention is applied to a series flow type absorption refrigerator.

【図5】本発明をシリーズフロータイプの吸収冷凍機に
適用した他の例を示す図。
FIG. 5 is a diagram showing another example in which the present invention is applied to a series flow type absorption refrigerator.

【図6】本発明をシリーズフロータイプの吸収冷凍機に
適用した他の例を示す図。
FIG. 6 is a diagram showing another example in which the present invention is applied to a series flow type absorption refrigerator.

【図7】本発明をパラレルフロータイプの吸収冷凍機に
適用した1例を示す図。
FIG. 7 is a diagram showing an example in which the present invention is applied to a parallel flow type absorption refrigerator.

【図8】本発明をパラレルフロータイプの吸収冷凍機に
適用した他の例を示す図。
FIG. 8 is a diagram showing another example in which the present invention is applied to a parallel flow type absorption refrigerator.

【図9】本発明をパラレルフロータイプの吸収冷凍機に
適用した他の例を示す図。
FIG. 9 is a diagram showing another example in which the present invention is applied to a parallel flow type absorption refrigerator.

【図10】本発明をパラレルフロータイプの吸収冷凍機
に適用した他の例を示す図。
FIG. 10 is a diagram showing another example in which the present invention is applied to a parallel flow type absorption refrigerator.

【図11】本発明をリバースフロータイプの吸収冷凍機
に適用した1例を示す図。
FIG. 11 is a view showing an example in which the present invention is applied to a reverse flow type absorption refrigerator.

【図12】本発明をリバースフロータイプの吸収冷凍機
に適用した他の例を示す図。
FIG. 12 is a diagram showing another example in which the present invention is applied to a reverse flow type absorption refrigerator.

【図13】本発明をリバースフロータイプの吸収冷凍機
に適用した他の例を示す図。
FIG. 13 is a diagram showing another example in which the present invention is applied to a reverse flow type absorption refrigerator.

【図14】本発明をリバースフロータイプの吸収冷凍機
に適用した他の例を示す図。
FIG. 14 is a diagram showing another example in which the present invention is applied to a reverse flow type absorption refrigerator.

【符号の説明】[Explanation of symbols]

20・・・吸収冷温水機 9・・・蒸発器 10・・・吸収器 13・・・凝縮器 11・・・高温再生器 32・・・排熱熱交換器 6・・・冷水ライン 38・・・冷却水供給ライン 31、39・・・調整弁 21・・・燃料ライン P10・・・溶液ポンプ 43・・・排熱ライン L2・・・排熱投入ライン 45、46、47・・・温度センサ V1・・・三方弁 49−119・・・開度調整弁或いは絞り弁の介装位置 20: Absorption chiller / heater 9: Evaporator 10: Absorber 13: Condenser 11: High temperature regenerator 32: Exhaust heat exchanger 6: Chilled water line 38 ..Cooling water supply lines 31, 39: regulating valve 21: fuel line P10: solution pump 43: exhaust heat line L2: exhaust heat input line 45, 46, 47 ... temperature Sensor V1 ... Three-way valve 49-119 ... Interposition position of opening adjustment valve or throttle valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−62563(JP,A) 特開 昭58−85074(JP,A) 特開 昭57−26370(JP,A) 特開 昭59−189259(JP,A) 特開 平7−12419(JP,A) (58)調査した分野(Int.Cl.6,DB名) F25B 15/00 306 F25B 15/00 303 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-60-62563 (JP, A) JP-A-58-85074 (JP, A) JP-A-57-26370 (JP, A) JP-A-59-1985 189259 (JP, A) JP-A-7-12419 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F25B 15/00 306 F25B 15/00 303

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外部から供給される排熱を用いる排熱系
と、高質燃料の燃焼熱を用いる高質燃料系とを有し、前
記排熱系は、溶液ポンプ(P10)を介して吸収器(1
0)と高温再生器(11)または低温再生器(12)と
を連通する配管(L1、L1E)中を流れる溶液に、排
熱供給ライン(43)から分岐する排熱投入ライン(L
2)に介装された排熱熱交換器(32)を介して、排熱
を供給する様に構成されており、高質燃料系のみを用い
る通常運転モードであるか或いは排熱系を介して排熱も
投入される排熱投入運転モードであるのかを判断する制
御手段を備え、該制御手段は、通常運転モード或いは排
熱投入運転モードのいずれの場合であっても高質燃料の
消費量が最低となる様な運転制御を行う様に、系内の溶
液循環量を調整する手段に対して制御信号を出力する機
能を備えたことを特徴とする吸収冷温水機。
1. An exhaust heat system that uses exhaust heat supplied from the outside and a high-quality fuel system that uses combustion heat of high-quality fuel, wherein the exhaust heat system is connected via a solution pump (P10). Absorber (1
0) and the exhaust heat input line (L) branched from the exhaust heat supply line (43) to the solution flowing in the pipes (L1, L1E) communicating the high temperature regenerator (11) or the low temperature regenerator (12).
It is configured to supply exhaust heat via an exhaust heat exchanger (32) interposed in 2), and is in a normal operation mode using only a high-quality fuel system or via an exhaust heat system. Control means for determining whether the operation mode is the exhaust heat input operation mode in which exhaust heat is also supplied, and the control means controls the consumption of high quality fuel in either the normal operation mode or the exhaust heat input operation mode. An absorption chiller / heater having a function of outputting a control signal to a means for adjusting a circulation amount of a solution in a system so as to perform operation control to minimize the amount.
【請求項2】 前記吸収冷温水機はシリーズフロータイ
プに構成されており、前記排熱熱交換器(32)は、溶
液ポンプ(P10)を介して吸収器(10)と高温再生
器(11)とを連通する配管(L1)の、高温再生器側
に介装された第1の熱交換器(14)と吸収器側に介装
された第2の熱交換器(15)との間の範囲に介装され
ている請求項1の吸収冷温水機。
2. The absorption chiller / heater is of a series flow type, and the exhaust heat exchanger (32) is connected to an absorber (10) and a high temperature regenerator (11) via a solution pump (P10). ), Between the first heat exchanger (14) interposed on the high temperature regenerator side and the second heat exchanger (15) interposed on the absorber side of the pipe (L1). The absorption chiller / heater according to claim 1, which is interposed in a range of:
【請求項3】 前記吸収冷温水機はシリーズフロータイ
プに構成されており、前記排熱熱交換器(32)は、溶
液ポンプ(P10)を介して吸収器(10)と高温再生
器(11)とを連通する配管であって、高温再生器側に
介装された第1の熱交換器(14)と吸収器側に介装さ
れた第2の熱交換器(15)とをバイパスする配管(L
1)に介装されている請求項1の吸収冷温水機。
3. The absorption chiller / heater is configured as a series flow type, and the exhaust heat exchanger (32) is connected to the absorber (10) and the high temperature regenerator (11) via a solution pump (P10). ), And bypasses the first heat exchanger (14) provided on the high temperature regenerator side and the second heat exchanger (15) provided on the absorber side. Piping (L
2. The absorption chiller / heater according to claim 1, which is interposed in 1).
【請求項4】 前記吸収冷温水機はシリーズフロータイ
プに構成されており、前記排熱熱交換器(32)は、溶
液ポンプ(P10)を介して吸収器(10)と高温再生
器(11)とを連通する配管であって、吸収器側に介装
された第2の熱交換器(15)とをバイパスして高温再
生器側に介装された第1の熱交換器(14)と連通する
配管(L1)に介装されている請求項1の吸収冷温水
機。
4. The absorption chiller / heater is configured as a series flow type, and the exhaust heat exchanger (32) is connected to the absorber (10) and the high temperature regenerator (11) via a solution pump (P10). ), And a first heat exchanger (14) interposed on the high-temperature regenerator side bypassing the second heat exchanger (15) interposed on the absorber side. The absorption chiller / heater according to claim 1, wherein the absorption chiller / heater is interposed in a pipe (L <b> 1) communicating with the water.
【請求項5】 前記吸収冷温水機はシリーズフロータイ
プに構成されており、前記排熱熱交換器(32)は、溶
液ポンプ(P10)を介して吸収器(10)と低温再生
器(12)と連通する配管(L1)に介装されており、
該配管(L1)は、吸収器(10)と高温再生器(1
1)とを連通する配管の、吸収器側に介装された第2の
熱交換器(15)と吸収器(10)の間の範囲から分岐
して、低温再生器(12)と連通している請求項1の吸
収冷温水機。
5. The absorption chiller / heater is configured as a series flow type, and the exhaust heat exchanger (32) is connected to the absorber (10) and the low temperature regenerator (12) via a solution pump (P10). ) Is interposed in the pipe (L1) communicating with
The pipe (L1) includes an absorber (10) and a high-temperature regenerator (1).
1) branches off from the area between the second heat exchanger (15) and the absorber (10) interposed on the absorber side of the pipe communicating with the low temperature regenerator (12). The absorption chiller / heater according to claim 1, wherein
【請求項6】 前記吸収冷温水機はパラレルフロータイ
プに構成されており、前記排熱熱交換器(32)が介装
されている配管(L1)は、溶液ポンプ(P10)を介
して吸収器(10)と高温再生器(11)或いは低温再
生器(12)とを連通する配管の、吸収器側に介装され
た第2の熱交換器(15)と吸収器(10)の間の範囲
から分岐して、高温再生器(12)と連通している請求
項1の吸収冷温水機。
6. The absorption chiller / heater is of a parallel flow type, and a pipe (L1) in which the exhaust heat exchanger (32) is interposed is absorbed through a solution pump (P10). Between the second heat exchanger (15) and the absorber (10) interposed on the absorber side of the pipe connecting the heat exchanger (10) and the high temperature regenerator (11) or the low temperature regenerator (12). 2. The absorption chiller / heater according to claim 1, which branches off from the range and communicates with the high temperature regenerator (12).
【請求項7】 前記吸収冷温水機はパラレルフロータイ
プに構成されており、前記排熱熱交換器(32)は、溶
液ポンプ(P10)を介して吸収器(10)と低温再生
器(12)と連通する配管(L1)に介装されており、
該配管(L1)は、吸収器(10)と高温再生器(1
1)とを連通する配管の、吸収器側に介装された第2の
熱交換器(15)と吸収器(10)の間の範囲から分岐
して、低温再生器(12)と連通している請求項1の吸
収冷温水機。
7. The absorption chiller / heater is of a parallel flow type, and the exhaust heat exchanger (32) is connected to the absorber (10) and the low temperature regenerator (12) via a solution pump (P10). ) Is interposed in the pipe (L1) communicating with
The pipe (L1) includes an absorber (10) and a high-temperature regenerator (1).
1) branches off from the area between the second heat exchanger (15) and the absorber (10) interposed on the absorber side of the pipe communicating with the low temperature regenerator (12). The absorption chiller / heater according to claim 1, wherein
【請求項8】 前記吸収冷温水機はパラレルフロータイ
プに構成されており、前記排熱熱交換器(32)は、溶
液ポンプ(P10)を介して吸収器(10)と高温再生
器(11)或いは低温再生器(12)とを連通する配管
(L1)の、高温再生器(11)へ連通する配管と低温
再生器(12)へ連通する配管の分岐箇所(DL)と、
吸収器側に介装された第2の熱交換器(15)との間の
範囲に介装されている請求項1の吸収冷温水機。
8. The absorption chiller / heater is of a parallel flow type, and the exhaust heat exchanger (32) is connected to the absorber (10) and the high temperature regenerator (11) via a solution pump (P10). Or a branch point (DL) of a pipe communicating with the high-temperature regenerator (11) and a pipe communicating with the low-temperature regenerator (12) in a pipe (L1) communicating with the low-temperature regenerator (12).
2. The absorption chiller / heater according to claim 1, wherein the absorption chiller / heater is disposed in a range between the second heat exchanger (15) disposed on the absorber side. 3.
【請求項9】 前記吸収冷温水機はパラレルフロータイ
プに構成されており、前記排熱熱交換器(32)は、溶
液ポンプ(P10)を介して吸収器(10)と高温再生
器(11)或いは低温再生器(12)とを連通する配管
(L1)の、高温再生器(11)へ連通する配管と低温
再生器(12)へ連通する配管の分岐箇所(DL)と、
高温再生器側に介装された第1の熱交換器(14)との
間の範囲に介装されている請求項1の吸収冷温水機。
9. The absorption chiller / heater is of a parallel flow type, and the exhaust heat exchanger (32) is connected to the absorber (10) and the high temperature regenerator (11) via a solution pump (P10). Or a branch point (DL) of a pipe communicating with the high-temperature regenerator (11) and a pipe communicating with the low-temperature regenerator (12) in a pipe (L1) communicating with the low-temperature regenerator (12).
2. The absorption chiller / heater according to claim 1, which is disposed in a range between the first heat exchanger (14) disposed on the high temperature regenerator side.
【請求項10】 前記吸収冷温水機はリバースフロータ
イプに構成されており、前記排熱熱交換器(32)が介
装されている配管(L1E)は、溶液ポンプ(P10)
及び低温再生器(12)を介して吸収器(10)と高温
再生器(11)を連通する配管の、吸収器側に介装され
た第2の熱交換器(15)と吸収器(10)との間の範
囲から分岐して、高温再生器側に介装された第1の熱交
換器(14)と高温再生器(11)との間の範囲に合流
している請求項1の吸収冷温水機。
10. The absorption chiller / heater is of a reverse flow type, and a pipe (L1E) in which the exhaust heat exchanger (32) is interposed is a solution pump (P10).
And a second heat exchanger (15) and an absorber (10) interposed between the absorber (10) and the high-temperature regenerator (11) via the low-temperature regenerator (12). ) And branches into a range between the first heat exchanger (14) and the high-temperature regenerator (11) interposed on the high-temperature regenerator side. Absorption chiller / heater.
【請求項11】 前記吸収冷温水機はリバースフロータ
イプに構成されており、前記排熱熱交換器(32)が介
装されている配管(L1)は、溶液ポンプ(P10)及
び低温再生器(12)を介して吸収器(10)と高温再
生器(11)を連通する配管の、吸収器側に介装された
第2の熱交換器(15)と吸収器(10)との間の範囲
から分岐して、該第2の熱交換器(15)と低温再生器
(12)との間の範囲に合流している請求項1の吸収冷
温水機。
11. The absorption chiller / heater is of a reverse flow type, and a pipe (L1) in which the exhaust heat exchanger (32) is interposed includes a solution pump (P10) and a low-temperature regenerator. A pipe connecting the absorber (10) and the high-temperature regenerator (11) through (12), between the second heat exchanger (15) and the absorber (10) provided on the absorber side. 2. The absorption chiller / heater according to claim 1, wherein the water is branched from the area and joined into the area between the second heat exchanger (15) and the low-temperature regenerator (12).
【請求項12】 前記吸収冷温水機はリバースフロータ
イプに構成されており、前記排熱熱交換器(32)は、
溶液ポンプ(P10)及び低温再生器(12)を介して
吸収器(10)と高温再生器(11)を連通する配管
(L1)の、吸収器側に介装された第2の熱交換器(1
5)と低温再生器(12)との間の範囲に介装されてい
る請求項1の吸収冷温水機。
12. The absorption chiller / heater is configured as a reverse flow type, and the exhaust heat exchanger (32) is
A second heat exchanger interposed on the absorber side of the pipe (L1) connecting the absorber (10) and the high temperature regenerator (11) via the solution pump (P10) and the low temperature regenerator (12). (1
2. The absorption chiller / heater according to claim 1, which is interposed between said low temperature regenerator and said low temperature regenerator.
【請求項13】 前記吸収冷温水機はリバースフロータ
イプに構成されており、前記排熱熱交換器(32)は、
溶液ポンプ(P10)及び低温再生器(12)を介して
吸収器(10)と高温再生器(11)を連通する配管
(L1)の、高温再生器側に介装された第1の熱交換器
(14)と低温再生器(12)との間の範囲に介装され
ている請求項1の吸収冷温水機。
13. The absorption chiller / heater is configured as a reverse flow type, and the exhaust heat exchanger (32) is
First heat exchange interposed on the high temperature regenerator side of the pipe (L1) connecting the absorber (10) and the high temperature regenerator (11) via the solution pump (P10) and the low temperature regenerator (12). The absorption chiller / heater according to claim 1, wherein the absorption chiller / heater is disposed in a range between the vessel (14) and the low temperature regenerator (12).
【請求項14】 請求項1−13のいずれか1つの吸収
冷温水機の運転制御方法において、高質燃料系のみを用
いる通常運転モードであるか或いは排熱系を介して排熱
も投入される排熱投入運転モードであるのかを判断する
工程と、通常運転モード或いは排熱投入運転モードのい
ずれの場合であっても高質燃料の消費量が最低となる様
な運転制御を行う制御工程、とを含む吸収冷温水機の運
転制御方法。
14. The operation control method for an absorption chiller / heater according to any one of claims 1 to 13, wherein the operation mode is a normal operation mode using only a high-quality fuel system, or waste heat is supplied via a waste heat system. A step of determining whether the operation mode is the exhaust heat input operation mode, and a control step of performing operation control such that the consumption of high quality fuel is minimized in either the normal operation mode or the exhaust heat input operation mode. And an operation control method for the absorption chiller / heater including:
JP6291788A 1994-11-25 1994-11-25 Absorption chiller / heater and operation control method thereof Expired - Lifetime JP2930286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6291788A JP2930286B2 (en) 1994-11-25 1994-11-25 Absorption chiller / heater and operation control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6291788A JP2930286B2 (en) 1994-11-25 1994-11-25 Absorption chiller / heater and operation control method thereof

Publications (2)

Publication Number Publication Date
JPH08152223A JPH08152223A (en) 1996-06-11
JP2930286B2 true JP2930286B2 (en) 1999-08-03

Family

ID=17773442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6291788A Expired - Lifetime JP2930286B2 (en) 1994-11-25 1994-11-25 Absorption chiller / heater and operation control method thereof

Country Status (1)

Country Link
JP (1) JP2930286B2 (en)

Also Published As

Publication number Publication date
JPH08152223A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JP2930286B2 (en) Absorption chiller / heater and operation control method thereof
JP4101198B2 (en) Heat pump water heater / heater
JP2894974B2 (en) Absorption chiller / heater
JP2806491B2 (en) Absorption refrigerator and its operation control method
JP2963000B2 (en) Absorption refrigerator
JP2894602B2 (en) Absorption chiller / heater and control method thereof
JP2850811B2 (en) Water heater
JP3824441B2 (en) Absorption refrigeration equipment
JP2894601B2 (en) Absorption chiller / heater and operating method thereof
JP3075944B2 (en) Absorption chiller / heater
JP2842550B2 (en) Absorption chiller / heater
JPH10160279A (en) Absorption water cooler/heater and its operation method
JP3412795B2 (en) Double effect absorption chiller / heater
JPH09236352A (en) Hot water heating absorption refrigerating machine
JP2935643B2 (en) Absorption chiller / heater
JP2935655B2 (en) Absorption chiller / heater and operation control method thereof
JPH055577A (en) Heat pump type room cooling/heating hot water supplying system
JP2935644B2 (en) Absorption chiller / heater and operating method thereof
JP2806780B2 (en) Absorption refrigerator and its operation control method
JPH0712419A (en) Method and device for controlling absorption type refrigerating machine
JP3880333B2 (en) Absorption refrigeration equipment
JPH06159845A (en) Water/hot water storage type water supply apparatus
JP3114850B2 (en) Absorption chiller / heater
JPH0424374Y2 (en)
JPH06159846A (en) Water/hot water storage type hot water supply apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term