JPH1089791A - Controller for multifunctional heat pump system - Google Patents

Controller for multifunctional heat pump system

Info

Publication number
JPH1089791A
JPH1089791A JP24061596A JP24061596A JPH1089791A JP H1089791 A JPH1089791 A JP H1089791A JP 24061596 A JP24061596 A JP 24061596A JP 24061596 A JP24061596 A JP 24061596A JP H1089791 A JPH1089791 A JP H1089791A
Authority
JP
Japan
Prior art keywords
heat exchanger
way valve
heat pump
compressor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24061596A
Other languages
Japanese (ja)
Inventor
Takeshi Kuramochi
威 倉持
So Hiraoka
宗 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24061596A priority Critical patent/JPH1089791A/en
Publication of JPH1089791A publication Critical patent/JPH1089791A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Abstract

PROBLEM TO BE SOLVED: To contrive not to impair comfortableness due to an increase of number of times of ON/OFF of thermometal or abrupt change of a supply air temperature. SOLUTION: This multifunctional heat pump system comprises a compressor 1, a four-way valve 6, an indoor heat exchanger 11 and an outdoor heat exchanger 8. A refrigerating cycle for communicating in a suitable order by switching them by switching the valve 6 so that refrigerant flow passages can be suitably switched. In this case, the system also comprises a control means 15 for controlling the valve 6 and the cycle, turning ON, OFF a thermometal in response to an indoor temperature and an indoor set temperature to control a compressor frequency. The means 15 sets a target control pressure to a lower value than the target control pressure when the thermometal is turned OFF if the thermometal is turned ON again after a heating thermometal is turned OFF at the time of heating, and controls the compressor frequency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はヒートポンプ熱源
利用装置用熱交換器を含む複数のユニットを備え、冷凍
サイクルを適宜切り替えることにより複数の運転モード
を実現可能な多機能ヒートポンプシステムの制御に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the control of a multifunctional heat pump system having a plurality of units including a heat exchanger for a heat pump heat source utilizing device and realizing a plurality of operation modes by appropriately switching a refrigeration cycle. is there.

【0002】[0002]

【従来の技術】従来、圧縮機周波数を変化させる空気調
和機の制御方法として、例えば特開昭64−75847
号公報がある。図16は同公報に記載された圧縮機周波
数を変化させる空気調和機の制御方法の説明図である。
図において、冷凍サイクルの運転においては、圧縮機内
の潤滑油が軸受部等へ流れるための予備運転が必要であ
り、一定時間、一定回転数で圧縮機を運転している。
2. Description of the Related Art Conventionally, as a control method of an air conditioner for changing a compressor frequency, for example, Japanese Patent Application Laid-Open No. 64-75847 is known.
There is an official gazette. FIG. 16 is an explanatory diagram of a control method of an air conditioner for changing a compressor frequency described in the publication.
In the drawing, in the operation of the refrigeration cycle, a preliminary operation is required for the lubricating oil in the compressor to flow to the bearing portion and the like, and the compressor is operated at a constant rotation speed for a fixed time.

【0003】予備運転後の断続運転においては、制御手
段は例えば室温と室温設定値との差により、温度差が大
きい場合には初期段階の運転と判断し、圧縮機の回転数
を温度差に比例して変化するよう制御する。また、温度
差が小さい場合は室温と室温設定値との温度差が小さく
なった後のサーモOFFによる最低回転数で運転して停
止した後の運転と判断する。
In the intermittent operation after the preliminary operation, the control means determines that the operation is in the initial stage when the temperature difference is large, for example, due to the difference between the room temperature and the set value of the room temperature. Control to change proportionally. When the temperature difference is small, it is determined that the operation is performed after the operation is stopped at the lowest rotation speed by the thermo OFF after the temperature difference between the room temperature and the room temperature set value is reduced.

【0004】その場合、最低能力以下の負荷で運転する
ときはサーモON/OFFが頻繁に繰り返されることに
なるため、圧縮機を最低回転数で3〜5分間位運転し、
その後室温と室温設定値との温度差に応じて圧縮機の回
転数を制御する運転に入るよう制御する。このような運
転制御により、最低能力以下の負荷で運転するときでも
サーモON/OFFの回数を減らすことで室温変化の回
数を減らすことができ、快適性を向上させることができ
る。
[0004] In this case, when the compressor is operated with a load less than the minimum capacity, the thermo-ON / OFF is frequently repeated. Therefore, the compressor is operated at the minimum rotation speed for about 3 to 5 minutes.
Thereafter, control is performed so as to start an operation for controlling the number of revolutions of the compressor according to the temperature difference between the room temperature and the room temperature set value. Such operation control can reduce the number of times of thermo ON / OFF even when operating with a load equal to or less than the minimum capacity, thereby reducing the number of changes in room temperature and improving comfort.

【0005】[0005]

【発明が解決しようとする課題】従来の圧縮機周波数を
変化させる空気調和機の制御方法は上記のように構成さ
れていたので、例えば暖房運転がサーモOFFし、再び
サーモONして暖房運転を開始した場合に、最低能力以
下の負荷で運転するときは、圧縮機周波数を最低周波数
に3〜5分間位固定して運転を行うので、そのときに室
内負荷が変動しても暖房能力を変動させることができな
いという問題点があった。
The conventional method of controlling an air conditioner that changes the compressor frequency is configured as described above. Therefore, for example, the heating operation is thermo-off, and the thermo-on is performed again to perform the heating operation. When started, when operating with a load less than the minimum capacity, the operation is performed with the compressor frequency fixed at the minimum frequency for about 3 to 5 minutes, so the heating capacity fluctuates even if the indoor load fluctuates at that time. There was a problem that it could not be done.

【0006】また、最低周波数での運転を解除した後
は、室温と室温設定値との温度差に応じて圧縮機の回転
数を制御するため、室内負荷が大きく変動し室温が不安
定な場合には暖房吹き出し温度が大きく変化し、暖房使
用者に不快感を与えるという問題点があった。
After the operation at the lowest frequency is released, the number of rotations of the compressor is controlled in accordance with the temperature difference between the room temperature and the set room temperature. However, there is a problem in that the temperature of the heating air blows greatly changes, which causes discomfort to the heating user.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、サーモON/OFFの回数増
や、吹き出し温度の急激な変化による空調機使用者への
不快感を低減できる多機能ヒートポンプシステムの制御
装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is possible to reduce the discomfort to the user of the air conditioner due to an increase in the number of times the thermostat is turned on and off, and a sudden change in the blowing temperature. It is an object to obtain a control device for a functional heat pump system.

【0008】[0008]

【課題を解決するための手段】この発明に係る多機能ヒ
ートポンプシステムの制御装置は、圧縮機、四方弁、室
内熱交換器及び室外熱交換器を有し、これらを四方弁の
切り換えによって適宜の順に連通する冷凍サイクルを形
成すると共に、前記圧縮機の流出側と前記室内熱交換器
及び室外側熱交換器の間とに並列にヒートポンプ熱源利
用装置用熱交換器を設け、冷媒流通路を適宜切り替え可
能にした多機能ヒートポンプシステムにおいて、前記四
方弁及び冷凍サイクルを制御する制御手段と、前記室外
熱交換器の液側に設けられた二方弁と、前記二方弁を前
記四方弁と同期させてON/OFFさせるリレー手段と
を備えたものである。
A control device for a multifunctional heat pump system according to the present invention has a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, and these are appropriately switched by switching the four-way valve. While forming a refrigeration cycle that communicates in order, a heat exchanger for a heat pump heat source utilizing device is provided in parallel between the outlet side of the compressor and the indoor heat exchanger and between the outdoor heat exchanger, and the refrigerant flow passage is appropriately formed. In the switchable multifunctional heat pump system, control means for controlling the four-way valve and the refrigeration cycle, a two-way valve provided on the liquid side of the outdoor heat exchanger, and synchronizing the two-way valve with the four-way valve And a relay means for turning on and off.

【0009】また、圧縮機、四方弁、室内熱交換器及び
室外熱交換器を有し、これらを四方弁の切り換えによっ
て適宜の順に連通する冷凍サイクルを形成し、冷媒流通
路を適宜切り替え可能にした多機能ヒートポンプシステ
ムにおいて、前記四方弁及び冷凍サイクルを制御すると
ともに室内温度と室内設定温度とに応じてサーモON/
OFFして圧縮機周波数を制御する制御手段を備え、前
記制御手段は暖房運転時に暖房サーモOFF後再びサー
モONとなった場合、目標制御圧力を前記暖房サーモO
FFとなったときの目標制御圧力よりも低く設定し、圧
縮機周波数を制御するものである。
[0009] Further, a refrigerating cycle having a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, which are communicated in an appropriate order by switching the four-way valve, is formed so that the refrigerant flow passage can be appropriately switched. In the multi-function heat pump system described above, the four-way valve and the refrigeration cycle are controlled, and the thermo ON / OFF is controlled according to the room temperature and the room set temperature.
Control means for controlling the compressor frequency by turning it off, the control means setting the target control pressure to the heating thermo O
It is set lower than the target control pressure at the time of FF, and controls the compressor frequency.

【0010】また、圧縮機、四方弁、室内熱交換器及び
室外熱交換器を有し、これらを四方弁の切り換えによっ
て適宜の順に連通する冷凍サイクルを形成すると共に、
前記圧縮機の流出側と前記室内熱交換器及び室外側熱交
換器の間とに並列にヒートポンプ熱源利用装置用熱交換
器を設け、冷媒流通路を適宜切り替えることにより冷房
排熱利用運転を可能にした多機能ヒートポンプシステム
において、前記四方弁及び冷凍サイクルを制御するとと
もに室内温度と室内設定温度とに応じてサーモON/O
FFとする制御手段を備え、前記制御手段は前記冷房排
熱利用運転時にサーモOFFとなった場合、前記冷凍サ
イクルを前記冷房排熱利用運転からヒートポンプ熱源利
用装置の単独運転に変更するものである。
A refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, which are connected in an appropriate order by switching the four-way valve, is formed.
By providing a heat exchanger for a heat pump heat source utilizing device in parallel between the outlet side of the compressor and the indoor heat exchanger and between the indoor heat exchanger and the outdoor heat exchanger, a cooling exhaust heat utilization operation is possible by appropriately switching a refrigerant flow passage. In the multifunctional heat pump system according to the present invention, the four-way valve and the refrigeration cycle are controlled and the thermo ON / O is controlled according to the room temperature and the room set temperature.
FF is provided, and the control unit changes the refrigeration cycle from the cooling exhaust heat utilization operation to the single operation of the heat pump heat source utilization device when the thermostat is turned off during the cooling exhaust heat utilization operation. .

【0011】また、前記制御手段は前記冷房排熱利用運
転時にサーモOFFとなった場合、冷凍サイクルを前記
冷房排熱利用運転から前記ヒートポンプ熱源利用装置の
単独運転に所定時間内変更するものである。
The control means changes the refrigeration cycle from the cooling exhaust heat utilization operation to the single operation of the heat pump heat source utilization device within a predetermined time when the thermostat is turned off during the cooling exhaust heat utilization operation. .

【0012】また、圧縮機、四方弁、室内熱交換器及び
室外熱交換器を有し、これらを四方弁の切り換えによっ
て適宜の順に連通する冷凍サイクルを形成すると共に、
前記圧縮機の流出側と前記室内熱交換器及び室外側熱交
換器の間とに並列にヒートポンプ熱源利用装置用熱交換
器を設け、適所に冷媒流量制御弁及び二方弁を設けて冷
媒流通路を適宜切り替え可能にした多機能ヒートポンプ
システムにおいて、前記四方弁及び冷凍サイクルを制御
する制御手段を備え、前記制御手段は、既運転中に新た
に他の熱交換器が運転を開始した場合、前記圧縮機を所
定時間停止し、既運転中及び新たに運転を開始した熱交
換器を含む冷凍サイクルの冷媒流量制御弁を全開した
後、二方弁を開いて高圧と低圧をバランスさせるもので
ある。
A refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, which are connected in an appropriate order by switching the four-way valve, is formed.
A heat exchanger for a heat pump heat source utilizing device is provided in parallel between the outlet side of the compressor and the indoor heat exchanger and between the indoor heat exchanger and the outdoor heat exchanger, and a refrigerant flow control valve and a two-way valve are provided at appropriate places to distribute refrigerant. In a multi-function heat pump system in which a route can be appropriately switched, the multi-function heat pump system further includes control means for controlling the four-way valve and the refrigeration cycle, wherein the control means newly starts operation of another heat exchanger during operation. The compressor is stopped for a predetermined time, and after fully opening the refrigerant flow control valve of the refrigeration cycle including the heat exchanger that has already been operated and newly started operation, the two-way valve is opened to balance the high pressure and the low pressure. is there.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

発明の実施の形態1.以下、この発明の実施の形態を図
について説明する。図1は本発明の実施の形態における
多機能ヒートポンプシステムを示す回路構成図であり、
図において、1は圧縮機、2a、2b、2c、2dは図
示しない運転制御手段によって適宜開閉制御される二方
弁、3は圧縮機1の流出側に接続された高圧ガス管、4
は圧縮機1の吸入側に接続された低圧ガス管、5は液
管、6は分岐した高圧ガス管3の一方に接続された四方
弁である。
Embodiment 1 of the Invention Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a multifunctional heat pump system according to an embodiment of the present invention.
In the figure, 1 is a compressor, 2a, 2b, 2c, 2d are two-way valves that are appropriately opened and closed by operation control means (not shown), 3 is a high-pressure gas pipe connected to the outlet side of the compressor 1, 4
Is a low-pressure gas pipe connected to the suction side of the compressor 1, 5 is a liquid pipe, and 6 is a four-way valve connected to one of the branched high-pressure gas pipes 3.

【0014】7は四方弁6と液管5との間に接続された
室外熱交換器8の室外ファン、9a、9bは図示しない
冷媒流量制御手段によって冷媒流量を調節する冷媒流量
制御弁、10は四方弁6と液管5との間に接続された室
内熱交換器11の室内ファン、12は分岐した高圧ガス
管3の他方と液管5との間に接続されたヒートポンプ熱
源利用装置用熱交換器13から回収した熱を利用するヒ
ートポンプ熱源利用装置、14は四方弁6の切り替えに
連動して二方弁2dをON/OFFするリレー、15は
四方弁6を制御する制御手段である。
Reference numeral 7 denotes an outdoor fan of an outdoor heat exchanger 8 connected between the four-way valve 6 and the liquid pipe 5, 9a and 9b denote refrigerant flow control valves for adjusting the flow of refrigerant by means of refrigerant flow control means (not shown), 10 Is an indoor fan of the indoor heat exchanger 11 connected between the four-way valve 6 and the liquid pipe 5, and 12 is for a heat pump heat source utilizing device connected between the other of the branched high-pressure gas pipes 3 and the liquid pipe 5. A heat pump heat source utilization device utilizing heat recovered from the heat exchanger 13, a relay 14 for turning on / off the two-way valve 2d in conjunction with the switching of the four-way valve 6, and a control means 15 for controlling the four-way valve 6. .

【0015】二方弁2a、2b、2c、2dは、それぞ
れ、高圧ガス管5と低圧ガス管4間、分岐した高圧ガス
管3の一方、分岐した高圧ガス管3の他方、液管5に設
けられている。また、冷媒流量制御手段9a、9bは、
それぞれ、液管5から室内熱交換器11側、ヒートポン
プ熱源利用装置用熱交換器13側に分岐した流路中に設
けられている。また、四方弁6を図示しない運転制御手
段によって切り替えることにより圧縮機1から室外熱交
換器8及び室内熱交換器11から圧縮機1に至る流路
と、圧縮機1から室内熱交換器11及び室外熱交換器8
から圧縮機1に至る流路とに切り替わる。
The two-way valves 2a, 2b, 2c and 2d are connected between the high-pressure gas pipe 5 and the low-pressure gas pipe 4, one of the branched high-pressure gas pipes 3, the other of the branched high-pressure gas pipes 3 and the liquid pipe 5, respectively. Is provided. Further, the refrigerant flow control means 9a, 9b
Each is provided in a flow path branched from the liquid pipe 5 to the indoor heat exchanger 11 side and the heat pump heat source utilization device heat exchanger 13 side. Further, by switching the four-way valve 6 by operation control means (not shown), the flow path from the compressor 1 to the outdoor heat exchanger 8 and from the indoor heat exchanger 11 to the compressor 1 and the flow path from the compressor 1 to the indoor heat exchanger 11 and Outdoor heat exchanger 8
To the flow path from the compressor to the compressor 1.

【0016】次に各種運転モードとその動作を説明す
る。図2は冷房排熱モードの代表的な例である冷房の排
熱をヒートポンプ熱源利用装置12が利用した場合の運
転動作を示す回路構成図である。圧縮機1より吐出した
高温高圧の冷媒ガスはガス管3より二方弁2bを介して
ヒートポンプ熱源利用装置用熱交換器13に流入する。
ここで、冷媒はヒートポンプ熱源利用装置12と熱交換
を行うことにより高圧の液冷媒となり、ヒートポンプ熱
源利用装置用熱交換器13より流出する。
Next, various operation modes and their operations will be described. FIG. 2 is a circuit configuration diagram illustrating an operation when the heat pump heat source utilization device 12 uses the exhaust heat of cooling, which is a typical example of the cooling exhaust heat mode. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows from the gas pipe 3 into the heat exchanger 13 for a heat pump heat source utilizing device via the two-way valve 2b.
Here, the refrigerant becomes a high-pressure liquid refrigerant by performing heat exchange with the heat pump heat source utilization device 12, and flows out of the heat pump heat source utilization device heat exchanger 13.

【0017】ヒートポンプ熱源利用装置用熱交換器13
より流出した高圧の液冷媒は、冷媒流量制御弁9bを介
して、さらに冷媒流量制御弁9aを通ることにより、低
圧の二相冷媒となり室内熱交換器11に流入する。ここ
で、低圧の二相冷媒は空気と熱交換を行うことにより空
気を冷却し、冷媒は蒸発して低圧の冷媒ガスとなり、室
内熱交換器11より流出する。流出した低圧の冷媒ガス
は四方弁6を介して圧縮機1の吸入側に戻る。このと
き、二方弁2a、2cは閉、2dも四方弁6と同期して
OFF(非通電)されているため、二方弁2dは正方向
の流れに対して閉となっており、室外熱交換器8には冷
媒は流れない。
Heat exchanger 13 for heat pump heat source utilizing device
The high-pressure liquid refrigerant that has flowed out further passes through the refrigerant flow control valve 9b and further passes through the refrigerant flow control valve 9a to become a low-pressure two-phase refrigerant and flows into the indoor heat exchanger 11. Here, the low-pressure two-phase refrigerant cools the air by performing heat exchange with the air, and the refrigerant evaporates to become a low-pressure refrigerant gas and flows out of the indoor heat exchanger 11. The low-pressure refrigerant gas flowing out returns to the suction side of the compressor 1 via the four-way valve 6. At this time, since the two-way valves 2a and 2c are closed and 2d is also turned off (de-energized) in synchronization with the four-way valve 6, the two-way valve 2d is closed with respect to the flow in the forward direction. No refrigerant flows through the heat exchanger 8.

【0018】次に通常の冷房単独運転モードとその動作
について説明する。図3は冷房単独運転モード時の運転
動作を示す回路構成図である。圧縮機1より吐出した高
温高圧の冷媒ガスはガス管3より二方弁2c、及び四方
弁6を介して室外熱交換器8に流入する。室外熱交換器
8において、高温高圧のガス冷媒は外気と熱交換するこ
とにより空気を加熱しながら高圧の液冷媒となり、室外
熱交換器8より流出する。
Next, the normal cooling only operation mode and its operation will be described. FIG. 3 is a circuit configuration diagram showing an operation in the cooling only operation mode. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows from the gas pipe 3 into the outdoor heat exchanger 8 via the two-way valve 2c and the four-way valve 6. In the outdoor heat exchanger 8, the high-temperature and high-pressure gas refrigerant becomes a high-pressure liquid refrigerant while exchanging heat with outside air while heating the air, and flows out of the outdoor heat exchanger 8.

【0019】室外熱交換器8から流出した高圧の液冷媒
は、二方弁2dを介して液管5を通り、冷媒流量制御弁
9aを通ることにより、低圧の二相冷媒となり室内熱交
換器11に流入する。このとき二方弁2dは正方向の流
れに対して閉となっているが、逆方向に対しては圧力差
により通常通りに流れる。ここで、低圧の二相冷媒は空
気と熱交換を行うことにより空気を冷却し、冷媒は蒸発
して低圧の冷媒ガスとなり、室内熱交換器11より流出
する。流出した低圧の冷媒ガスは四方弁6を介して圧縮
機1の吸入側に戻る。
The high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 8 passes through the liquid pipe 5 through the two-way valve 2d, passes through the refrigerant flow control valve 9a, becomes a low-pressure two-phase refrigerant, and becomes an indoor heat exchanger. 11 flows. At this time, the two-way valve 2d is closed for the flow in the forward direction, but flows normally in the reverse direction due to the pressure difference. Here, the low-pressure two-phase refrigerant cools the air by performing heat exchange with the air, and the refrigerant evaporates to become a low-pressure refrigerant gas and flows out of the indoor heat exchanger 11. The low-pressure refrigerant gas flowing out returns to the suction side of the compressor 1 via the four-way valve 6.

【0020】次に暖房運転モードとして暖房・ヒートポ
ンプ熱源利用装置同時運転の動作について説明する。図
4は暖房・ヒートポンプ熱源利用装置同時運転時の運転
動作を示す回路構成図である。圧縮機1より吐出した高
温高圧の冷媒ガスはガス管3より二方弁2c及び四方弁
6を介して室内熱交換器11に流入する。室内熱交換器
11において、高温高圧のガス冷媒は室内の空気と熱交
換することにより空気を加熱しながら高圧の液冷媒とな
り、室内熱交換器11より流出する。一方、二方弁2b
を介した高温高圧の冷媒ガスはヒートポンプ熱源利用装
置用熱交換器13に流入する。
Next, the operation of the simultaneous operation of the heating / heat pump heat source utilization device as the heating operation mode will be described. FIG. 4 is a circuit configuration diagram showing an operation operation when the heating / heat pump heat source utilization device is simultaneously operated. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows into the indoor heat exchanger 11 from the gas pipe 3 via the two-way valve 2c and the four-way valve 6. In the indoor heat exchanger 11, the high-temperature and high-pressure gas refrigerant becomes a high-pressure liquid refrigerant while heating the air by exchanging heat with indoor air, and flows out from the indoor heat exchanger 11. On the other hand, the two-way valve 2b
The high-temperature and high-pressure refrigerant gas flows through the heat exchanger 13 for the heat pump heat source utilizing device.

【0021】冷媒はヒートポンプ熱源利用装置12と熱
交換を行うことにより高圧の液冷媒となり、ヒートポン
プ熱源利用装置用熱交換器13より流出する。ここで、
室内熱交換器11から流出した高圧の液冷媒は冷媒流量
制御弁9aを、ヒートポンプ熱源利用装置用熱交換器1
3を流出した高圧の液冷媒は冷媒流量制御弁9bを通る
ことにより低圧の二相冷媒となり、液管5で合流し、四
方弁6と同期しONされた二方弁2dを正方向に通り室
外熱交換器8に流入する。ここで、低圧の二相冷媒は外
気と熱交換を行うことにより空気を冷却し、冷媒は蒸発
して低圧の冷媒ガスとなり、室外熱交換器8より流出す
る。流出した低圧の冷媒ガスは四方弁6を介して圧縮機
1の吸入側に戻る。
The refrigerant becomes a high-pressure liquid refrigerant by performing heat exchange with the heat pump heat source utilization device 12, and flows out of the heat pump heat source utilization device heat exchanger 13. here,
The high-pressure liquid refrigerant flowing out of the indoor heat exchanger 11 is connected to the refrigerant flow control valve 9a by the heat exchanger 1 for the heat pump heat source utilizing device.
The high-pressure liquid refrigerant that has flowed out of the line 3 becomes a low-pressure two-phase refrigerant by passing through the refrigerant flow control valve 9b, merges in the liquid pipe 5, passes through the two-way valve 2d that is turned on in synchronization with the four-way valve 6, and passes in the forward direction. It flows into the outdoor heat exchanger 8. Here, the low-pressure two-phase refrigerant exchanges heat with the outside air to cool the air, and the refrigerant evaporates to become a low-pressure refrigerant gas and flows out of the outdoor heat exchanger 8. The low-pressure refrigerant gas flowing out returns to the suction side of the compressor 1 via the four-way valve 6.

【0022】本発明では非通電時においても圧力差があ
れば逆方向に流れ易い二方弁の特性を利用し、二方弁2
dと四方弁6とを1つのリレー14によって同期させ、
ON/OFFを行うことにより、冷房排熱モード、冷房
単独運転モード、暖房モードにおいて、冷媒回路上問題
なく制御できるため、リレーの数を一つ少なくして多機
能ヒートポンプシステムの各種冷凍サイクルを形成でき
る。さらにこの結果、基板上に配置されるリレーのスペ
ースも削減できるから、小型化、低コスト化が図れる。
The present invention utilizes the characteristics of the two-way valve, which tends to flow in the opposite direction if there is a pressure difference even when the power is not supplied, to the two-way valve 2.
d and the four-way valve 6 are synchronized by one relay 14,
By performing ON / OFF, it is possible to control the refrigerant circuit in the cooling exhaust heat mode, the cooling only operation mode, and the heating mode without any problem in the refrigerant circuit. Therefore, the number of relays is reduced by one to form various refrigeration cycles of the multifunctional heat pump system. it can. Further, as a result, the space for the relay arranged on the substrate can be reduced, so that downsizing and cost reduction can be achieved.

【0023】発明の実施の形態2.図5は本発明の実施
の形態における多機能ヒートポンプシステムを示す回路
構成図である。図5の場合、ヒートポンプ熱源利用装置
として、給湯ユニット、追焚ユニット、浴室乾燥ユニッ
トを備えている。図において発明の実施の形態1と同一
又は相当する構成には同一符号を付してその説明を省略
する。2eは3つに分岐した高圧ガス管3の一つに接続
された二方弁、9cは冷媒流量制御弁、16は室外ユニ
ット、17は室内ユニット、18は室内制御部である。
Embodiment 2 of the Invention FIG. 5 is a circuit configuration diagram showing the multifunctional heat pump system according to the embodiment of the present invention. In the case of FIG. 5, a hot water supply unit, a reheating unit, and a bathroom drying unit are provided as a heat pump heat source utilization device. In the drawings, the same or corresponding components as those of the first embodiment of the invention are denoted by the same reference numerals, and description thereof is omitted. 2e is a two-way valve connected to one of the three branched high-pressure gas pipes 3, 9c is a refrigerant flow control valve, 16 is an outdoor unit, 17 is an indoor unit, and 18 is an indoor control unit.

【0024】19は給湯ユニット、20は貯湯タンク、
21は給湯用循環タンク、22は室内熱交換器、23は
室内制御部、24は追焚ユニット、25は追焚用循環ポ
ンプ、26は追焚熱交換器、27は追焚制御部、28浴
室乾燥ユニット、29は浴室乾燥ファン、30は浴室乾
燥熱交換器、31は浴室乾燥制御部、32は室内リモコ
ン、33は室温センサー、34は浴槽である。
19 is a hot water supply unit, 20 is a hot water storage tank,
21 is a circulation tank for hot water supply, 22 is an indoor heat exchanger, 23 is an indoor control unit, 24 is a reheating unit, 25 is a recirculation pump for reheating, 26 is a reheating heat exchanger, 27 is a reheating control unit, 28 A bathroom drying unit, 29 is a bathroom drying fan, 30 is a bathroom drying heat exchanger, 31 is a bathroom drying control unit, 32 is an indoor remote controller, 33 is a room temperature sensor, and 34 is a bathtub.

【0025】次に各種運転モードとその動作を説明す
る。図2は冷房排熱モードの例として冷房排熱給湯運転
の場合の運転動作を示す回路構成図である。圧縮機1よ
り吐出した高温高圧の冷媒ガスはガス管3より二方弁2
eを介して給湯熱交換器22に流入する。一方、貯湯タ
ンク20内の水は給湯循環ポンプ21によって貯湯タン
ク20の下部より吸引され、二重管構造となった給湯熱
交換器22に流入する。ここで、冷媒は循環水と熱交換
を行うことにより循環水を加熱しながら高圧の液冷媒と
なり、給湯熱交換器22より流出する。
Next, various operation modes and their operations will be described. FIG. 2 is a circuit configuration diagram showing an operation in the case of the cooling exhaust heat / hot water supply operation as an example of the cooling exhaust heat mode. A high-temperature and high-pressure refrigerant gas discharged from the compressor 1 is supplied from a gas pipe 3 to a two-way valve 2.
e and flows into the hot water supply heat exchanger 22. On the other hand, the water in the hot water storage tank 20 is sucked from the lower part of the hot water storage tank 20 by the hot water supply circulation pump 21 and flows into the hot water supply heat exchanger 22 having a double pipe structure. Here, the refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by performing heat exchange with the circulating water, and flows out of the hot water supply heat exchanger 22.

【0026】一方、加熱された循環水は貯湯タンク20
に戻る。給湯熱交換器22から流出した高圧の液冷媒
は、冷媒流量制御弁9bを介してさらに冷媒流量制御弁
9aを通ることにより低圧の二相冷媒となり室内熱交換
器11に流入する。ここで、低圧の二相冷媒は空気と熱
交換を行うことにより空気を冷却し、冷媒は蒸発して低
圧の冷媒ガスとなり、室内熱交換器11より流出する。
流出した低圧の冷媒ガスは四方弁6を介して圧縮機1の
吸入側に戻る。このとき、二方弁2a、2bは閉、二方
弁2dも四方弁6と同期してOFF(非通電)されてい
るため、正方向の流れに対して閉となっており、室外熱
交換器8には冷媒は流れない。
On the other hand, the heated circulating water is supplied to the hot water storage tank 20.
Return to The high-pressure liquid refrigerant flowing out of the hot water supply heat exchanger 22 passes through the refrigerant flow control valve 9b and further passes through the refrigerant flow control valve 9a to become a low-pressure two-phase refrigerant and flows into the indoor heat exchanger 11. Here, the low-pressure two-phase refrigerant cools the air by performing heat exchange with the air, and the refrigerant evaporates to become a low-pressure refrigerant gas and flows out of the indoor heat exchanger 11.
The low-pressure refrigerant gas flowing out returns to the suction side of the compressor 1 via the four-way valve 6. At this time, the two-way valves 2a and 2b are closed, and the two-way valve 2d is also turned off (de-energized) in synchronization with the four-way valve 6, so that the two-way valve 2d is closed with respect to the flow in the forward direction, and the outdoor heat exchange No refrigerant flows into the vessel 8.

【0027】次に通常の冷房単独運転モードとその動作
について説明する。図7は冷房単独運転モード時の運転
動作を示す回路構成図である。圧縮機1より吐出した高
温高圧の冷媒ガスはガス管3より二方弁2c及び四方弁
6を介して室外熱交換器8に流入する。室外熱交換器8
において、高温高圧のガス冷媒は外気と熱交換すること
により空気を加熱しながら、高圧の液冷媒となり、室外
熱交換器8より流出する。
Next, the normal cooling only operation mode and its operation will be described. FIG. 7 is a circuit configuration diagram showing an operation operation in the cooling only operation mode. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 flows from the gas pipe 3 into the outdoor heat exchanger 8 via the two-way valve 2c and the four-way valve 6. Outdoor heat exchanger 8
At this time, the high-temperature and high-pressure gas refrigerant becomes a high-pressure liquid refrigerant while heating the air by exchanging heat with the outside air, and flows out of the outdoor heat exchanger 8.

【0028】室外熱交換器8から流出した高圧の液冷媒
は、二方弁2dを介して液管5を通り、冷媒流量制御弁
9aを通ることにより低圧の二相冷媒となり、室内熱交
換器11に流入する。(このとき二方弁2dは正方向の
流れに対して閉となっているが、逆方向に対しては圧力
差により通常通り流れる。ここで、低圧の二相冷媒は空
気と熱交換を行うことにより空気を冷却し、冷媒は蒸発
して低圧の冷媒ガスとなり、室内熱交換器11より流出
する。流出した低圧の冷媒ガスは四方弁6を介して圧縮
機1の吸入側に戻る。
The high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 8 passes through the liquid pipe 5 through the two-way valve 2d, passes through the refrigerant flow control valve 9a, and becomes a low-pressure two-phase refrigerant. 11 flows. (At this time, the two-way valve 2d is closed for the forward flow, but flows normally due to the pressure difference in the reverse direction. Here, the low-pressure two-phase refrigerant exchanges heat with air. Thus, the air is cooled, and the refrigerant evaporates to become a low-pressure refrigerant gas, and flows out of the indoor heat exchanger 11. The outflowing low-pressure refrigerant gas returns to the suction side of the compressor 1 via the four-way valve 6.

【0029】次に暖房運転モードとして暖房・給湯同時
運転の動作について説明する。図8は暖房・給湯同時運
転時の運転動作を示す回路構成図である。圧縮機1より
吐出した高温高圧の冷媒ガスはガス管3より二方弁2c
及び四方弁6を介して室内熱交換器11に流入する。室
内熱交換器11において、高温高圧のガス冷媒は室内の
空気と熱交換することにより空気を加熱しながら高圧の
液冷媒となり、室内熱交換器11より流出する。
Next, the operation of simultaneous heating and hot water supply operation as the heating operation mode will be described. FIG. 8 is a circuit configuration diagram showing an operation at the time of simultaneous heating and hot water supply operation. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 is supplied from the gas pipe 3 to the two-way valve 2c.
And flows into the indoor heat exchanger 11 via the four-way valve 6. In the indoor heat exchanger 11, the high-temperature and high-pressure gas refrigerant becomes a high-pressure liquid refrigerant while heating the air by exchanging heat with indoor air, and flows out from the indoor heat exchanger 11.

【0030】一方、二方弁2eを介した高温高圧の冷媒
ガスは給湯熱交換器22に流入する。貯湯タンク20内
の水は給湯循環ポンプ21によって貯湯タンク20の下
部より吸引され、二重管構造となった給湯熱交換器22
に流入する。冷媒は循環水と熱交換を行うことにより循
環水を加熱しながら高圧の液冷媒となり、給湯熱交換器
22より流出する。ここで、室内熱交換器11を流出し
た高圧の液冷媒は冷媒流量制御弁9aを、給湯熱交換器
22を流出した高圧の液冷媒は冷媒流量制御弁9bを通
ることにより低圧の二相冷媒となり液管5で合流し、四
方弁6と同期しONされた二方弁2dを正方向に通り室
外熱交換器8に流入する。
On the other hand, the high-temperature and high-pressure refrigerant gas flowing through the two-way valve 2e flows into the hot water supply heat exchanger 22. The water in the hot water storage tank 20 is sucked from a lower part of the hot water storage tank 20 by a hot water supply circulation pump 21, and a hot water supply heat exchanger 22 having a double pipe structure is provided.
Flows into. The refrigerant becomes a high-pressure liquid refrigerant while heating the circulating water by performing heat exchange with the circulating water, and flows out of the hot water supply heat exchanger 22. Here, the high-pressure liquid refrigerant flowing out of the indoor heat exchanger 11 passes through the refrigerant flow control valve 9a, and the high-pressure liquid refrigerant flowing out of the hot water supply heat exchanger 22 passes through the refrigerant flow control valve 9b. And flows into the outdoor heat exchanger 8 in the forward direction through the two-way valve 2d turned on in synchronization with the four-way valve 6 in synchronization with the four-way valve 6.

【0031】ここで、低圧の二相冷媒は外気と熱交換を
行うことにより空気を冷却し、冷媒は蒸発して低圧の冷
媒ガスとなり、室外熱交換器8より流出する。流出した
低圧の冷媒ガスは四方弁6を介して圧縮機1の吸入側に
戻る。
Here, the low-pressure two-phase refrigerant exchanges heat with the outside air to cool the air, and the refrigerant evaporates to a low-pressure refrigerant gas and flows out of the outdoor heat exchanger 8. The low-pressure refrigerant gas flowing out returns to the suction side of the compressor 1 via the four-way valve 6.

【0032】本発明では非通電時においても圧力差があ
れば逆方向に流れ易い二方弁の特性を利用し、二方弁2
dと四方弁6とを1つのリレー14によって同期させ、
ON/OFFを行うことにより、冷房排熱モード、冷房
単独運転モード、暖房モードにおいて、冷媒回路上問題
なく制御できるため、リレーの数を一つ少なくして多機
能ヒートポンプシステムの各種冷凍サイクルを形成でき
る。さらにこの結果、基板上に配置されるリレーのスペ
ースも削減できるから、小型化、低コスト化が図れる。
The present invention utilizes the characteristics of the two-way valve, which tends to flow in the reverse direction if there is a pressure difference even when the power is not supplied, to the two-way valve 2.
d and the four-way valve 6 are synchronized by one relay 14,
By performing ON / OFF, it is possible to control the refrigerant circuit in the cooling exhaust heat mode, the cooling only operation mode, and the heating mode without any problem in the refrigerant circuit. Therefore, the number of relays is reduced by one to form various refrigeration cycles of the multifunctional heat pump system. it can. Further, as a result, the space for the relay arranged on the substrate can be reduced, so that downsizing and cost reduction can be achieved.

【0033】本発明の実施の形態においては、ヒートポ
ンプ熱源利用装置として給湯ユニット19を使用した場
合について記載したが、図2に示すように二方弁2b、
冷媒流量制御弁9cを制御することにより、ヒートポン
プ熱源利用装置として追焚ユニット24と浴室乾燥ユニ
ット28も給湯ユニット19と同様に使用することがで
きる。
In the embodiment of the present invention, the case where the hot water supply unit 19 is used as the heat pump heat source utilization device has been described, but as shown in FIG.
By controlling the refrigerant flow control valve 9c, the reheating unit 24 and the bathroom drying unit 28 can be used as the heat pump heat source utilization device in the same manner as the hot water supply unit 19.

【0034】発明の実施の形態3.図9は本発明の実施
の形態における多機能ヒートポンプシステムの制御装置
を示すブロック図である。図において、室内リモコンは
室温センサーの取り込み値が室温設定値に対して所定値
以内の場合には室内制御部を介して室外制御部に暖房サ
ーモOFFを、所定値外の場合には暖房サーモONの情
報を送信する。暖房サーモONの情報を受けた室外制御
部は高圧センサーの取り込み値が目標圧力に対し所定値
以内に入るように圧縮機回転数を制御する。その他多機
能ヒートポンプシステムの構成等は発明の実施の形態1
と同様であり、説明を省略する。
Embodiment 3 of the Invention FIG. 9 is a block diagram showing a control device of the multifunctional heat pump system according to the embodiment of the present invention. In the figure, the indoor remote controller turns off the heating thermostat to the outdoor control unit via the indoor control unit when the input value of the room temperature sensor is within a predetermined value with respect to the room temperature setting value, and turns on the heating thermostat when the input value is outside the predetermined value. Send the information. The outdoor control unit that receives the information of the heating thermo ON controls the compressor rotation speed so that the value taken in by the high pressure sensor falls within a predetermined value with respect to the target pressure. Other configurations of the multifunctional heat pump system are described in Embodiment 1 of the invention.
The description is omitted.

【0035】図10は図9のように構成された制御装置
の動作を示すフローチャートであり、図10に沿って動
作を説明する。暖房運転を開始すると、室外制御部は圧
縮機周波数を運転開始時の目標制御高圧圧力a±1[kg
f/cm2]となるよう制御する。その後、暖房がサーモO
FFし、再びサーモONした場合には目標制御高圧圧力
(a−b)±1[kgf/cm2]となるように圧縮機周波数
を制御する。その後室内温度と設定温度値との差がc℃
以上となった場合には、目標制御高圧圧力を運転開始時
の目標制御高圧圧力aに戻し、圧縮機周波数の制御を行
う。c℃以内の温度差で再度サーモOFFした場合、暖
房サーモON時には目標制御高圧圧力(a−b)±1
[kgf/cm2]となるように圧縮機周波数を制御する。
FIG. 10 is a flowchart showing the operation of the control device configured as shown in FIG. 9, and the operation will be described with reference to FIG. When the heating operation is started, the outdoor control unit sets the compressor frequency to the target control high pressure a ± 1 [kg] at the start of the operation.
f / cm2]. After that, heating is thermo O
When the FF is performed and the thermo-ON is performed again, the compressor frequency is controlled so that the target control high pressure (ab) ± 1 [kgf / cm2]. Thereafter, the difference between the room temperature and the set temperature value is c ° C.
In this case, the target control high pressure is returned to the target control high pressure a at the start of the operation, and the compressor frequency is controlled. When the thermostat is turned off again with a temperature difference within c ° C, the target control high pressure (ab) ± 1 when the heating thermostat is turned on.
The compressor frequency is controlled so as to be [kgf / cm2].

【0036】以上のように、本発明の実施の形態によれ
ば、暖房運転時において、一旦暖房サーモOFFした
後、再び暖房サーモONとなった場合に、暖房単独運転
時の目標制御高圧圧力を暖房OFFとなった場合の目標
制御高圧圧力a[kgf/cm2]よりもb[kgf/cm2]低く
設定することにより、暖房がサーモON/OFFする回
数を少なくし、さらには圧縮機運転周波数を高圧圧力が
目標圧力になるように制御するため、目標制御高圧圧力
をb[kgf/cm2]低く設定した場合でも、室内負荷が変
動すれば圧縮機周波数を変化させて対応できる。また、
暖房吹出温度が大きく変化することがないため、暖房サ
ーモON/OFFによる暖房使用者への不快感、さらに
は暖房吹き出し温度の変化による不快感を低減すること
ができる。
As described above, according to the embodiment of the present invention, during the heating operation, once the heating thermostat is turned off and then the heating thermostat is turned on again, the target control high pressure during the heating alone operation is reduced. By setting b [kgf / cm2] lower than the target control high pressure a [kgf / cm2] when the heating is turned off, the number of times the heating is thermo-ON / OFF is reduced, and the compressor operating frequency is further reduced. Since the high pressure is controlled so as to reach the target pressure, even if the target control high pressure is set lower by b [kgf / cm2], if the indoor load fluctuates, the compressor frequency can be changed to respond. Also,
Since the heating outlet temperature does not significantly change, discomfort to the heating user due to heating thermo ON / OFF and further, discomfort due to a change in the heating outlet temperature can be reduced.

【0037】発明の実施の形態4.図11は本発明の実
施の形態における多機能ヒートポンプシステムの制御装
置を示すブロック図である。図において、室内リモコン
は室温センサーの取り込み値が設定温度に対して所定値
以内の場合には、室内制御部を介して室外制御部に冷房
サーモOFFを、所定値外の場合には冷房サーモONの
情報を室外制御部に送信する。また、追焚制御部は浴槽
湯温センサーの取り込み値が設定浴槽湯温の所定値以内
の場合には追焚サーモOFFを、所定値外の場合には追
焚サーモONの情報を室外制御部に送信する。これらの
情報を受けた室外制御部は、運転モードを冷房単独、単
独追焚、冷房排熱利用追焚モードに適宜切り替える。そ
の他多機能ヒートポンプシステムの構成等は発明の実施
の形態2と同様であり、説明を省略する。
Embodiment 4 of the Invention FIG. 11 is a block diagram showing a control device of the multifunctional heat pump system according to the embodiment of the present invention. In the figure, the indoor remote controller turns off the cooling thermostat to the outdoor control unit via the indoor control unit when the value taken by the room temperature sensor is within a predetermined value with respect to the set temperature, and turns on the cooling thermostat when it is outside the predetermined value. Is transmitted to the outdoor control unit. In addition, the reheating control unit outputs the information of the reheating thermo OFF when the value taken by the bath water temperature sensor is within a predetermined value of the set bath temperature, and the information of the reheating thermo ON when the value is outside the predetermined value. Send to The outdoor control unit that receives these information appropriately switches the operation mode between the cooling only mode, the single reheating mode, and the reheating mode using the cooling exhaust heat. Other configurations and the like of the multifunctional heat pump system are the same as those of the second embodiment of the present invention, and the description is omitted.

【0038】図12は図11のように構成された制御装
置の動作を示すフローチャートであり、図12に沿って
動作を説明する。冷房排熱追焚運転時において、冷房が
サーモOFFした場合に、追焚サーモがONであれば、
室内制御部及び室外制御部は冷凍サイクルを追焚単独モ
ードに切り替え、追焚単独運転を行う。冷房がサーモO
FFのままであれば追焚単独運転を継続して行う。その
後、追焚サーモがONのままで冷房がサーモONとなれ
ば冷房排熱追焚を行い、冷房がサーモONとなっていな
ければ冷房がサーモONとなるまで、冷房サーモON時
に即冷房排熱追焚運転ができるような状態で待機する。
FIG. 12 is a flowchart showing the operation of the control device configured as shown in FIG. 11, and the operation will be described with reference to FIG. At the time of cooling exhaust heat additional heating operation, if cooling is thermo OFF, if additional heating thermo is ON,
The indoor control unit and the outdoor control unit switch the refrigeration cycle to the reheating alone mode and perform the reheating alone operation. Cooling is thermo O
If it remains at FF, the reheating alone operation is continued. After that, if the air conditioner remains ON and the air conditioner turns on the thermostat, the air conditioner heats the air, and if the air conditioner is not turned on, the air conditioner immediately turns on the air conditioner until the air conditioner turns on. Stand by in a state where reheating operation can be performed.

【0039】以上のように、本発明の実施の形態によれ
ば、冷房排熱追焚運転時において、冷房負荷が軽くなり
冷房の排熱による追焚能力が充分得られなくなった場合
に、冷房サーモOFFのタイミングを利用し、追焚単独
運転を行うことで、基本的には冷房排熱を追焚に積極的
に利用しながら、冷房と追焚の同時運転を実現すること
ができる。
As described above, according to the embodiment of the present invention, when the cooling load becomes light during the cooling exhaust heat reheating operation and the reheating capability by the exhaust heat of the cooling becomes insufficient, the cooling is performed. By performing the reheating alone operation using the timing of the thermo OFF, the simultaneous operation of the cooling and the reheating can be realized while the cooling exhaust heat is basically actively used for the reheating.

【0040】発明の実施の形態5.図13は他の発明の
実施の形態における多機能ヒートポンプシステムの制御
装置の動作を示すフローチャートである。図において、
冷房排熱追焚運転時に冷房がサーモOFFした場合、追
焚サーモがONであれば冷凍サイクルを追焚単独モード
に切り替えて運転を行う。その後、冷房がサーモONと
なった場合には、冷凍サイクルを冷房排熱追焚モードに
戻して運転を行う。
Embodiment 5 of the Invention FIG. 13 is a flowchart showing the operation of the control device of the multifunctional heat pump system according to another embodiment of the present invention. In the figure,
When the cooling is thermo-off during the cooling-exhaust heat reheating operation, if the reheating thermo is on, the refrigeration cycle is switched to the reheating independent mode and the operation is performed. Thereafter, when the cooling is thermo-ON, the operation is performed by returning the refrigeration cycle to the cooling exhaust heat additional heating mode.

【0041】冷房がサーモOFFのままであれば追焚単
独運転を継続して行う。その後、追焚単独運転を最高で
所定時間であるX分間行った後、追焚サーモがONのま
まで冷房がサーモONとなれば冷房排熱追焚運転を行
う。また、冷房がサーモONとなっていなければ、冷房
がサーモONとなるまで、冷房サーモON時に即冷房排
熱追焚運転ができるような状態で待機する。
If the cooling remains at the thermo-OFF state, the reheating alone operation is continued. Thereafter, after the reheating alone operation has been performed for a maximum of X minutes which is a predetermined time, if the cooling is turned on while the reheating thermostat is ON, the cooling exhaust heat reheating operation is performed. If the air conditioner is not turned on, the air conditioner waits until the air conditioner is turned on.

【0042】以上のように、本発明の実施の形態によれ
ば、冷房排熱追焚運転において、冷房負荷が軽くなり冷
房の排熱による追焚能力が充分に得られなくなった場合
に、冷房サーモOFFのタイミングを利用し、追焚単独
運転を行うことで、基本的には冷房排熱を追焚に積極的
に利用しながら、さらには冷房サーモOFF時の追焚単
独運転に所定の制限時間を設けることにより、冷房サー
モON時に即冷房モードに切り換えられるように待機状
態いることによって、冷房使用者への不快感をなくし、
冷房と追焚の同時運転を実現することができる。
As described above, according to the embodiment of the present invention, in the cooling exhaust heat reheating operation, when the cooling load becomes light and the reheating capability by the exhaust heat of the cooling cannot be sufficiently obtained, the cooling is performed. By performing the reheating alone operation using the timing of the thermo-OFF, basically, the cooling exhaust heat is actively used for the re-heating, and furthermore, the predetermined limit is set to the re-heating alone operation at the time of the cooling thermo-OFF. By providing a time, the cooling thermometer is turned on, so that the cooling mode is immediately switched to the cooling mode, thereby eliminating discomfort to the cooling user,
Simultaneous operation of cooling and reheating can be realized.

【0043】発明の実施の形態6.図14は本発明の実
施の形態における多機能ヒートポンプシステムを示す回
路構成図である。冷凍サイクルを形成するヒートポンプ
システムの構成は発明の実施の形態2と同一であり、同
一部分又は相当する部分には同一符号を付してその説明
を省略する。図14と図5とを比較した場合の特徴は制
御装置による制御動作及びそのための制御信号の接続に
ある。即ち、本発明の実施の形態における特徴的な制御
信号の接続は、室外制御部15が圧縮機1、二方弁2
a、冷媒流量制御弁9a、9b、9cに信号接続されて
いる点にある。
Embodiment 6 of the Invention FIG. 14 is a circuit diagram showing a multifunctional heat pump system according to an embodiment of the present invention. The configuration of the heat pump system that forms the refrigeration cycle is the same as that of the second embodiment of the invention, and the same or corresponding portions are denoted by the same reference characters and description thereof is omitted. 14 and FIG. 5 lies in the control operation by the control device and the connection of control signals therefor. That is, the connection of the characteristic control signal in the embodiment of the present invention is such that the outdoor control unit 15 controls the compressor 1 and the two-way valve 2
a, is that it is signal-connected to the refrigerant flow control valves 9a, 9b, 9c.

【0044】次に動作について図15のタイミングチャ
ートに沿って説明する。運転台数が追加された場合に、
まず圧縮機1を停止させ、台数が追加される前に運転し
ていたユニット及び追加されるユニットの冷媒回路上の
冷媒流量制御弁9a、9b又は9cを全開とする。その
後15sec後高圧と低圧をバイパスさせる二方弁2a
を開く。ここで、時間差をつけて二方弁2aを開くの
は、高圧と低圧をある程度バランスさせてから開くこと
により、弁を開いた際に高圧側から低圧側に冷媒が流れ
る際に発生する音を低減できるためである。
Next, the operation will be described with reference to the timing chart of FIG. When the number of operating vehicles is added,
First, the compressor 1 is stopped, and the units operated before the number of units is added and the refrigerant flow control valves 9a, 9b or 9c on the refrigerant circuit of the added units are fully opened. After 15 seconds, a two-way valve 2a that bypasses high pressure and low pressure
open. The reason why the two-way valve 2a is opened with a time difference is that the sound generated when the refrigerant flows from the high pressure side to the low pressure side when the valve is opened is opened by opening the valve after the high pressure and the low pressure are balanced to some extent. This is because it can be reduced.

【0045】さらに、二方弁2aを開いた5sec後の
高圧と低圧とが完全にバランスしたときに、追加するユ
ニットのガス管側の二方弁(室内ユニットならば二方弁
2c、追焚ユニット・浴室乾燥/暖房ユニットならば二
方弁2b、給湯ユニットならば二方弁2e)を開き、圧
縮機1を運転させて台数が追加された場合の複合運転を
行う。以上のように、本発明の実施の形態によれば、運
転台数が追加された場合に上記制御を行うことにより、
追加するユニットの回路に冷媒を流す際に発生する過大
な冷媒音を低減することができる。
Further, when the high pressure and the low pressure are completely balanced 5 seconds after the two-way valve 2a is opened, the two-way valve on the gas pipe side of the additional unit (the two-way valve 2c for an indoor unit, The two-way valve 2b is opened for the unit / bathroom drying / heating unit, and the two-way valve 2e) is opened for the hot water supply unit, and the compressor 1 is operated to perform the combined operation when the number of units is added. As described above, according to the embodiment of the present invention, by performing the above control when the number of operating vehicles is added,
Excessive refrigerant noise generated when the refrigerant flows through the circuit of the additional unit can be reduced.

【0046】[0046]

【発明の効果】以上のように、この発明によれば、圧縮
機、四方弁、室内熱交換器及び室外熱交換器を有し、こ
れらを四方弁の切り換えによって適宜の順に連通する冷
凍サイクルを形成すると共に、前記圧縮機の流出側と前
記室内熱交換器及び室外側熱交換器の間とに並列にヒー
トポンプ熱源利用装置用熱交換器を設け、冷媒流通路を
適宜切り替え可能にした多機能ヒートポンプシステムに
おいて、前記四方弁及び冷凍サイクルを制御する制御手
段と、前記室外熱交換器の液側に設けられた二方弁と、
前記二方弁を前記四方弁と同期させてON/OFFさせ
るリレー手段とを備えたので、簡易な構成で多種の運転
モードを成立させることができ、装置全体を小型化でき
るようになる効果が得られる。
As described above, according to the present invention, there is provided a refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger and an outdoor heat exchanger, which are connected in an appropriate order by switching the four-way valve. A multi-function in which a heat exchanger for a heat pump heat source utilizing device is provided in parallel with an outlet side of the compressor and between the indoor heat exchanger and the outdoor heat exchanger. In the heat pump system, control means for controlling the four-way valve and the refrigeration cycle, and a two-way valve provided on the liquid side of the outdoor heat exchanger,
Since a relay means for turning on / off the two-way valve in synchronization with the four-way valve is provided, various operation modes can be established with a simple configuration, and an effect that the whole apparatus can be miniaturized can be obtained. can get.

【0047】また、圧縮機、四方弁、室内熱交換器及び
室外熱交換器を有し、これらを四方弁の切り換えによっ
て適宜の順に連通する冷凍サイクルを形成し、冷媒流通
路を適宜切り替え可能にした多機能ヒートポンプシステ
ムにおいて、前記四方弁及び冷凍サイクルを制御すると
ともに室内温度と室内設定温度とに応じてサーモON/
OFFして圧縮機周波数を制御する制御手段を備え、前
記制御手段は暖房運転時に暖房サーモOFF後再びサー
モONとなった場合、目標制御圧力を前記暖房サーモO
FFとなったときの目標制御圧力よりも低く設定し、圧
縮機周波数を制御するので、サーモON/OFFの頻度
を少なくしながら、室内負荷の変動にも対応でき、吹き
出し温度の変化を小さくできるから、使用者の快適性を
向上させられる効果が得られる。
Further, a refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, which are connected in an appropriate order by switching the four-way valve, is formed so that the refrigerant flow passage can be appropriately switched. In the multi-function heat pump system described above, the four-way valve and the refrigeration cycle are controlled, and the thermo ON / OFF is controlled according to the room temperature and the room set temperature.
Control means for controlling the compressor frequency by turning it off, the control means setting the target control pressure to the heating thermo O
Since the compressor frequency is controlled by setting it lower than the target control pressure at the time of FF, it is possible to cope with fluctuations in the indoor load while reducing the frequency of thermo-ON / OFF and to reduce the change in the outlet temperature. Therefore, the effect of improving the comfort of the user can be obtained.

【0048】また、圧縮機、四方弁、室内熱交換器及び
室外熱交換器を有し、これらを四方弁の切り換えによっ
て適宜の順に連通する冷凍サイクルを形成すると共に、
前記圧縮機の流出側と前記室内熱交換器及び室外側熱交
換器の間とに並列にヒートポンプ熱源利用装置用熱交換
器を設け、冷媒流通路を適宜切り替えることにより冷房
排熱利用運転を可能にした多機能ヒートポンプシステム
において、前記四方弁及び冷凍サイクルを制御するとと
もに室内温度と室内設定温度とに応じてサーモON/O
FFとする制御手段を備え、前記制御手段は前記冷房排
熱利用運転時にサーモOFFとなった場合、前記冷凍サ
イクルを前記冷房排熱利用運転からヒートポンプ熱源利
用装置の単独運転に変更するので、排熱エネルギーを効
率的に利用でき、排熱から充分な能力が得られない場合
でも運転モードの切り替えでエネルギーを確保できると
ともに、サーモOFF時のタイミングに運転モードの切
り替えを行うから、冷房使用者に不快感を与えることを
防止できる効果が得られる。
Further, a refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, which are connected in an appropriate order by switching the four-way valve, is formed.
By providing a heat exchanger for a heat pump heat source utilizing device in parallel between the outlet side of the compressor and the indoor heat exchanger and between the indoor heat exchanger and the outdoor heat exchanger, a cooling exhaust heat utilization operation is possible by appropriately switching a refrigerant flow passage. In the multifunctional heat pump system according to the present invention, the four-way valve and the refrigeration cycle are controlled and the thermo ON / O is controlled according to the room temperature and the room set temperature.
FF is provided, and the control unit changes the refrigeration cycle from the cooling exhaust heat utilization operation to the single operation of the heat pump heat source utilization device when the thermostat is turned off during the cooling exhaust heat utilization operation. Even if heat energy can be used efficiently and sufficient capacity cannot be obtained from exhaust heat, energy can be secured by switching operation modes, and operation modes are switched at the time of thermo OFF, so cooling users can be used. The effect of preventing discomfort can be obtained.

【0049】また、前記制御手段は前記冷房排熱利用運
転時にサーモOFFとなった場合、冷凍サイクルを前記
冷房排熱利用運転から前記ヒートポンプ熱源利用装置の
単独運転に所定時間内変更するので、再びサーモONと
なった場合の冷房排熱利用運転時への切り替えが行え、
冷房使用者快適性を向上させられる効果が得られる。
When the thermostat is turned off during the cooling exhaust heat utilization operation, the control means changes the refrigeration cycle from the cooling exhaust heat utilization operation to the single operation of the heat pump heat source utilization device within a predetermined time. It can be switched to the cooling exhaust heat utilization operation when the thermo is turned on,
The effect of improving the cooling user comfort is obtained.

【0050】また、圧縮機、四方弁、室内熱交換器及び
室外熱交換器を有し、これらを四方弁の切り換えによっ
て適宜の順に連通する冷凍サイクルを形成すると共に、
前記圧縮機の流出側と前記室内熱交換器及び室外側熱交
換器の間とに並列にヒートポンプ熱源利用装置用熱交換
器を設け、適所に冷媒流量制御弁及び二方弁を設けて冷
媒流通路を適宜切り替え可能にした多機能ヒートポンプ
システムにおいて、前記四方弁及び冷凍サイクルを制御
する制御手段を備え、前記制御手段は、既運転中に新た
に他の熱交換器が運転を開始した場合、前記圧縮機を所
定時間停止し、既運転中及び新たに運転を開始した熱交
換器を含む冷凍サイクルの冷媒流量制御弁を全開した
後、二方弁を開いて高圧と低圧をバランスさせるので、
運転する熱交換器の台数を追加する場合に、追加する冷
媒回路上に冷媒を流す際に発生する過大な冷媒音を低減
することができる効果が得られる。
Further, a refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger and an outdoor heat exchanger, which are connected in an appropriate order by switching the four-way valve, is formed.
A heat exchanger for a heat pump heat source utilizing device is provided in parallel between the outlet side of the compressor and the indoor heat exchanger and between the indoor heat exchanger and the outdoor heat exchanger, and a refrigerant flow control valve and a two-way valve are provided at appropriate places to distribute refrigerant. In a multi-function heat pump system in which a route can be appropriately switched, the multi-function heat pump system further includes control means for controlling the four-way valve and the refrigeration cycle, wherein the control means newly starts operation of another heat exchanger during operation. The compressor is stopped for a predetermined time, and after fully opening the refrigerant flow control valve of the refrigeration cycle including the heat exchanger that has already been operated and newly started operation, the two-way valve is opened to balance the high pressure and the low pressure.
When the number of heat exchangers to be operated is increased, an effect of reducing excessive refrigerant noise generated when the refrigerant flows on the added refrigerant circuit can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1における多機能ヒー
トポンプシステムを示す回路構成図である。
FIG. 1 is a circuit configuration diagram showing a multifunctional heat pump system according to Embodiment 1 of the present invention.

【図2】 図1の冷房排熱利用運転モード時の系統図で
ある。
FIG. 2 is a system diagram in a cooling exhaust heat utilization operation mode of FIG. 1;

【図3】 図1の冷房単独運転モード時の系統図であ
る。
FIG. 3 is a system diagram in a cooling only operation mode of FIG. 1;

【図4】 図1の暖房・ヒートポンプ熱源利用装置同時
運転モード時の系統図である。
FIG. 4 is a system diagram in a simultaneous operation mode of the heating / heat pump heat source utilization device of FIG. 1;

【図5】 この発明の実施の形態2における多機能ヒー
トポンプシステムを示す回路構成図である。
FIG. 5 is a circuit configuration diagram showing a multifunctional heat pump system according to Embodiment 2 of the present invention.

【図6】 図5の冷房排熱利用運転モード時の系統図で
ある。
FIG. 6 is a system diagram in a cooling exhaust heat utilization operation mode of FIG. 5;

【図7】 図5の冷房単独運転モード時の系統図であ
る。
FIG. 7 is a system diagram in the cooling only operation mode of FIG. 5;

【図8】 図5の暖房・給湯同時運転モード時の系統図
である。
FIG. 8 is a system diagram in the simultaneous heating / hot water supply operation mode of FIG. 5;

【図9】 この発明の実施の形態3における多機能ヒー
トポンプシステムの制御装置を示すブロック図である。
FIG. 9 is a block diagram illustrating a control device of a multi-function heat pump system according to Embodiment 3 of the present invention.

【図10】 この発明の実施の形態3における多機能ヒ
ートポンプシステムの制御動作を示すフローチャートで
ある。
FIG. 10 is a flowchart showing a control operation of the multifunctional heat pump system according to Embodiment 3 of the present invention.

【図11】 この発明の実施の形態4における多機能ヒ
ートポンプシステムの制御装置を示すブロック図であ
る。
FIG. 11 is a block diagram showing a control device of a multifunctional heat pump system according to Embodiment 4 of the present invention.

【図12】 この発明の実施の形態4における多機能ヒ
ートポンプシステムの制御動作を示すフローチャートで
ある。
FIG. 12 is a flowchart showing a control operation of the multifunctional heat pump system according to Embodiment 4 of the present invention.

【図13】 この発明の実施の形態5における多機能ヒ
ートポンプシステムの制御動作を示すフローチャートで
ある。
FIG. 13 is a flowchart showing a control operation of the multifunctional heat pump system according to Embodiment 5 of the present invention.

【図14】 この発明の実施の形態6における多機能ヒ
ートポンプシステムを示す回路構成図である。
FIG. 14 is a circuit configuration diagram showing a multifunctional heat pump system according to Embodiment 6 of the present invention.

【図15】 この発明の実施の形態6における多機能ヒ
ートポンプシステムの制御動作を示すタイミングチャー
トである。
FIG. 15 is a timing chart showing a control operation of the multifunctional heat pump system according to Embodiment 6 of the present invention.

【図16】 従来の圧縮機周波数を変化させる空気調和
機の制御方法を示す動作図である。
FIG. 16 is an operation diagram showing a conventional control method of an air conditioner for changing a compressor frequency.

【符号の説明】[Explanation of symbols]

1 圧縮機 2a、2b、2c、2d 二方弁 6 四方弁 8 室外熱交換器 11、22 室内熱交換器 12 ヒートポンプ熱源利用装置 13 ヒートポンプ熱源利用装置用熱交換器 14 リレー 15 制御装置 23 室内制御部 26 追焚熱交換器 27 追焚制御部 30 浴室乾燥熱交換器 31 浴室乾燥制御部 32 室内リモコン 33 室温センサー DESCRIPTION OF SYMBOLS 1 Compressor 2a, 2b, 2c, 2d Two-way valve 6 Four-way valve 8 Outdoor heat exchanger 11, 22 Indoor heat exchanger 12 Heat pump heat source utilizing device 13 Heat exchanger for heat pump heat source utilizing device 14 Relay 15 Control device 23 Indoor control Unit 26 Reheating heat exchanger 27 Reheating control unit 30 Bathroom drying heat exchanger 31 Bathroom drying control unit 32 Indoor remote controller 33 Room temperature sensor

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室内熱交換器及び室外
熱交換器を有し、これらを四方弁の切り換えによって適
宜の順に連通する冷凍サイクルを形成すると共に、前記
圧縮機の流出側と前記室内熱交換器及び室外側熱交換器
の間とに並列にヒートポンプ熱源利用装置用熱交換器を
設け、冷媒流通路を適宜切り替え可能にした多機能ヒー
トポンプシステムにおいて、前記四方弁及び冷凍サイク
ルを制御する制御手段と、前記室外熱交換器の液側に設
けられた二方弁と、前記二方弁を前記四方弁と同期させ
てON/OFFさせるリレー手段とを備えたことを特徴
とする多機能ヒートポンプシステムの制御装置。
1. A refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, which are communicated in an appropriate order by switching the four-way valve. In a multifunctional heat pump system in which a heat pump heat source utilizing device heat exchanger is provided in parallel between the indoor heat exchanger and the outdoor heat exchanger, and the refrigerant flow path can be appropriately switched, the four-way valve and the refrigeration cycle are provided. Control means for controlling; a two-way valve provided on the liquid side of the outdoor heat exchanger; and relay means for turning on / off the two-way valve in synchronization with the four-way valve. Control device for multifunctional heat pump system.
【請求項2】 圧縮機、四方弁、室内熱交換器及び室外
熱交換器を有し、これらを四方弁の切り換えによって適
宜の順に連通する冷凍サイクルを形成し、冷媒流通路を
適宜切り替え可能にした多機能ヒートポンプシステムに
おいて、前記四方弁及び冷凍サイクルを制御するととも
に室内温度と室内設定温度とに応じてサーモON/OF
Fして圧縮機周波数を制御する制御手段を備え、前記制
御手段は暖房運転時に暖房サーモOFF後再びサーモO
Nとなった場合、目標制御圧力を前記暖房サーモOFF
となったときの目標制御圧力よりも低く設定し、圧縮機
周波数を制御することを特徴とする多機能ヒートポンプ
システムの制御装置。
2. A refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, which are connected in an appropriate order by switching the four-way valve, so that a refrigerant flow passage can be appropriately switched. In the multifunctional heat pump system, the four-way valve and the refrigeration cycle are controlled, and the thermo ON / OF is controlled according to the room temperature and the room set temperature.
F to control the compressor frequency, and the control means turns off the heating thermostat after the heating thermostat is turned off during the heating operation.
If N, the target control pressure is set to the heating thermo OFF.
A controller for a multi-function heat pump system, wherein the controller controls the compressor frequency by setting the target control pressure lower than the target control pressure at the time of:
【請求項3】 圧縮機、四方弁、室内熱交換器及び室外
熱交換器を有し、これらを四方弁の切り換えによって適
宜の順に連通する冷凍サイクルを形成すると共に、前記
圧縮機の流出側と前記室内熱交換器及び室外側熱交換器
の間とに並列にヒートポンプ熱源利用装置用熱交換器を
設け、冷媒流通路を適宜切り替えることにより冷房排熱
利用運転を可能にした多機能ヒートポンプシステムにお
いて、前記四方弁及び冷凍サイクルを制御するとともに
室内温度と室内設定温度とに応じてサーモON/OFF
とする制御手段を備え、前記制御手段は前記冷房排熱利
用運転時にサーモOFFとなった場合、前記冷凍サイク
ルを前記冷房排熱利用運転からヒートポンプ熱源利用装
置の単独運転に変更することを特徴とする多機能ヒート
ポンプシステムの制御装置。
3. A refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, which are connected to each other in an appropriate order by switching the four-way valve. In a multi-function heat pump system in which a heat pump heat source utilizing device heat exchanger is provided in parallel between the indoor heat exchanger and the outdoor heat exchanger, and cooling refrigerant heat utilization operation is enabled by appropriately switching a refrigerant flow passage. Controlling the four-way valve and the refrigeration cycle, and turning the thermo ON / OFF according to the room temperature and the room set temperature.
When the thermostat is turned off during the cooling exhaust heat utilization operation, the control means changes the refrigeration cycle from the cooling exhaust heat utilization operation to the single operation of the heat pump heat source utilization device. Control device for multifunctional heat pump system.
【請求項4】 前記制御手段は前記冷房排熱利用運転時
にサーモOFFとなった場合、冷凍サイクルを前記冷房
排熱利用運転から前記ヒートポンプ熱源利用装置の単独
運転に所定時間内変更することを特徴とする請求項3記
載の多機能ヒートポンプシステムの制御装置。
4. The control unit changes the refrigeration cycle from the cooling exhaust heat utilization operation to the single operation of the heat pump heat source utilization device within a predetermined time when the thermostat is turned off during the cooling exhaust heat utilization operation. The control device for a multifunctional heat pump system according to claim 3, wherein
【請求項5】 圧縮機、四方弁、室内熱交換器及び室外
熱交換器を有し、これらを四方弁の切り換えによって適
宜の順に連通する冷凍サイクルを形成すると共に、前記
圧縮機の流出側と前記室内熱交換器及び室外側熱交換器
の間とに並列にヒートポンプ熱源利用装置用熱交換器を
設け、適所に冷媒流量制御弁及び二方弁を設けて冷媒流
通路を適宜切り替え可能にした多機能ヒートポンプシス
テムにおいて、前記四方弁及び冷凍サイクルを制御する
制御手段を備え、前記制御手段は、既運転中に新たに他
の熱交換器が運転を開始した場合、前記圧縮機を所定時
間停止し、既運転中及び新たに運転を開始した熱交換器
を含む冷凍サイクルの冷媒流量制御弁を全開した後、二
方弁を開いて高圧と低圧をバランスさせることを特徴と
する多機能ヒートポンプシステムの制御装置。
5. A refrigeration cycle having a compressor, a four-way valve, an indoor heat exchanger, and an outdoor heat exchanger, which are connected to each other in an appropriate order by switching the four-way valve. A heat pump heat source utilizing device heat exchanger was provided in parallel between the indoor heat exchanger and the outdoor heat exchanger, and a refrigerant flow control valve and a two-way valve were provided in appropriate places to enable switching of the refrigerant flow passage as appropriate. In the multi-function heat pump system, further comprising a control means for controlling the four-way valve and the refrigeration cycle, wherein the control means stops the compressor for a predetermined time when another heat exchanger is newly started during operation. Then, after fully opening the refrigerant flow control valve of the refrigeration cycle including the heat exchanger that has already been in operation and newly started operation, the two-way valve is opened to balance the high pressure and the low pressure. Control system for the pump system.
JP24061596A 1996-09-11 1996-09-11 Controller for multifunctional heat pump system Pending JPH1089791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24061596A JPH1089791A (en) 1996-09-11 1996-09-11 Controller for multifunctional heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24061596A JPH1089791A (en) 1996-09-11 1996-09-11 Controller for multifunctional heat pump system

Publications (1)

Publication Number Publication Date
JPH1089791A true JPH1089791A (en) 1998-04-10

Family

ID=17062140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24061596A Pending JPH1089791A (en) 1996-09-11 1996-09-11 Controller for multifunctional heat pump system

Country Status (1)

Country Link
JP (1) JPH1089791A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149883A (en) * 2012-03-29 2012-08-09 Mitsubishi Electric Corp Heat pump device
JP5197576B2 (en) * 2007-03-27 2013-05-15 三菱電機株式会社 Heat pump equipment
US9377224B2 (en) 2011-01-27 2016-06-28 Mitsubishi Electric Corporation Heat pump apparatus and control method for heat pump apparatus
WO2017203655A1 (en) * 2016-05-26 2017-11-30 三菱電機株式会社 Heat pump type air conditioning and hot water supplying device
CN108562062A (en) * 2018-04-17 2018-09-21 北京石油化工学院 Heat pump system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5197576B2 (en) * 2007-03-27 2013-05-15 三菱電機株式会社 Heat pump equipment
US9377224B2 (en) 2011-01-27 2016-06-28 Mitsubishi Electric Corporation Heat pump apparatus and control method for heat pump apparatus
JP2012149883A (en) * 2012-03-29 2012-08-09 Mitsubishi Electric Corp Heat pump device
WO2017203655A1 (en) * 2016-05-26 2017-11-30 三菱電機株式会社 Heat pump type air conditioning and hot water supplying device
JPWO2017203655A1 (en) * 2016-05-26 2018-12-13 三菱電機株式会社 Heat pump air-conditioning hot water supply system
CN108562062A (en) * 2018-04-17 2018-09-21 北京石油化工学院 Heat pump system

Similar Documents

Publication Publication Date Title
JPH05332629A (en) Air conditioner
JPH0518630A (en) Air conditioner
JP3740637B2 (en) Air conditioner
JP2007212085A (en) Control method for radiation panel air conditioning system
JPH05264133A (en) Air conditioner
JPH0599525A (en) Multi-chamber type air conditioner
JP2000274879A (en) Air conditioner
JPH06201220A (en) Cooling and heating hybrid engine driving heat pump system
JP3967033B2 (en) Air conditioner and control method thereof
JPH0448140A (en) Air conditioner
JPH1089791A (en) Controller for multifunctional heat pump system
KR20070074302A (en) Air conditioner and method of controlling the same
JP2006194525A (en) Multi-chamber type air conditioner
KR102130437B1 (en) air-conditioning system
JP3995824B2 (en) air conditioner
JPH0735389A (en) Air conditioner
JP2005283058A (en) Reheating dehumidifying type air conditioner
JP2001201217A (en) Air conditioner
JP3518487B2 (en) Operation control device for temperature controller
JP2822769B2 (en) Heat pump system
JP4201488B2 (en) Refrigeration equipment
JP3565138B2 (en) Air conditioner
JPH10332221A (en) Multi-room air conditioner and operation method thereof
JP2560060B2 (en) Air conditioning system
JP2000346489A (en) Air conditioning system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621