JPH07201662A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH07201662A
JPH07201662A JP33660993A JP33660993A JPH07201662A JP H07201662 A JPH07201662 A JP H07201662A JP 33660993 A JP33660993 A JP 33660993A JP 33660993 A JP33660993 A JP 33660993A JP H07201662 A JPH07201662 A JP H07201662A
Authority
JP
Japan
Prior art keywords
conductive polymer
tantalum wire
block material
solid electrolytic
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33660993A
Other languages
Japanese (ja)
Other versions
JP2861774B2 (en
Inventor
Toshihiko Nishiyama
利彦 西山
Tomoji Arai
智次 荒井
Koji Sakata
幸治 坂田
Setsu Mukono
節 向野
Takashi Fukami
隆 深海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5336609A priority Critical patent/JP2861774B2/en
Publication of JPH07201662A publication Critical patent/JPH07201662A/en
Application granted granted Critical
Publication of JP2861774B2 publication Critical patent/JP2861774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a solid electrolytic capacitor in which a reactive solution is prevented from creeping up a tantalum wire through capillary phonomenon at the time of formation of a conductive polymer. CONSTITUTION:A block 4 is formed of any one of Freon resin, silicon resin, acryl resin or epoxy resin at a part for leading out a tantalum wire 2. The angle a formed between the block and the lead-out face of tantalum wire is set smaller than the contact angle between a reaction liquid for forming a conductive polymer and the block thus preventing the reaction liquid perfectly from creeping up the tantalum wire, i.e., preventing the formation of a conductive polymer at the tantalum wire part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性高分子化合物を
固体電解質として用いた固体電解コンデンサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte.

【0002】[0002]

【従来の技術】従来の固体電解コンデンサは、例えばタ
ンタル粉末を焼結して作成したコンデンサ素子に周知の
方法で酸化皮膜を形成し、固体電解質として二酸化マン
ガンを酸化皮膜上に形成している。また近年、二酸化マ
ンガンの替わりにポリピロール等の導電性高分子を用い
たものも提案されている(特公平4−56445号公
報)。
2. Description of the Related Art In a conventional solid electrolytic capacitor, for example, an oxide film is formed on a capacitor element formed by sintering tantalum powder by a known method, and manganese dioxide is formed on the oxide film as a solid electrolyte. Further, in recent years, a material using a conductive polymer such as polypyrrole in place of manganese dioxide has also been proposed (Japanese Patent Publication No. 4-56445).

【0003】導電性高分子を固体電解質として用いたも
のは、二酸化マンガンを用いたそれと比較して、導電性
高分子の導電率が二酸化マンガンに対して数十倍大きい
ために、優れた高周波特性を有しており、近年の電子機
器作動周波数の高周波化に対応するものとして、注目を
集めている。また、二酸化マンガンは硝酸マンガンを熱
分解することにより形成するため、200℃〜300℃
程度の熱ストレスがくり返しコンデンサ素子に加えら
れ、このため酸化皮膜に欠陥が生じ、漏れ電流が増大す
るという欠点がある。これに対して、導電性高分子を固
体電解質として用いた場合は、コンデンサ素子を高温で
処理する必要が無いために、酸化皮膜の劣化がなく、高
信頼性の製品を提供できるとの報告がある(特公平4−
56445号公報および特開昭62−29124号公報
参照)。
The one using a conductive polymer as a solid electrolyte has excellent high-frequency characteristics because the conductivity of a conductive polymer is several tens of times higher than that of manganese dioxide. And has been attracting attention as a means for coping with the recent increase in the operating frequency of electronic devices. Further, since manganese dioxide is formed by thermally decomposing manganese nitrate, 200 ° C. to 300 ° C.
A certain degree of thermal stress is repeatedly applied to the capacitor element, which causes defects in the oxide film and increases leakage current. On the other hand, when a conductive polymer is used as a solid electrolyte, it is not necessary to treat the capacitor element at high temperature, so there is a report that there is no deterioration of the oxide film and a highly reliable product can be provided. Yes (Tokuhei 4-
56445 and JP-A-62-29124).

【0004】これら固体電解コンデンサは、二酸化マン
ガンを固体電解質に用いる場合は硝酸マンガン溶液、導
電性高分子を固体電解質に用いる場合はモノマー溶液お
よび酸化剤溶液を用い、これら溶液をコンデンサ素子焼
結体中に含浸させて固体電解質を形成する。すなわち、
これら溶液には、焼結体内部にまで固体電解質を形成す
るために、タンタル酸化皮膜との濡れ性が大きいことが
要求される。その結果、これら溶液はタンタルワイヤー
まで這い上がり易いことになる(図4)。この問題を解
決するために二酸化マンガンを固体電解質とする場合タ
ンタルワイヤー導出面に溶液状の樹脂を塗布、次に硬化
しブロック材を形成する方法(図5)、あるいはワッシ
ャーをタンタルワイヤーに挿入する方法(図6)が提案
されている。
In these solid electrolytic capacitors, a manganese nitrate solution is used when manganese dioxide is used as a solid electrolyte, and a monomer solution and an oxidant solution are used when a conductive polymer is used as a solid electrolyte. Impregnated therein to form a solid electrolyte. That is,
These solutions are required to have high wettability with the tantalum oxide film in order to form a solid electrolyte even inside the sintered body. As a result, these solutions tend to crawl up to the tantalum wire (Fig. 4). In order to solve this problem, when manganese dioxide is used as the solid electrolyte, a solution resin is applied to the lead-out surface of the tantalum wire and then cured to form a block material (Fig. 5), or a washer is inserted into the tantalum wire. A method (Fig. 6) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、導電性
高分子を固体電解質とする固体電解コンデンサの場合、
導電性高分子を形成する際、溶液中にコンデンサ素子を
浸漬して導電性高分子を形成する為に、タンタルワイヤ
ー導出部にも導電性高分子が形成されてしまう。この結
果次工程の陽極リード接続の際、陰極層と陽極リード間
に電気的短絡が生じてしまうという欠点があった。ま
た、前項で述べたブロック材を形成した場合、ある程度
の防止効果が得られるが、二酸化マンガンは硝酸マンガ
ンの熱分解により形成されるため、毛管現象によりタン
タルワイヤーに這い上がった硝酸マンガン溶液は飛散
し、タンタルワイヤー上への形成が抑制されるのに対
し、導電性高分子の場合、二酸化マンガン形成時のよう
な気体を発生する化学反応が進行しないためにその効果
は十分ではない。
However, in the case of a solid electrolytic capacitor using a conductive polymer as a solid electrolyte,
When the conductive polymer is formed, the capacitor element is dipped in a solution to form the conductive polymer, so that the conductive polymer is also formed in the tantalum wire lead-out portion. As a result, there has been a drawback that an electrical short circuit occurs between the cathode layer and the anode lead when connecting the anode lead in the next step. In addition, when the block material described in the previous section is formed, some degree of prevention effect is obtained, but since manganese dioxide is formed by the thermal decomposition of manganese nitrate, the manganese nitrate solution crawling up on the tantalum wire due to the capillary phenomenon is scattered. However, while the formation on the tantalum wire is suppressed, in the case of the conductive polymer, the effect is not sufficient because the chemical reaction that generates a gas, such as when forming manganese dioxide, does not proceed.

【0006】[0006]

【問題点を解決する手段】本発明者等は前記問題点を解
決するために鋭意検討を重ねた結果、導電性高分子を固
体電解質とする固体電解コンデンサにおけるブロック材
の形成には、従来の二酸化マンガンを固体電解質として
用いる固体電解コンデンサとは異なる効果的な形成条件
があることを見出した。すなわち本発明は、タンタルワ
イヤーなどの陽極ワイヤーの導出部に形成するブロック
材を、ブロック材がタンタルワイヤー導出面と作る角度
が導電性高分子形成用の反応液とブロック材となす接触
角より小さくなるよう形成することにより、完全に導電
性高分子反応液のタンタルワイヤーへの這い上り、すな
わち導電性高分子のタンタルワイヤー部への形成が防止
できる固体電解コンデンサを提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, have found that the conventional method for forming a block material in a solid electrolytic capacitor using a conductive polymer as a solid electrolyte is not known. It has been found that there are different effective formation conditions than solid electrolytic capacitors that use manganese dioxide as the solid electrolyte. That is, the present invention, the block material formed in the lead-out portion of the anode wire such as tantalum wire, the angle made by the block material with the tantalum wire lead-out surface is smaller than the contact angle between the reaction liquid for forming the conductive polymer and the block material. The present invention provides a solid electrolytic capacitor capable of completely preventing the conductive polymer reaction liquid from climbing up to the tantalum wire, that is, forming the conductive polymer on the tantalum wire portion.

【0007】[0007]

【実施例】次に実施例および比較例により本発明を更に
具体的に説明する。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples.

【0008】実施例1 タンタル粉末を焼結して得られるコンデンサ素子のタン
タルワイヤー導出面に、粘度50cps、500cp
s、100cpsのフッ素系樹脂をそれぞれ20個ずつ
マイクロシリンジで塗布した。
Example 1 A capacitor element obtained by sintering a tantalum powder has a viscosity of 50 cps and 500 cp on the lead-out surface of a tantalum wire.
s and 100 cps of fluororesin were applied to each by 20 pieces with a microsyringe.

【0009】この時、導電性高分子を形成する際の陽極
リードへの毛管現象による這い上がりを避けるために、
タンタルワイヤー外周全体に樹脂が回りこむように配慮
し、150℃の恒温槽に1時間放置し、ポリフロン樹脂
を硬化した。
At this time, in order to avoid the creeping up to the anode lead due to the capillary phenomenon when forming the conductive polymer,
Care was taken so that the resin would wrap around the entire outer circumference of the tantalum wire, and the polyflon resin was cured by leaving it in a constant temperature bath at 150 ° C. for 1 hour.

【0010】リン酸水溶液中で陽極酸化して焼結体中に
酸化皮膜を形成した後、ピロール、エタノールを重量比
で30:70の割合で含有するピロール溶液に浸漬し、
次に、ドデシルベンゼンスルホン酸鉄(III)、エタノー
ルを重量比で40:60の割合で含有する酸化剤溶液に
浸漬し、酸化皮膜上に導電性高分子を重合させた。反応
終了後、未反応の酸化剤と過剰の酸を水洗によって洗浄
し、50℃で1時間、真空中で乾燥した。以上の操作を
3回くり返した後、グラファイト槽、銀層を順次形成
し、50倍の顕微鏡でタンタルワイヤー部のポリピロー
ルの形成状態、及びブロック材がタンタルワイヤー導出
面と作る角度を観察した。粘度50cpsのフッ素系樹
脂を塗布した試料を試料1、粘度50cpsのフッ素系
樹脂を塗布した試料を試料2、粘度1000cpsのフ
ッ素系樹脂を塗布した試料を試料3とした。次に陰極リ
ードを銀ペーストで、陽極リードを電気溶接で接続し、
粉体外装法で外装後電気特性を測定した。
After anodizing in a phosphoric acid aqueous solution to form an oxide film on the sintered body, it is immersed in a pyrrole solution containing pyrrole and ethanol in a weight ratio of 30:70,
Next, the iron (III) dodecylbenzene sulfonate and ethanol were immersed in an oxidant solution containing 40:60 by weight to polymerize the conductive polymer on the oxide film. After completion of the reaction, the unreacted oxidizing agent and excess acid were washed with water and dried in vacuum at 50 ° C. for 1 hour. After repeating the above operation three times, a graphite tank and a silver layer were sequentially formed, and the formation state of polypyrrole in the tantalum wire portion and the angle formed by the block material with the tantalum wire lead-out surface were observed with a 50 × microscope. A sample coated with a fluororesin having a viscosity of 50 cps was designated as sample 1, a sample coated with a fluororesin having a viscosity of 50 cps was designated as sample 2, and a sample coated with a fluororesin having a viscosity of 1000 cps was designated as sample 3. Next, connect the cathode lead with silver paste and the anode lead with electric welding,
The electrical characteristics were measured after packaging by the powder packaging method.

【0011】次に導電性高分子形成用の反応液とブロッ
ク材となす接触角を測定するために、前記のフッ素系樹
脂をガラス板の上にフィルム状に形成し、固体電解質を
形成した酸化剤溶液との接触角(図2)を調べた。
Next, in order to measure the contact angle between the reaction liquid for forming the conductive polymer and the block material, the above-mentioned fluorine-based resin was formed into a film on a glass plate to form a solid electrolyte, and oxidation was performed. The contact angle with the agent solution (Fig. 2) was examined.

【0012】比較例1 実施例1と同じコンデンサ素子を用い、ブロック材を形
成せずに、実施例1と同じ方法で酸化皮膜、固体電解質
を形成、グラファイト層、銀層を順次形成し、50倍の
顕微鏡でタンタルワイヤー部のポリピロールの形成状態
を観察した。次に陰極リードを銀ペーストで、陽極リー
ドを電気溶接で接続し、粉体外装法で外装後電気特性を
測定した。
Comparative Example 1 Using the same capacitor element as in Example 1, an oxide film, a solid electrolyte were formed, a graphite layer and a silver layer were sequentially formed by the same method as in Example 1 without forming a block material. The formation state of polypyrrole in the tantalum wire portion was observed with a microscope with a magnification of 2. Next, the cathode lead was connected with a silver paste and the anode lead was connected with electric welding, and the electrical characteristics were measured after the packaging by the powder packaging method.

【0013】実施例2 実施例1と同じコンデンサ素子を用い、タンタルワイヤ
ー導出面に粘度1000cpsのフッ素系樹脂を20
個、マイクロシリンジで塗布した。ポリフロン樹脂の硬
化後、リン酸水溶液中で陽極酸化して焼結体中に酸化皮
膜を形成した後、メタノール及びイソプロピルアルコー
ルを溶剤として、重量比でピロールを30%の割合で含
有する2種類のピロール溶液にそれぞれ20個ずつを浸
漬し、次に、ドデシルベンゼンスルホン酸鉄(III)、エ
タノールを重量比で40:60の割合で含有する酸化剤
溶液に浸漬し、酸化皮膜上に導電性高分子を重合させ
た。反応終了後、未反応の酸化剤と過剰の酸を水洗によ
って洗浄し、50℃で1時間、真空中で乾燥した。以上
の操作を3回くり返した後、グラファイト層、銀層を順
次形成し、50倍の顕微鏡でタンタルワイヤーの部のポ
リピロールの形成状態、及びブロック材がタンタルワイ
ーヤー導出面と作る角度を観察した。メタノールをピロ
ール溶液の溶媒とした試料を試料4、イソプロピルアル
コールをピロール溶液の溶媒とした試料を試料5とし
た。次いで陰極リードを銀ペーストで、陽極リードを電
気溶接で接続し、粉体外装法で外装後電気特性を測定し
た。
Example 2 The same capacitor element as in Example 1 was used, and a fluorine resin having a viscosity of 1000 cps was used on the lead-out surface of the tantalum wire.
Individual pieces were applied with a microsyringe. After curing the polyflon resin, anodized in a phosphoric acid aqueous solution to form an oxide film in the sintered body, and using methanol and isopropyl alcohol as solvents, two types of pyrrole containing 30% by weight of pyrrole are used. Dip 20 pieces each in the pyrrole solution, and then dip it in an oxidant solution containing iron (III) dodecylbenzenesulfonate and ethanol in a weight ratio of 40:60 to obtain high conductivity on the oxide film. The molecule was polymerized. After completion of the reaction, the unreacted oxidizing agent and excess acid were washed with water and dried in vacuum at 50 ° C. for 1 hour. After repeating the above operation 3 times, form a graphite layer and a silver layer one after another, and observe the polypyrrole formation state of the tantalum wire part and the angle that the block material makes with the tantalum wire lead-out surface with a microscope of 50 times. did. A sample using methanol as the solvent of the pyrrole solution was sample 4, and a sample using isopropyl alcohol as the solvent of the pyrrole solution was sample 5. Next, the cathode lead was connected with a silver paste and the anode lead was connected with electric welding, and the electrical characteristics were measured after packaging by the powder packaging method.

【0014】次に導電性高分子形成用の反応液とブロッ
ク材となす接触角を測定するために、前記のフッ素系樹
脂をガラス板の上にフィルム状に形成し、固体電解質を
形成した酸化剤溶液との接触角を調べた。
Next, in order to measure the contact angle between the reaction liquid for forming the conductive polymer and the block material, the above-mentioned fluororesin was formed into a film on a glass plate to form a solid electrolyte. The contact angle with the agent solution was examined.

【0015】実施例3 図3に示すように、厚み0.2mm、半径0.4mm、
タンタルワイヤー導出面と作る角度がそれぞれ120度
図6(A)、45度図6(B)の2種類のフッ素系樹脂
製ワッシャーを実施例1と同じコンデンサ素子のタンタ
ルワイヤーに挿入し、試料7,8とした。このコンデン
サ素子に実施例1と同じ方法でポリピロールを形成した
後、グラファイト層、鉄層を順次形成し、50倍の顕微
鏡でタンタルワイヤー部のポリピロールの形成状態を観
察した。次いで陰極リードを銀ペーストで、陽極リード
を電気溶接で接続し、粉体外装法で外装後電気特性を測
定した。
Example 3 As shown in FIG. 3, the thickness is 0.2 mm, the radius is 0.4 mm,
The angle formed with the tantalum wire lead-out surface is 120 degrees, respectively. 45 degrees Two types of fluorine resin washers shown in FIG. 6 (B) are inserted into the tantalum wire of the same capacitor element as in Example 1 to obtain Sample 7 , And 8. Polypyrrole was formed on this capacitor element in the same manner as in Example 1, then a graphite layer and an iron layer were sequentially formed, and the formation state of polypyrrole in the tantalum wire portion was observed with a 50 × microscope. Next, the cathode lead was connected with a silver paste and the anode lead was connected with electric welding, and the electrical characteristics were measured after packaging by the powder packaging method.

【0016】以上作製したコンデンサの電気特性、及び
タンタルワイヤー部のポリピロールの形成状態とブロッ
ク材がタンタルワイヤー導出面と作る角度及びブロック
材と酸化剤溶液との接触角との関係を表1に示した。
Table 1 shows the electrical characteristics of the capacitor produced above, the relationship between the polypyrrole formation state of the tantalum wire portion, the angle formed by the block material with the tantalum wire lead-out surface, and the contact angle between the block material and the oxidizer solution. It was

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】以上の結果から明らかなように、ブロッ
ク材がタンタル焼結体のタンタルワイヤー導出面と作る
角度が導電性高分子形成用の反応液とブロック材となす
接触角より小さい場合には、導電性高分子のタンタルワ
イヤーへの形成が抑制され、漏れ電流不良が著しく減少
することにより、高信頼性のタンタルコンデンサを得る
ことができる。
As is apparent from the above results, when the angle formed by the block material with respect to the tantalum wire lead-out surface of the tantalum sintered body is smaller than the contact angle between the reaction liquid for forming the conductive polymer and the block material. Since the formation of the conductive polymer on the tantalum wire is suppressed and the leakage current defect is remarkably reduced, a highly reliable tantalum capacitor can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のブロック材形成時の断面図。FIG. 1 is a cross-sectional view when forming a block material according to the present invention.

【図2】導電性高分子反応溶液とブロック材の接触角を
示す図。
FIG. 2 is a diagram showing a contact angle between a conductive polymer reaction solution and a block material.

【図3】本発明のテフロンワッシャー断面図。FIG. 3 is a sectional view of the Teflon washer of the present invention.

【図4】導電性高分子形成液に浸漬したタンタル素子の
断面図。
FIG. 4 is a cross-sectional view of a tantalum element immersed in a conductive polymer forming liquid.

【図5】従来例のブロック材を形成した硝酸マンガン溶
液に浸漬したタンタル素子の断面図。
FIG. 5 is a sectional view of a tantalum element immersed in a manganese nitrate solution in which a block material of a conventional example is formed.

【図6】従来例のテフロンワッシャー挿入図。FIG. 6 is an insertion view of a conventional Teflon washer.

【符号の説明】[Explanation of symbols]

1 タンタル焼結体素子 2 タンタルワイヤー 3 導電性高分子形成液 4 ブロック材 5 テフロンワッシャー 6 酸化剤溶液 1 Tantalum sintered body element 2 Tantalum wire 3 Conductive polymer forming liquid 4 Block material 5 Teflon washer 6 Oxidizer solution

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01G 9/04 349 (72)発明者 向野 節 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 深海 隆 東京都港区芝五丁目7番1号 日本電気株 式会社内Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01G 9/04 349 (72) Inventor Setsu Mukono 5-7-1 Shiba 5-chome, Minato-ku, Tokyo NEC Corporation (72) Inventor Takashi Fukaumi 5-7-1, Shiba, Minato-ku, Tokyo Inside NEC Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性高分子を固体電解質とする固体電
解コンデンサにおいて、陽性ワイヤーの導出部にブロッ
ク材が形成されていることを特徴とする固体電解コンデ
ンサ。
1. A solid electrolytic capacitor using a conductive polymer as a solid electrolyte, wherein a block material is formed at the lead-out portion of the positive wire.
【請求項2】 前項ブロック材が陽極焼結体の前記陽極
ワイヤー導出面と作る角度が導電性高分子形成用の反応
液とブロック材となす接触角より小さいことを特徴とす
る請求項1記載の固体電解コンデンサ。
2. The block material according to claim 1, wherein an angle formed by the block material with respect to the anode wire lead-out surface of the anode sintered body is smaller than a contact angle formed by the reaction liquid for forming a conductive polymer and the block material. Solid electrolytic capacitor.
【請求項3】 前項ブロック材がフッ素樹脂、シリコン
樹脂、アクリル樹脂、エポキシ樹脂の何れか一つである
ことを特徴とする請求項1または2記載の固体電解コン
デンサ。
3. The solid electrolytic capacitor according to claim 1, wherein the block material is one of fluororesin, silicon resin, acrylic resin, and epoxy resin.
JP5336609A 1993-12-28 1993-12-28 Solid electrolytic capacitors Expired - Fee Related JP2861774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5336609A JP2861774B2 (en) 1993-12-28 1993-12-28 Solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5336609A JP2861774B2 (en) 1993-12-28 1993-12-28 Solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH07201662A true JPH07201662A (en) 1995-08-04
JP2861774B2 JP2861774B2 (en) 1999-02-24

Family

ID=18300934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5336609A Expired - Fee Related JP2861774B2 (en) 1993-12-28 1993-12-28 Solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP2861774B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153650A (en) * 1994-11-29 1996-06-11 Nec Toyama Ltd Manufacture of solid-state electrolytic capacitor
US6423103B1 (en) 1999-01-25 2002-07-23 Nec Tokin Toyama, Ltd. Method for producing a solid electrolytic capacitor
KR20040048571A (en) * 2002-12-04 2004-06-10 파츠닉(주) Method for preventing doposition solution from climbing tantalum element
JP2007123733A (en) * 2005-10-31 2007-05-17 Showa Denko Kk Solid-state electrolytic capacitor element manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105523A (en) * 1987-10-19 1989-04-24 Japan Carlit Co Ltd:The Solid electrolytic capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105523A (en) * 1987-10-19 1989-04-24 Japan Carlit Co Ltd:The Solid electrolytic capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153650A (en) * 1994-11-29 1996-06-11 Nec Toyama Ltd Manufacture of solid-state electrolytic capacitor
US6423103B1 (en) 1999-01-25 2002-07-23 Nec Tokin Toyama, Ltd. Method for producing a solid electrolytic capacitor
KR20040048571A (en) * 2002-12-04 2004-06-10 파츠닉(주) Method for preventing doposition solution from climbing tantalum element
JP2007123733A (en) * 2005-10-31 2007-05-17 Showa Denko Kk Solid-state electrolytic capacitor element manufacturing method

Also Published As

Publication number Publication date
JP2861774B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
KR0158236B1 (en) Method for manufacturing solid electrolytic capacitor
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0745481A (en) Solid electrolytic capacitor and manufacture thereof
JP3202668B2 (en) Method for manufacturing solid electrolytic capacitor
JP2005109252A (en) Method of manufacturing solid electrolytic capacitor
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JP3228323B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2861774B2 (en) Solid electrolytic capacitors
JP2792469B2 (en) Solid electrolytic capacitor and method of manufacturing the same
EP0825618A2 (en) Electrically-conductive polymer and production method thereof, and solid-electrolytic capacitor
JP5020132B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10284351A (en) Solid-state electrolytic capacitor and manufacture of the same
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002270468A (en) Capacitor manufacturing method and capacitor
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JP2007103406A (en) Manufacturing method of solid electrolytic capacitor
JPH03228305A (en) Manufacture of aluminum solid electrolytic capacitor
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JP2002083738A (en) Lead wire for capacitor, solid electrolytic capacitor, and manufacturing method therefor
JP2010177498A (en) Wound type solid electrolyte capacitor
JPH04137517A (en) Manufacture of solid electrolytic capacitor
JP2002289474A (en) Manufacturing method for solid electrolytic capacitor
JPH11135366A (en) Solid electrolytic capacitor
JPH11251193A (en) Solid electrolytic capacitor and its manufacture
CN115240985A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees