JPH07193232A - Conductivity modulation type transistor - Google Patents

Conductivity modulation type transistor

Info

Publication number
JPH07193232A
JPH07193232A JP32939193A JP32939193A JPH07193232A JP H07193232 A JPH07193232 A JP H07193232A JP 32939193 A JP32939193 A JP 32939193A JP 32939193 A JP32939193 A JP 32939193A JP H07193232 A JPH07193232 A JP H07193232A
Authority
JP
Japan
Prior art keywords
type
region
semiconductor material
forbidden band
conductivity modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32939193A
Other languages
Japanese (ja)
Other versions
JP3198766B2 (en
Inventor
Toronnamuchiyai Kuraison
トロンナムチャイ クライソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP32939193A priority Critical patent/JP3198766B2/en
Publication of JPH07193232A publication Critical patent/JPH07193232A/en
Application granted granted Critical
Publication of JP3198766B2 publication Critical patent/JP3198766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To sufficiently reduce power loss by lowering rise voltage together with allowing no lowering the operable maximum temperature even using a semiconductor material of a small forbidden band width. CONSTITUTION:A P-type region at least of the inside in a PNPN structure or the whole area or a part 2 of an N-type region is formed of a semiconductor material having a forbidden band width smaller than a semiconductor material forming an outside P-type region 1 or an N-type region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電導度変調型トランジ
スタに関し、立ち上り電圧を下げるようにしたものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductivity modulation type transistor having a rising voltage lowered.

【0002】[0002]

【従来の技術】従来の電導度変調型トランジスタとして
は、例えば図5に示すようなものがある。高濃度のP型
基板1上には実質的にドレインとして機能する低濃度の
N型ドリフト領域3が形成され、N型ドリフト領域3の
表面側の所定箇所にP型ボディ領域4が形成され、さら
にP型ボディ領域4の表面側の所定箇所に高濃度のN型
ソース領域5が形成されている。またN型ソース領域5
とN型ドリフト領域3の間におけるP型ボディ領域4上
には、P型ボディ領域4の表面側にチャネルを誘起させ
るためのゲート電極6がゲート酸化膜を介して形成され
ている。上記の基板及びP型、N型の各領域はSi半導
体材料で形成されている。
2. Description of the Related Art As a conventional conductivity modulation type transistor, for example, there is one as shown in FIG. A low-concentration N-type drift region 3 that substantially functions as a drain is formed on the high-concentration P-type substrate 1, and a P-type body region 4 is formed at a predetermined position on the surface side of the N-type drift region 3. Further, a high-concentration N-type source region 5 is formed at a predetermined position on the surface side of the P-type body region 4. In addition, the N-type source region 5
A gate electrode 6 for inducing a channel on the surface side of the P type body region 4 is formed on the P type body region 4 between the N type drift region 3 and the N type drift region 3 via a gate oxide film. The substrate and the P-type and N-type regions are formed of Si semiconductor material.

【0003】そしてドレイン電極Dに所要値の正電圧が
加えられ、ゲート電極6に閾値以上のゲート電圧が印加
されると、ゲート電極6直下のP型ボディ領域4の表面
層にチャネルが誘起されてN型ソース領域5からN型ド
リフト領域3へ電子が流れる。それに従って高濃度のP
型基板1からN型ドリフト領域3へ正孔が注入され、N
型ドリフト領域3内には高濃度の電子と正孔が存在する
ことになって電導度変調が起きる。その結果、動作時の
オン抵抗が減少し、電力損失が小さくなる。但し従来の
電導度変調型トランジスタでは、P型基板1とN型ドリ
フト領域3の間にできているPN接合はSiで形成され
ているため、図6(b)に示すように、このPN接合に
約1eVの障壁が存在している。従ってP型基板1から
N型ドリフト領域3へ正孔が注入されて電流が流れるた
めには、上記のPN接合間に約1Vの電圧をかける必要
がある。その結果、図6(a)に示されているように、
電流が流れるためには、約1Vの立ち上り電圧Vf が必
要になる。
When a required positive voltage is applied to the drain electrode D and a gate voltage above the threshold value is applied to the gate electrode 6, a channel is induced in the surface layer of the P-type body region 4 immediately below the gate electrode 6. Electrons flow from the N-type source region 5 to the N-type drift region 3. High concentration of P
Holes are injected from the mold substrate 1 into the N-type drift region 3,
High-concentration electrons and holes are present in the mold drift region 3, and conductivity modulation occurs. As a result, the on-resistance during operation is reduced and the power loss is reduced. However, in the conventional conductivity modulation type transistor, since the PN junction formed between the P-type substrate 1 and the N-type drift region 3 is formed of Si, as shown in FIG. There is a barrier of about 1 eV at. Therefore, in order for holes to be injected from the P-type substrate 1 into the N-type drift region 3 and a current to flow, it is necessary to apply a voltage of about 1 V between the PN junctions. As a result, as shown in FIG.
A rising voltage V f of about 1 V is required for the current to flow.

【0004】[0004]

【発明が解決しようとする課題】従来の電導度変調型ト
ランジスタは、電流を流すには約1Vの立ち上り電圧が
必要となっていたため電力損失(電流×立ち上り電圧)
を十分小さくすることが難しいという問題があった。
In the conventional conductivity modulation type transistor, a rising voltage of about 1 V is required to flow a current, so that power loss (current × rising voltage).
There was a problem that it was difficult to make the value sufficiently small.

【0005】本発明は、このような従来の問題に着目し
てなされたもので、立ち上り電圧を下げて電力損失を十
分小さくすることができるとともに、立ち上り電圧を下
げるために禁制帯幅の小さい半導体材料を用いても動作
可能最高温度を低下させることのない電導度変調型トラ
ンジスタを提供することを目的とする。
The present invention has been made by paying attention to such a conventional problem, and it is possible to lower the rising voltage to sufficiently reduce the power loss, and to reduce the rising voltage, a semiconductor having a small forbidden band width. It is an object of the present invention to provide a conductivity modulation type transistor which does not lower the maximum operable temperature even if a material is used.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、第1に、PNPN構造を有する電導度変
調型トランジスタにおいて、前記PNPN構造における
少なくとも内側のP型領域又はN型領域の全域又は一部
を、外側のP型領域又はN型領域を形成している半導体
材料よりも禁制帯幅の小さい半導体材料で形成してなる
ことを要旨とする。
In order to solve the above-mentioned problems, firstly, the present invention relates to a conductivity modulation type transistor having a PNPN structure, and at least an inner P-type region or N-type region in the PNPN structure. The gist of the invention is that the whole or a part of the above is formed of a semiconductor material having a smaller forbidden band width than the semiconductor material forming the outer P-type region or N-type region.

【0007】第2に、上記第1の構成において、前記禁
制帯幅の小さい半導体材料はSiGe又はGeの何れか
であり、該SiGe又はGe以外の部分の半導体材料は
Siであることを要旨とする。
Secondly, in the first structure, the semiconductor material having a small forbidden band width is either SiGe or Ge, and the semiconductor material other than the SiGe or Ge is Si. To do.

【0008】[0008]

【作用】上記構成において、第1に、PNPN構造にお
ける少なくとも内側のP型領域又はN型領域の全域又は
一部が外側のP型領域又はN型領域を形成している半導
体材料よりも禁制帯幅の小さい半導体材料で形成される
ことにより、外側領域とその禁制帯幅の小さい内側領域
との間にできるPN接合の、その外側領域からの多数キ
ャリアの注入に対する障壁が小さくなる。例えば、禁制
帯幅の小さい半導体材料としてSiGe又はGeを用
い、それ以外の半導体材料としてSiを用いた場合その
障壁は0.5eV以下にすることが可能となる。その結
果、電流が流れ出す立ち上り電圧が低くなって電力損失
を十分に小さくすることが可能となる。また禁制帯幅の
小さい半導体材料を用いた場合、真性化温度が低くなる
が、PNPN構造の中には禁制帯幅の大きい半導体材料
で形成されるPN接合が残るので、内側のP型領域又は
N型領域の全域又は一部に禁制帯幅の小さい半導体材料
を用いても動作可能最高温度を低下させることがない。
In the above structure, firstly, a forbidden band is higher than that of a semiconductor material in which at least an entire P-type region or N-type region in the PNPN structure forms an outer P-type region or N-type region. By being formed of a semiconductor material having a small width, the PN junction formed between the outer region and the inner region having a small forbidden band has a smaller barrier against injection of majority carriers from the outer region. For example, when SiGe or Ge is used as the semiconductor material having a small forbidden band and Si is used as the other semiconductor material, the barrier can be 0.5 eV or less. As a result, the rising voltage at which the current flows becomes low and the power loss can be sufficiently reduced. Further, when a semiconductor material having a small forbidden band width is used, the intrinsic temperature becomes low, but a PN junction formed of a semiconductor material having a large forbidden band width remains in the PNPN structure. Even if a semiconductor material having a small forbidden band is used for the whole or a part of the N-type region, the maximum operable temperature is not lowered.

【0009】第2に、具体的には、禁制帯幅の小さい半
導体材料はSiGe又はGeの何れかとし、それ以外の
部分の半導体材料はSiとすることにより、上記のよう
に、電流が流れ出す立ち上り電圧が従来の約1Vから約
0.5V以下になって電力損失を半分以下に下げること
が可能となる。またSi基板上にエピタキシャル成長法
等によりSiGe層等を形成するという製法によりPN
PN構造における内側のP型領域又はN型領域を禁制帯
幅の小さい半導体材料とするという構成を容易に実現す
ることが可能になる。
Secondly, specifically, the semiconductor material having a small forbidden band width is made of either SiGe or Ge, and the other semiconductor material is made of Si, so that the current flows out as described above. It is possible to reduce the power loss to less than half by increasing the rising voltage from about 1 V in the related art to about 0.5 V or less. In addition, a PN is formed by a method of forming a SiGe layer or the like on the Si substrate by an epitaxial growth method or the like.
It is possible to easily realize a configuration in which the inner P-type region or N-type region in the PN structure is made of a semiconductor material having a small forbidden band width.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明の第1実施例を示す図である。な
お、図1及び後述の第2実施例を示す図において前記図
5における部材及び部位と同一ないし均等のものは、前
記と同一符号を以って示し、重複した説明を省略する。
図1(a)に示すように、本実施例ではN型ドリフト領
域におけるP型基板1と接する側の大部分の領域2が禁
制帯幅の小さいSiGeで形成され、それ以外の各領域
はSiで形成されている。禁制帯幅の小さい半導体材料
としてはGeを用いることもできる。したがってP型基
板1とN型ドリフト領域との間には、そのP型基板1と
禁制帯幅の小さいN型ドリフト領域2との間にPN接合
ができている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of the present invention. In FIG. 1 and a diagram showing a second embodiment which will be described later, the same or equivalent members and parts as those in FIG. 5 are designated by the same reference numerals, and the duplicated description will be omitted.
As shown in FIG. 1A, in this embodiment, most of the region 2 in the N-type drift region on the side in contact with the P-type substrate 1 is made of SiGe having a small forbidden band width, and the other regions are made of Si. Is formed by. Ge can also be used as a semiconductor material having a small band gap. Therefore, a PN junction is formed between the P-type substrate 1 and the N-type drift region and between the P-type substrate 1 and the N-type drift region 2 having a small forbidden band width.

【0011】次に、上述のように構成された電導度変調
型トランジスタの作用を説明する。図1(b)は、同図
(a)の構造のエネルギーバンド図を示す。P型基板1
と接する側の大部分のN型ドリフト領域2が禁制帯幅の
小さい半導体材料で形成されているために、そのP型基
板1とN型ドリフト領域2の間にできるPN接合の、P
型基板1からの正孔の注入に対する障壁が小さくなる。
禁制帯幅の小さい半導体材料としてSiGe(又はG
e)が用いられ、それ以外の材料としてSiが用いられ
ているので、その障壁は0.5eV以下にできる。その
結果、電流が流れ出す立ち上り電圧を従来の約1Vから
0.5V以下に減少させることができて電力損失を半分
以下に下げることが可能となる。また、禁制帯幅の小さ
い半導体材料を用いた場合、真性化温度が低くなるが、
図1(a)に示す構造の中には、禁制帯幅の大きいSi
半導体材料で形成されたN型ドリフト領域3とP型ボデ
ィ領域4間及びP型ボディ領域4とN型ソース領域5間
に障壁の高いPN接合が残るので、PNPN構造におけ
る内側領域の一部に禁制帯幅の小さい半導体材料を用い
ても動作可能最高温度は低下することがない。さらに、
禁制帯幅の小さいN型ドリフト領域2の厚さを20〜3
0μm程度にすれば、ソースS、ドレインD間の耐圧は
600V程度になるので、耐圧の点でも装置動作上支障
はない。
Next, the operation of the conductivity modulation type transistor constructed as described above will be described. FIG. 1B shows an energy band diagram of the structure of FIG. P-type substrate 1
Since most of the N-type drift region 2 on the side contacting with is formed of a semiconductor material having a small forbidden band width, a P-type junction P formed between the P-type substrate 1 and the N-type drift region 2 is formed.
The barrier against the injection of holes from the mold substrate 1 becomes smaller.
As a semiconductor material with a narrow band gap, SiGe (or G
Since e) is used and Si is used as the other material, the barrier can be 0.5 eV or less. As a result, the rising voltage at which the current flows can be reduced from the conventional voltage of about 1 V to 0.5 V or less, and the power loss can be reduced to half or less. Also, when a semiconductor material with a narrow band gap is used, the intrinsic temperature becomes low,
Among the structures shown in FIG. 1A, Si having a large forbidden band width is used.
Since a PN junction having a high barrier remains between the N-type drift region 3 and the P-type body region 4 and between the P-type body region 4 and the N-type source region 5, which are formed of a semiconductor material, a part of the inner region in the PNPN structure is present. Even if a semiconductor material having a narrow band gap is used, the maximum operable temperature does not decrease. further,
The thickness of the N-type drift region 2 having a small forbidden band is set to 20 to 3
If it is set to about 0 μm, the breakdown voltage between the source S and the drain D becomes about 600 V, so that there is no problem in operating the device in terms of breakdown voltage.

【0012】図2には、本実施例の電導度変調型トラン
ジスタの製造方法例を示す。まず、高濃度のP型Si基
板1上にエピタキシャル法により禁制帯幅の小さいN型
ドリフト領域2となるN型のSiGe層を形成し、さら
にSiのN型ドリフト領域3であるN型のSi層を形成
する(図2(a))。N型ドリフト領域3の表面側の所
定箇所にP型ボディ領域4を形成し、P型ボディ領域4
の表面側の所定箇所に高濃度のN型ソース領域5を形成
し、さらにゲート酸化膜、ゲート電極を形成する。最後
に所要の金属配線を行う(図2(b))。
FIG. 2 shows an example of a method of manufacturing the conductivity modulation type transistor of this embodiment. First, an N-type SiGe layer to be an N-type drift region 2 having a small forbidden band width is formed on a high-concentration P-type Si substrate 1 by an epitaxial method, and further, an N-type Si region to be an N-type drift region 3 of Si is formed. A layer is formed (FIG. 2A). A P-type body region 4 is formed at a predetermined position on the front surface side of the N-type drift region 3, and the P-type body region 4 is formed.
A high-concentration N-type source region 5 is formed at a predetermined position on the surface side of, and a gate oxide film and a gate electrode are further formed. Finally, required metal wiring is performed (FIG. 2B).

【0013】図3には、本発明の第2実施例を示す。本
実施例では、高濃度のP型基板11も、禁制帯幅の小さ
いN型ドリフト領域2と同様に、禁制帯幅の小さいSi
Ge又はGeで形成されている。このような構成によっ
てもP型基板11とN型ドリフト領域2の間にできるP
N接合の、P型基板11からの正孔の注入に対する障壁
を小さくすることが可能になる。本実施例の製造方法例
としては、P型基板11とN型ドリフト領域2が形成さ
れているSiGe基板と、N型ドリフト領域3となるS
i基板とを直接接合法を用いて接合し、次いでP型ボデ
ィ領域4及びN型ソース領域5を形成するという方法が
ある。
FIG. 3 shows a second embodiment of the present invention. In the present embodiment, the high-concentration P-type substrate 11 also has a small forbidden band width Si similarly to the N-type drift region 2 having a small forbidden band width.
It is formed of Ge or Ge. Even with such a configuration, P formed between the P-type substrate 11 and the N-type drift region 2
It is possible to reduce the barrier of N-junction from injecting holes from the P-type substrate 11. As an example of the manufacturing method of the present embodiment, the P-type substrate 11 and the SiGe substrate in which the N-type drift region 2 is formed, and the S that becomes the N-type drift region 3 are formed.
There is a method in which the i substrate is joined by a direct joining method, and then the P type body region 4 and the N type source region 5 are formed.

【0014】図4には、本発明の第3実施例を示す。本
実施例は、サイリスタに適用したものである。図4
(a)に示すように、サイリスタのPNPN構造におけ
るN型ドリフト領域12,13の一部の領域12を禁制
帯幅の小さいSiGeを用いて構成したものである。図
4(b)には、その静特性を示す。この場合もサイリス
タがターンオンしても障壁分だけの電圧Vf が残るが、
本実施例では、前述の各実施例と同様に、このVf の値
を下げることができる。また、このような構造として
も、前記と同様に、動作可能最高温度を低下させること
がない。
FIG. 4 shows a third embodiment of the present invention. This embodiment is applied to a thyristor. Figure 4
As shown in (a), a part of the N-type drift regions 12, 13 in the PNPN structure of the thyristor is made of SiGe having a small forbidden band width. FIG. 4B shows the static characteristic. Even in this case, even if the thyristor is turned on, the voltage V f for the barrier remains,
In this embodiment, the value of V f can be lowered as in the above-mentioned embodiments. Further, even with such a structure, the maximum operable temperature is not lowered as in the above case.

【0015】なお、以上述べた電導度変調型トランジス
タの各実施例では、Nチャネル型のものについて説明し
たが、Pチャネル型のものにも適用できる。この場合ド
リフト領域はP型となる。
In each of the embodiments of the conductivity modulation type transistor described above, the N channel type has been described, but the present invention can be applied to the P channel type. In this case, the drift region becomes P-type.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
第1に、PNPN構造における少なくとも内側のP型領
域又はN型領域の全域又は一部を外側のP型領域又はN
型領域を形成している半導体材料よりも禁制帯幅の小さ
い半導体材料で形成したため、外側領域とその禁制帯幅
の小さい内側領域との間にできるPN接合の、その外側
領域からの多数キャリア注入に対する障壁が小さくなっ
て電流が流れ出す立ち上り電圧が低くなり、電力損失を
十分に小さくすることができる。また禁制帯幅の小さい
半導体材料を用いた場合真性化温度が低くなるが、PN
PN構造の中には禁制帯幅の大きい半導体材料で形成さ
れるPN接合が残るので内側のP型領域又はN型領域の
全域又は一部に禁制帯幅の小さい半導体材料を用いても
動作可能最高温度は低下することがない。
As described above, according to the present invention,
First, all or part of at least the inner P-type region or N-type region in the PNPN structure is to be the outer P-type region or N-type region.
Since a semiconductor material having a band gap smaller than that of the semiconductor material forming the mold region is used, a majority carrier is injected from the outer region of a PN junction formed between the outer region and the inner region having a smaller band gap. The barrier against voltage becomes small and the rising voltage at which the current flows becomes low, and the power loss can be made sufficiently small. When a semiconductor material with a small forbidden band is used, the intrinsic temperature decreases, but
Since a PN junction formed of a semiconductor material with a large forbidden band remains in the PN structure, it is possible to operate even if a semiconductor material with a small forbidden band is used for all or part of the inner P-type region or N-type region. The maximum temperature never drops.

【0017】第2に、禁制帯幅の小さい半導体材料はS
iGe又はGeの何れかとし、それ以外の部分の半導体
材料はSiとしたため、電流が流れ出す立ち上り電圧を
従来の約1Vから約0.5V以下にすることができて電
力損失を半分以下まで十分に下げることができる。ま
た、例えばSi基板上にエピタキシャル成長法等により
SiGe層等を形成するという製法により、PNPN構
造における内側のP型領域又はN型領域を禁制帯幅の小
さい半導体材料とするという構成を容易に実現すること
ができる。
Secondly, the semiconductor material having a small forbidden band width is S
Since iGe or Ge is used and the semiconductor material of the other portions is Si, the rising voltage at which the current flows can be reduced from about 1 V in the past to about 0.5 V or less, and the power loss can be sufficiently reduced to less than half. Can be lowered. Further, for example, by a manufacturing method in which a SiGe layer or the like is formed on a Si substrate by an epitaxial growth method or the like, a structure in which the inner P-type region or N-type region in the PNPN structure is made of a semiconductor material having a small forbidden band width can be easily realized. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電導度変調型トランジスタの第1
実施例を示す縦断面図及びエネルギーバンド図である。
FIG. 1 is a first conductivity modulation transistor according to the present invention.
It is a longitudinal section and an energy band figure showing an example.

【図2】上記第1実施例の製造方法の一例を示す工程図
である。
FIG. 2 is a process drawing showing an example of the manufacturing method of the first embodiment.

【図3】本発明の第2実施例を示す縦断面図である。FIG. 3 is a vertical sectional view showing a second embodiment of the present invention.

【図4】本発明の第3実施例を示す縦断面図及び静特性
を示す図である。
FIG. 4 is a longitudinal sectional view showing a third embodiment of the present invention and a diagram showing static characteristics.

【図5】従来の電導度変調型トランジスタの縦断面図で
ある。
FIG. 5 is a vertical cross-sectional view of a conventional conductivity modulation type transistor.

【図6】上記従来例の静特性及びエネルギーバンド図で
ある。
FIG. 6 is a static characteristic and energy band diagram of the conventional example.

【符号の説明】[Explanation of symbols]

1 P型基板 2 禁制帯幅の小さい半導体材料で形成されたN型ドリ
フト領域 3 禁制帯幅の大きい半導体材料部分のN型ドリフト領
域 4 P型ボディ領域 5 N型ソース領域 11 禁制帯幅の小さい半導体材料で形成されたP型基
1 P-type substrate 2 N-type drift region formed of a semiconductor material having a small forbidden band 3 N-type drift region of a semiconductor material having a large forbidden band 4 P-type body region 5 N-type source region 11 Small forbidden band P-type substrate made of semiconductor material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 PNPN構造を有する電導度変調型トラ
ンジスタにおいて、前記PNPN構造における少なくと
も内側のP型領域又はN型領域の全域又は一部を、外側
のP型領域又はN型領域を形成している半導体材料より
も禁制帯幅の小さい半導体材料で形成してなることを特
徴とする電導度変調型トランジスタ。
1. A conductivity modulation type transistor having a PNPN structure, wherein at least an inner P-type region or an N-type region in the PNPN structure is entirely or partially formed to form an outer P-type region or an N-type region. A conductivity modulation type transistor, characterized by being formed of a semiconductor material having a band gap smaller than that of the existing semiconductor material.
【請求項2】 前記禁制帯幅の小さい半導体材料はSi
Ge又はGeの何れかであり、該SiGe又はGe以外
の部分の半導体材料はSiであることを特徴とする請求
項1記載の電導度変調型トランジスタ。
2. The semiconductor material having a small forbidden band width is Si
2. The conductivity modulation type transistor according to claim 1, wherein the conductivity modulation transistor is Ge or Ge, and the semiconductor material of the portion other than SiGe or Ge is Si.
JP32939193A 1993-12-27 1993-12-27 Conductivity modulation type transistor Expired - Fee Related JP3198766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32939193A JP3198766B2 (en) 1993-12-27 1993-12-27 Conductivity modulation type transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32939193A JP3198766B2 (en) 1993-12-27 1993-12-27 Conductivity modulation type transistor

Publications (2)

Publication Number Publication Date
JPH07193232A true JPH07193232A (en) 1995-07-28
JP3198766B2 JP3198766B2 (en) 2001-08-13

Family

ID=18220916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32939193A Expired - Fee Related JP3198766B2 (en) 1993-12-27 1993-12-27 Conductivity modulation type transistor

Country Status (1)

Country Link
JP (1) JP3198766B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005723A (en) * 2005-06-27 2007-01-11 Toshiba Corp Semiconductor device
JP2011061226A (en) * 2000-09-29 2011-03-24 Eupec Ges Fuer Leistungshalbleiter Mbh & Co Kg Method for manufacturing body containing semiconductor material having reduced mean free path length, and the body manufactured using the same
CN102760759A (en) * 2011-04-29 2012-10-31 比亚迪股份有限公司 Semiconductor power device
CN102810562A (en) * 2011-05-31 2012-12-05 比亚迪股份有限公司 Semiconductor device and manufacturing method thereof
CN108428714A (en) * 2017-02-13 2018-08-21 富士施乐株式会社 Stepped construction, luminous component, light-emitting device and image forming apparatus
JP2019057648A (en) * 2017-09-21 2019-04-11 富士ゼロックス株式会社 Laminate structure, light-emitting component, print head and image formation apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061226A (en) * 2000-09-29 2011-03-24 Eupec Ges Fuer Leistungshalbleiter Mbh & Co Kg Method for manufacturing body containing semiconductor material having reduced mean free path length, and the body manufactured using the same
US9608128B2 (en) 2000-09-29 2017-03-28 Infineon Technologies Ag Body of doped semiconductor material having scattering centers of non-doping atoms of foreign matter disposed between two layers of opposing conductivities
JP2007005723A (en) * 2005-06-27 2007-01-11 Toshiba Corp Semiconductor device
CN102760759A (en) * 2011-04-29 2012-10-31 比亚迪股份有限公司 Semiconductor power device
WO2012146190A1 (en) * 2011-04-29 2012-11-01 Byd Company Limited Semiconductor power device
CN102810562A (en) * 2011-05-31 2012-12-05 比亚迪股份有限公司 Semiconductor device and manufacturing method thereof
CN108428714A (en) * 2017-02-13 2018-08-21 富士施乐株式会社 Stepped construction, luminous component, light-emitting device and image forming apparatus
CN108428714B (en) * 2017-02-13 2024-01-23 富士胶片商业创新有限公司 Laminated structure, light emitting member, light emitting device, and image forming apparatus
JP2019057648A (en) * 2017-09-21 2019-04-11 富士ゼロックス株式会社 Laminate structure, light-emitting component, print head and image formation apparatus

Also Published As

Publication number Publication date
JP3198766B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
US4928155A (en) Lateral conductivity modulated MOSFET
US4717940A (en) MIS controlled gate turn-off thyristor
US5541430A (en) VDMOS semiconductor device
JP2663679B2 (en) Conductivity modulation type MOSFET
JPH01198076A (en) Semiconductor device
US5397905A (en) Power semiconductor device having an insulated gate field effect transistor and a bipolar transistor
US5286984A (en) Conductivity modulated MOSFET
US4851889A (en) Insulated gate field effect transistor with vertical channel
JP3260944B2 (en) Voltage-driven thyristor and method of manufacturing the same
US6563193B1 (en) Semiconductor device
JPH07193232A (en) Conductivity modulation type transistor
JPS63186475A (en) Conductivity modulation type mosfet
JP2688678B2 (en) Field effect transistor and method of manufacturing the same
KR0135589B1 (en) Semiconductor device
JPS639386B2 (en)
JP2760576B2 (en) Semiconductor device
JPH09213954A (en) Vertical type mos transistor and static induction transistor and mos transistor having trench structure and manufacture of vertical type semiconductor device
JP3196310B2 (en) Semiconductor device
JP3167046B2 (en) Static induction semiconductor device
JPH05347406A (en) Anode hetero-junction structure semiconductor device
JPH10270458A (en) Lateral bipolar transistor
JPH02208976A (en) Conductivity modulation type mosfet
JPS621262B2 (en)
JPH02224274A (en) Conductivity modulation type mos fet
JP2718911B2 (en) Conduction modulation type MOSFET

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090615

LAPS Cancellation because of no payment of annual fees