JPH07186031A - Spherical surface grinding method and device - Google Patents

Spherical surface grinding method and device

Info

Publication number
JPH07186031A
JPH07186031A JP34841993A JP34841993A JPH07186031A JP H07186031 A JPH07186031 A JP H07186031A JP 34841993 A JP34841993 A JP 34841993A JP 34841993 A JP34841993 A JP 34841993A JP H07186031 A JPH07186031 A JP H07186031A
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
layer
rough
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34841993A
Other languages
Japanese (ja)
Inventor
Masaru Saeki
優 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP34841993A priority Critical patent/JPH07186031A/en
Publication of JPH07186031A publication Critical patent/JPH07186031A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform working equivalent to rough working to finishing working in a single process in sperical surface working in an electrolytic improcess dressing grinding method using a cup-shaped grinding wheel by forming a rough grinding wheel layer, a finishing grinding wheel layer, and a rough grinding wheel layer in this order from the inner side of a working surface of a grinding wheel. CONSTITUTION:A cup-shaped grinding wheel 2 having conductivity is formed in a three-layer structure comprising a rough grinding wheel layer 5, a finishing grinding layer 4, and a rough grinding layer 3 provided in this order from the inner side of its working surface. Its shape is formed in such a way that a forward end of the finishing grinding layer 4 is protruded from forward ends of the rough grinding layers 3, 5. The grinding wheel 2 and a work 1 are rotated, and grinding is performed while the work 1 is applied to the grinding wheel 2. Simultaneously as this, weak electricity coolant is supplied from a nozzle, and a voltage is applied between a minus electrode 6 and the processing surface of the grinding wheel 2 by a power source device through the weak electricity coolant. High precision spherical surface working can thus be performed in a single process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス、セラミックス
等の光学素子として用いられる高脆材料を電解インプロ
セスドレッシング研削法により球面研削加工する方法お
よびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for spherically grinding a highly brittle material used as an optical element such as glass or ceramics by an electrolytic in-process dressing grinding method.

【0002】[0002]

【従来の技術】図9は光学素材の球面加工に対して電解
インプロセスドレッシング研削法を適用した特開平3−
43145号公報記載の装置である。同図において、電
解電源36の(+)極はブラシ37を介して、カップ型
の導電性砥石38の外周部に電気的に接続され、同電源
36の(−)極は、研削仕上げ面の曲率RAと近似形状
に形成されると共に、スパークアウト工程において導電
性砥石38の加工面31との間に僅かな隙間を維持する
ようにチャック32の外周に配設される(−)電極33
と接続されている。また、図示されていないクーラント
供給装置により導電性砥石38の加工面31と(−)電
極33の隙間に弱電性クーラント34を供給するノズル
35が配設されている。
2. Description of the Related Art FIG. 9 shows an electro-optical in-process dressing grinding method applied to spherical surface machining of an optical material.
This is the device described in Japanese Patent No. 43145. In the figure, the (+) pole of the electrolytic power supply 36 is electrically connected to the outer peripheral portion of the cup-shaped conductive grindstone 38 via the brush 37, and the (-) pole of the power supply 36 is the ground finish surface. The negative electrode 33 is formed in a shape similar to the curvature RA, and is arranged on the outer circumference of the chuck 32 so as to maintain a slight gap between the conductive grindstone 38 and the processed surface 31 in the spark-out process.
Connected with. Further, a nozzle 35 for supplying the weakly conductive coolant 34 is arranged in the gap between the processed surface 31 of the conductive grindstone 38 and the (-) electrode 33 by a coolant supply device (not shown).

【0003】上記構成において、チャック32と導電性
砥石38を回動し、加工面31をワーク39に当接し研
削加工を行う。このとき弱電性クーラント34を供給し
ながら、(−)電極33とブラシ37に電解電源36に
よって電圧を印加する。これによって、加工中に加工面
31が電解ドレッシングされ球面研削加工が行われる。
In the above structure, the chuck 32 and the conductive grindstone 38 are rotated to bring the machined surface 31 into contact with the work 39 for grinding. At this time, a voltage is applied to the (−) electrode 33 and the brush 37 by the electrolytic power supply 36 while supplying the weakly electric coolant 34. As a result, the processing surface 31 is electrolytically dressed during processing and spherical surface grinding is performed.

【0004】[0004]

【発明が解決しようとする課題】ところで、光学素子と
してのワーク表面粗さを得るため、通常の研削加工にお
いては、粗加工〜仕上げ加工まで数工程にわたる加工を
行う必要がある。これは研削加工においては、加工に用
いる砥石の砥粒径が小さくなるほど、加工可能な速度が
低速になり、且つ砥石が目詰まりしやくなるためであ
る。すなわち粗加工工程では砥粒径の大きい、低メッシ
ュの粗研削用砥石を用いてワークを概略求める形状に創
成加工する。その後、砥粒径の小さい、高メッシュの仕
上げ研削用の砥石によって仕上げ加工を行い所望の表面
粗さとするものである。このような研削加工においては
仕上げ用砥石が目詰まりし易いため、仕上げ加工工程を
更に数工程に分け、徐々にワークを所望の表面粗さに仕
上げる必要がある。
By the way, in order to obtain the surface roughness of a work as an optical element, it is necessary to perform several steps from roughing to finishing in ordinary grinding. This is because, in the grinding process, the smaller the grain size of the grindstone used for the working, the slower the workable speed, and the more likely the grindstone is clogged. That is, in the roughing process, a work is roughly created into a desired shape by using a low-mesh grindstone with a large mesh size and a low mesh. After that, a finishing process is performed by using a grindstone for finish grinding having a small grain size and a high mesh to obtain a desired surface roughness. In such a grinding process, since the finishing grindstone is easily clogged, it is necessary to further divide the finishing process into several steps and gradually finish the work to a desired surface roughness.

【0005】上述した従来の研削装置においては、粗研
削用砥石から仕上げ用研削砥石まで、電解インプロセス
ドレッシングによって砥石が目詰まりすることなく加工
を続けることが可能であるが、通常の研削加工と同様
に、粗研削用砥石による加工では光学素子として用いる
のに十分な加工面粗さを得ることができない。またワー
クの仕上げ加工用として砥粒径の小さい砥石を用いた場
合、加工速度が低下する。したがって従来装置において
も光学素子としてのワークの加工面粗さを得るために
は、通常の加工と同様に数工程にわたる加工を行う必要
がある。
In the above-described conventional grinding apparatus, it is possible to continue processing from rough grinding wheels to finishing grinding wheels by electrolytic in-process dressing without clogging of the grinding wheels. Similarly, processing with a grindstone for rough grinding cannot obtain a processed surface roughness sufficient for use as an optical element. Further, when a grindstone having a small abrasive grain size is used for finishing the work, the processing speed is reduced. Therefore, in the conventional apparatus as well, in order to obtain the processed surface roughness of the work as the optical element, it is necessary to perform several steps of processing as in normal processing.

【0006】以上のように従来装置では高品位な加工仕
上がり面を得るために複数の加工工程が必要となること
から、工程数が多く、加工が面倒で、長時間を要してい
る問題がある。そこで本発明は1工程でしかも短時間で
粗加工〜仕上げ加工までに相当する加工を行うことが可
能な球面研削方法および装置を提供することを目的とす
る。
As described above, since the conventional apparatus requires a plurality of processing steps in order to obtain a high-quality machined surface, the number of steps is large, the processing is troublesome, and it takes a long time. is there. Therefore, it is an object of the present invention to provide a spherical grinding method and apparatus capable of performing processing corresponding to roughing to finishing in one step and in a short time.

【0007】[0007]

【課題を解決するための手段および作用】本発明の球面
研削方法は、回転駆動されるカップ型研削砥石を回転自
在なワークホルダに保持されたワーク表面に当接し、電
解インプロセスドレッシング研削法によって球面加工を
行う方法において、前記カップ型研削砥石の加工面の内
側から順に粗研削用砥石層、仕上げ研削用砥石層、粗研
削用砥石層を形成し、このカップ型研削砥石の各層の電
解溶出量を制御することにより仕上げ研削用砥石層の加
工面先端が他の砥石層の加工面先端よりも突出した状態
を維持しながら加工することを特徴とする。
According to the spherical grinding method of the present invention, a cup-shaped grinding wheel that is driven to rotate is brought into contact with the surface of a work held by a rotatable work holder, and the electrolytic in-process dressing grinding method is used. In the method of performing spherical surface processing, a grinding wheel layer for rough grinding, a grinding wheel layer for finish grinding, and a grinding wheel layer for rough grinding are sequentially formed from the inside of the processing surface of the cup-type grinding wheel, and electrolytic dissolution of each layer of this cup-type grinding wheel is performed. By controlling the amount, it is possible to perform processing while maintaining a state in which the processed surface tip of the grinding wheel layer for finish grinding protrudes from the processed surface tips of other grinding wheel layers.

【0008】また本発明の球面研削装置は、ワークを保
持する回転自在なワークホルダと、前記ワークの表面に
当接した状態で回転駆動されるカップ型研削砥石とを備
え、電解インプロセスドレッシング研削法によって球面
加工を行う装置において、前記カップ型研削砥石が加工
面の内側から順に粗研削用砥石層、仕上げ研削用砥石
層、粗研削用砥石層の3層構造に形成されると共に、電
解を行うための電極における砥石の対向面と前記各層の
加工面との間に流れる電流量を各層でそれぞれ独立して
制御する手段を具備していることを特徴とする。
Further, the spherical grinding apparatus of the present invention comprises a rotatable work holder for holding a work and a cup-type grinding wheel which is driven to rotate while being in contact with the surface of the work, and electrolytic in-process dressing grinding is performed. In a device for performing spherical surface processing by a method, the cup-type grinding wheel is formed into a three-layer structure of a grinding wheel layer for rough grinding, a grinding wheel layer for finish grinding, and a grinding wheel layer for rough grinding in order from the inside of the processing surface, and electrolysis is performed. It is characterized by comprising means for independently controlling the amount of current flowing between the facing surface of the grindstone in the electrode for performing and the processed surface of each layer.

【0009】図1は本発明の基本構成を示し、ワーク1
の表面にカップ型の研削砥石2が回転駆動状態で当接し
ており、ワーク1は矢印X方向に、研削砥石2は矢印Y
方向に移動可能となっている。研削砥石2は加工面の内
側から、粗研削用砥石層5、仕上げ研削用砥石層4、粗
研削用砥石層3の3層構造となっており、仕上げ研削用
砥石層4の先端は粗研削用砥石層3,5の先端より突出
した状態となっている。また研削砥石2に対して電解イ
ンプロセスドレッシング研削が可能となっている。これ
に加えて電解インプロセスドレッシング用の(−)電極
6の粗研削砥石層対向部7と仕上げ研削砥石層対向部8
がそれぞれ境界部分で絶縁物9を介して独立しており、
これにより粗研削用砥石層3,5の加工面先端に流れる
電流量と仕上げ研削用砥石層4の加工面先端に流れる電
流量を独立して設定することが可能となっている。
FIG. 1 shows a basic structure of the present invention, which is a work 1
The cup-shaped grinding wheel 2 is in contact with the surface of the workpiece in a rotationally driven state. The workpiece 1 is in the direction of arrow X, and the grinding wheel 2 is in the direction of arrow Y.
It can be moved in any direction. The grinding wheel 2 has a three-layer structure of a grinding wheel layer 5 for rough grinding, a grinding wheel layer 4 for finish grinding, and a grinding wheel layer 3 for rough grinding from the inside of the processed surface, and the tip of the grinding wheel layer 4 for finish grinding is rough ground. It is in a state of protruding from the tips of the grinding wheel layers 3 and 5. Further, electrolytic in-process dressing grinding is possible for the grinding wheel 2. In addition to this, the rough grinding wheel layer facing portion 7 and the finish grinding wheel layer facing portion 8 of the (-) electrode 6 for electrolytic in-process dressing are added.
Are independent of each other through the insulator 9 at the boundary portion,
This makes it possible to independently set the amount of current flowing at the tip of the machined surface of the rough grinding wheel layers 3 and 5 and the amount of current flowing at the tip of the machined surface of the finish grinding wheel layer 4.

【0010】図2は本発明の研削状態を砥石軸方向から
ワーク軸方向を見た図、図3は図2におけるA−A′断
面図である。
FIG. 2 is a view of the grinding state of the present invention viewed from the grindstone axis direction to the work axis direction, and FIG. 3 is a sectional view taken along the line AA 'in FIG.

【0011】この場合の球面加工は、図3に示すよう
に、砥石加工面の外側面a1 と砥石加工面の内側面b2
による加工、および砥石加工面の底面cによる加工の複
合で行われる。すなわち、ワーク1がR0 方向に回転
し、カップ型研削砥石2が矢印Y方向に、またはワーク
1が矢印X方向に移動することによって加工が行われる
ため、まず砥石外周部a1 においてワーク1が研削加工
され、続いて砥石底面部cによって加工される。これに
続いてワーク1のR0 方向の回転が進と同時にX方向ま
たはY方向の移動も行われるため、ワーク1と砥石内周
部b2 の接触による加工と、これに続く砥石底面部cに
よる加工も行われる。またX方向またはY方向の切込み
が停止したのち、ワーク1がR0 方向に最低1回転した
ところで加工(スパークアウト加工)が完了するので、
砥石底面部cによって加工された加工面が研削仕上げ面
となる。
In the spherical surface machining in this case, as shown in FIG. 3, an outer surface a 1 of the grindstone processed surface and an inner surface b 2 of the grindstone processed surface are used.
And processing by the bottom surface c of the grindstone processing surface are combined. That is, since the work 1 is rotated in the R 0 direction and the cup-shaped grinding wheel 2 moves in the arrow Y direction or the work 1 moves in the arrow X direction, the work 1 is first processed on the whetstone outer peripheral portion a 1 . Is grinded and subsequently grinded by the grindstone bottom surface c. Following this, the rotation of the work 1 in the R 0 direction advances and simultaneously moves in the X direction or the Y direction. Therefore, machining by contact between the work 1 and the grindstone inner peripheral portion b 2 and subsequent grindstone bottom surface c Also processed by. Further, after the cutting in the X direction or the Y direction is stopped, the machining (spark-out machining) is completed when the work 1 makes at least one revolution in the R 0 direction.
The machined surface machined by the grindstone bottom surface portion c serves as a finish surface for grinding.

【0012】また前記球面加工においては砥石の単位面
積当たりの加工面に要求される研削加工能率は、砥石加
工面の底面cに対して砥石側面a,bが2〜6倍の能率
が要求される。
In the spherical surface machining, the grinding efficiency required for the machined surface per unit area of the grindstone is such that the side surfaces a and b of the grindstone are 2 to 6 times more efficient than the bottom surface c of the grindstone processed surface. It

【0013】したがって上記手段によれば加工中に高能
率な加工を要求される砥石内外の側面部では粗加工用砥
石によって加工が行われ、低能率の加工に作用する砥石
底面部では、仕上げ研削用砥石によって高精度な仕上げ
加工が行われるため、加工完了後のワーク表面粗さは仕
上げ用砥石による高精度な加工面となる。
Therefore, according to the above means, the inner and outer side surfaces of the grindstone, which requires high-efficiency machining during machining, are machined by the roughing grindstone, and the bottom surface of the grindstone, which acts on low-efficiency machining, is subjected to finish grinding. Since the finishing grindstone performs high-precision finishing, the surface roughness of the work after completion of machining becomes a highly-precision machined surface by the finishing grindstone.

【0014】また粗研削用砥石層と仕上げ研削用砥石層
に流れる電流量が別々に設定され、各々の砥石の電解溶
出量が最適になるよう制御できるので粗研削用砥石層の
加工面先端に対する仕上げ研削用砥石層の加工面先端の
突出量が常に安定して維持されており、安定して1工程
で高能率に高精度な球面加工が行える。
Further, the amount of current flowing through the grinding wheel layer for rough grinding and the grinding wheel layer for finish grinding are set separately, and it is possible to control so that the electrolytic elution amount of each grinding wheel is optimal, so that the grinding surface of the grinding wheel layer for rough grinding is applied to The protrusion amount of the processing surface tip of the grinding wheel layer for finish grinding is always maintained stable, and stable and highly accurate spherical surface processing can be performed in one process.

【0015】[0015]

【実施例1】図4は本発明の実施例1の加工装置を示
す。ワーク10はホルダー11に保持されており、回転
Cを中心として図示しない駆動装置によって回転駆動自
在となっている。研削砥石12はスピンドル23を介し
て図示しない駆動装置により回転軸Bを中心として回転
自在となっている。
First Embodiment FIG. 4 shows a processing apparatus according to the first embodiment of the present invention. The work 10 is held by a holder 11 and is rotatable about a rotation C by a driving device (not shown). The grinding wheel 12 is rotatable about a rotation axis B by a driving device (not shown) via a spindle 23.

【0016】導電性を有する研削砥石12の加工面は、
ダイヤモンド粉末などの砥粒とCu、Sn、Fe等の金
属粉末を配合し、熱処理した焼結合金により構成されて
おり、その中輪帯を高メッシュ(#4000)な仕上げ
研削用砥石13によって形成されると共に、この仕上げ
研削用砥石部の内側、外側を低メッシュ(#400)な
粗研削用砥石14によって形成されており、仕上げ研削
用砥石の加工面の先端は、粗研削用砥石の加工面の先端
に対して4〜15μm突出している。
The processed surface of the grinding wheel 12 having conductivity is
Abrasive grains such as diamond powder and metal powders such as Cu, Sn, and Fe are mixed and composed of a heat-treated sintered alloy, and the middle ring zone is formed by a high-mesh (# 4000) grinding wheel 13 for finish grinding. At the same time, the inner and outer sides of the finishing grinding wheel portion are formed by the low-mesh (# 400) rough grinding wheel 14, and the tip of the processing surface of the finishing grinding wheel is the processing of the rough grinding wheel. It projects 4 to 15 μm with respect to the tip of the surface.

【0017】また、矢印X方向のワーク10の移動と矢
印Y方向のスピンドル23の移動は、図示しない駆動装
置によって任意に設定、移動が可能となっている。装置
外に設けた電源装置15の(+)電極はブラシ16を介
して研削砥石12の外周部に電気的に接続されている。
(−)電極17の粗研削用砥石の対向部18と仕上げ研
削用砥石の対向部19がそれぞれの境界線上で絶縁物2
0を介して独立しているため、粗研削用砥石14の加工
面先端に流れる電流量と仕上げ研削用砥石13の加工面
先端に流れる電流量を独立して設定することが可能であ
る。21は、図示しないクーラント供給装置によって、
加工域に弱電性クーラント22を供給するためのノズル
である。この加工装置による研削加工は、研削砥石12
とワーク11を回動し、ワーク11を矢印Xの方向に、
またはスピンドル23を矢印Y方向へ移動することによ
り研削砥石12に対してワーク10を当接させて行われ
ると同時に、ノズル21から弱電性クーラント22を供
給し、電源装置15によって(−)電極17と研削砥石
12の加工面の間に弱電性クーラント22を介して電圧
を印加する。
The movement of the work 10 in the arrow X direction and the movement of the spindle 23 in the arrow Y direction can be arbitrarily set and moved by a driving device (not shown). The (+) electrode of the power supply device 15 provided outside the device is electrically connected to the outer peripheral portion of the grinding wheel 12 via the brush 16.
(−) The facing portion 18 of the grindstone for the rough grinding and the facing portion 19 of the grindstone for the finish grinding of the electrode 17 are insulated from each other on the boundary line.
Since it is independent via 0, it is possible to independently set the amount of current flowing at the tip of the machined surface of the rough grinding wheel 14 and the amount of current flowing at the tip of the machined surface of the finish grinding wheel 13. 21 is a coolant supply device (not shown)
It is a nozzle for supplying the weak electric coolant 22 to the processing area. Grinding with this processing device
And the work 11 is rotated to move the work 11 in the direction of the arrow X,
Alternatively, the work piece 10 is brought into contact with the grinding wheel 12 by moving the spindle 23 in the direction of the arrow Y, and at the same time, the weak electric coolant 22 is supplied from the nozzle 21 and the (−) electrode 17 is supplied by the power supply device 15. A voltage is applied between the machined surface of the grinding wheel 12 and the machined surface of the grinding wheel 12 via the weakly electric coolant 22.

【0018】本実施例によれば研削砥石12の加工面が
常に安定してドレスされると同時に、粗研削用砥石14
の加工面の先端に対する仕上げ研削用砥石13の加工面
の先端の突出量が常に安定して維持されているため、安
定して1工程で高能率に高精度な球面加工を行うことが
可能である。また本実施例においては仕上げ用研削砥石
と粗研削用砥石のメッシュの組み合わせを求めるワーク
の仕上げ加工面粗さに応じて選定することでさまざまな
仕上げ加工面を得ることが可能である。
According to this embodiment, the machined surface of the grinding wheel 12 is always stably dressed, and at the same time the rough grinding wheel 14 is used.
Since the protrusion amount of the tip of the work surface of the finish grinding grindstone 13 relative to the tip of the work surface is constantly maintained, it is possible to stably perform highly efficient and highly accurate spherical surface machining in one step. is there. Further, in the present embodiment, various finishing surfaces can be obtained by selecting a combination of the finishing grinding wheel and the rough grinding wheel mesh according to the finish surface roughness of the workpiece to be sought.

【0019】[0019]

【実施例2】図5は本発明の実施例2の研削装置を示
し、実施例1と同じ部材には同一符号を付すことによ
り、その説明は省略する。
[Embodiment 2] FIG. 5 shows a grinding apparatus according to Embodiment 2 of the present invention. The same members as those in Embodiment 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0020】本実施例においては、(−)電極24の粗
研削用砥石14の加工面に対向する面と、仕上げ研削用
砥石13の加工面に対向する面の境界に段差が設けてあ
る。また(−)電極は実施例1と異なり一体構造となっ
ており、電解電源25の(−)極と接続されている。
In this embodiment, a step is provided at the boundary between the surface of the (-) electrode 24 facing the processed surface of the rough grinding wheel 14 and the surface facing the processed surface of the finish grinding wheel 13. Further, unlike the first embodiment, the (-) electrode has an integral structure and is connected to the (-) pole of the electrolytic power supply 25.

【0021】本実施例によれば、(−)電極に段差を設
けたことで粗研削用砥石と仕上げ研削用砥石のそれぞれ
の加工面と(−)電極間の距離を個別に設定することが
可能である。したがって(−)電極と各砥石加工面間の
電気抵抗を別々に設定できるので、各砥石の必要な電解
ドレス量に適合する電解電流量を設定することができ
る。したがって研削砥石の加工面が常に安定してドレス
されると同時に、粗研削用砥石の加工面先端に対する仕
上げ研削用砥石の加工面先端の突出量が、(−)電極の
形状設定という単純な構成で安定して維持されるため、
1工程で高能率に高精度な球面加工を安定して行うこと
が可能である。
According to the present embodiment, by providing the step on the (-) electrode, the distance between the (-) electrode and the respective processed surfaces of the rough grinding wheel and the finish grinding wheel can be individually set. It is possible. Therefore, since the electric resistance between the (-) electrode and each grindstone processing surface can be set separately, it is possible to set the electrolytic current amount that matches the required electrolytic dressing amount of each grindstone. Therefore, the machined surface of the grinding wheel is always stably dressed, and at the same time, the protrusion amount of the machined surface tip of the finishing grinding wheel relative to the machined surface tip of the rough grinding wheel is a simple configuration of (-) electrode shape setting. Because it is stably maintained at
It is possible to stably perform highly efficient and highly accurate spherical surface machining in one process.

【0022】[0022]

【実施例3】図6は本発明の実施例3の研削装置を示
し、図7は本実施例における(−)電極配設部を研削砥
石の加工面上方からみた図を示す。本実施例において実
施例1と同じ部材には同一符号を付して、その説明を省
略する。本実施例においては、(−)電極26の仕上げ
研削用砥石13の加工面に対向する部分の面積に対して
粗研削用砥石14の加工面に対向する部分の面積が大き
くなっている。このような本実施例によれば実施例2の
加工装置と比較して(−)電極形状が単純であるため
に、(−)電極の配設を簡単に行うことができると共
に、それぞれの砥石に対向する(−)電極面積が最適の
ドレス量を維持できるように設定できるため、実施例1
と同様に安定して1工程で高能率に高精度な球面加工を
行うことが可能である。
[Third Embodiment] FIG. 6 shows a grinding apparatus according to a third embodiment of the present invention, and FIG. 7 shows a view of the (-) electrode arrangement portion in the present embodiment as seen from above the processing surface of the grinding wheel. In this embodiment, the same members as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, the area of the portion of the (-) electrode 26 facing the processed surface of the finish grinding wheel 13 is larger than the area of the portion of the rough grinding wheel 14 facing the processed surface. According to the present embodiment, since the shape of the (-) electrode is simpler than that of the processing apparatus of the second embodiment, it is possible to easily dispose the (-) electrode and the respective grindstones. Since the area of the (−) electrode facing to (1) can be set so as to maintain the optimum dressing amount,
Similarly to the above, it is possible to stably perform highly efficient and highly accurate spherical surface machining in one step.

【0023】[0023]

【実施例4】図8は本発明の実施例4の研削装置を示
し、実施例1および2と同じ部材には同一符号を付し
て、その説明を省略する。
Fourth Embodiment FIG. 8 shows a grinding apparatus according to a fourth embodiment of the present invention. The same members as those in the first and second embodiments are designated by the same reference numerals and the description thereof will be omitted.

【0024】導電性を有する研削砥石30の加工面は、
ダイヤモンド粉末などの砥粒とCu、Sn、Fe等の金
属粉末と非導電性の樹脂材料を配合し、熱処理した焼結
合金により構成されており、その中輪帯を構成する砥石
は粒径4μmの微細砥粒と樹脂材料を多く含んだ仕上げ
研削用砥石(#4000)29によって形成されると共
に、この仕上げ研削用砥石の内側、外側が粒径35μm
の粗い砥粒と金属粉末を多く含んだ粗研削用砥石(#4
00)28によって形成されている。
The processed surface of the grinding wheel 30 having conductivity is
Abrasive grains such as diamond powder, metal powders such as Cu, Sn, and Fe, and a non-conductive resin material are mixed and composed of a heat-treated sintered alloy. Of the fine grinding particles and a large amount of resin material for finishing grinding (# 4000) 29, and the inner and outer sides of the finishing grinding stone have a particle diameter of 35 μm.
Rough grinding stone containing a large amount of coarse abrasive grains and metal powder (# 4
00) 28.

【0025】したがって金属粉末を多く含んだ粗研削用
砥石28は、仕上げ研削用砥石29に比較して導電性が
高くなっている。また仕上げ研削用砥石29の加工面の
先端は、粗研削用砥石28の加工面の先端に対して4〜
15μm突出している。
Therefore, the grindstone 28 for rough grinding containing a large amount of metal powder has higher conductivity than the grindstone 29 for finish grinding. The tip of the processed surface of the grindstone 29 for finish grinding is 4 to 4 times the tip of the processed surface of the grindstone 28 for rough grinding.
It projects by 15 μm.

【0026】本実施例によれば粗研削用砥石28と仕上
げ用研削砥石29の導電性を砥石製作時に自由の設定で
きるため、実施例2および3と比較して(−)電極の形
状を特殊な形状にしなくとも、電解作用による粗研削用
砥石28の加工面の先端に対する仕上げ研削用砥石29
の加工面先端の突出量を最適に維持することができる。
したがって、実施例1と同様に安定して1工程で高能率
に高精度な球面加工を行うことが可能である。
According to the present embodiment, the conductivity of the rough grinding wheel 28 and the finishing grinding wheel 29 can be freely set at the time of manufacturing the grinding wheel. Therefore, compared with the second and third embodiments, the shape of the (-) electrode is special. Even if it is not formed into a different shape, a grinding wheel 29 for finish grinding is applied to the tip of the processing surface of the grinding wheel 28 for rough grinding by electrolytic action.
It is possible to optimally maintain the protrusion amount of the processed surface tip.
Therefore, similarly to the first embodiment, it is possible to stably perform highly efficient and highly accurate spherical surface machining in one step.

【発明の効果】以上説明したように本発明によれば、光
学素子などの球面加工を高精度な研削加工が1工程で短
時間で行うことができ、加工のサイクルタイム短縮およ
び工程数の削減が可能である。
As described above, according to the present invention, it is possible to perform high-precision grinding of spherical surfaces of optical elements and the like in one step in a short time, thus shortening the processing cycle time and the number of steps. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成の部分破断側面図。FIG. 1 is a partially cutaway side view of the basic configuration of the present invention.

【図2】本発明の研削方法を示す平面図。FIG. 2 is a plan view showing a grinding method of the present invention.

【図3】図2のA−A′線断面図。FIG. 3 is a sectional view taken along the line AA ′ of FIG.

【図4】実施例1の部分破断側面図。FIG. 4 is a partially cutaway side view of the first embodiment.

【図5】実施例2の部分破断側面図。FIG. 5 is a partially cutaway side view of the second embodiment.

【図6】実施例3の部分破断側面図。FIG. 6 is a partially cutaway side view of the third embodiment.

【図7】実施例3の電極部分の平面図。FIG. 7 is a plan view of an electrode portion of Example 3.

【図8】実施例4の部分破断側面図。FIG. 8 is a partially cutaway side view of the fourth embodiment.

【図9】従来装置の側面図FIG. 9 is a side view of a conventional device.

【符号の説明】[Explanation of symbols]

1 ワーク 2 研削砥石 3 粗研削用砥石層 4 仕上げ研削用砥石層 5 粗研削用砥石層 6 電極 9 絶縁体 1 Work 2 Grinding Wheel 3 Grinding Wheel Layer for Rough Grinding 4 Grinding Wheel Layer for Finishing Grinding 5 Grinding Wheel Layer for Rough Grinding 6 Electrode 9 Insulator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転駆動されるカップ型研削砥石を回転
自在なワークホルダに保持されたワーク表面に当接し、
電解インプロセスドレッシング研削法によって球面加工
を行う方法において、前記カップ型研削砥石の加工面の
内側から順に粗研削用砥石層、仕上げ研削用砥石層、粗
研削用砥石層を形成し、このカップ型研削砥石の各層の
電解溶出量を制御することにより仕上げ研削用砥石層の
加工面先端が他の砥石層の加工面先端よりも突出した状
態を維持しながら加工することを特徴とする球面研削方
法。
1. A cup-type grinding wheel which is driven to rotate is brought into contact with a surface of a work held by a rotatable work holder,
In the method of performing spherical surface processing by electrolytic in-process dressing grinding method, a grinding wheel layer for rough grinding, a grinding wheel layer for finish grinding, and a grinding wheel layer for rough grinding are sequentially formed from the inside of the processing surface of the cup-type grinding wheel, and this cup type is used. A spherical grinding method characterized by performing machining while maintaining a state in which the processed surface tip of the grinding wheel layer for finish grinding protrudes from the processed surface tips of other grinding wheel layers by controlling the electrolytic dissolution amount of each layer of the grinding wheel. .
【請求項2】 ワークを保持する回転自在なワークホル
ダと、前記ワークの表面に当接した状態で回転駆動され
るカップ型研削砥石とを備え、電解インプロセスドレッ
シング研削法によって球面加工を行う装置において、前
記カップ型研削砥石が加工面の内側から順に粗研削用砥
石層、仕上げ研削用砥石層、粗研削用砥石層の3層構造
に形成されると共に、電解を行うための電極における砥
石の対向面と前記各層の加工面との間に流れる電流量を
各層でそれぞれ独立して制御する手段を具備しているこ
とを特徴とする球面研削装置。
2. A device for performing spherical surface machining by an electrolytic in-process dressing grinding method, comprising a rotatable work holder for holding a work, and a cup-type grinding wheel that is driven to rotate while being in contact with the surface of the work. In the above, the cup-type grinding wheel is formed into a three-layer structure of a grinding wheel layer for rough grinding, a grinding wheel layer for finish grinding, and a grinding wheel layer for rough grinding in order from the inside of the processed surface, and the grinding wheel of the electrode for performing electrolysis is A spherical grinding machine comprising means for independently controlling the amount of current flowing between the facing surface and the processed surface of each layer in each layer.
JP34841993A 1993-12-27 1993-12-27 Spherical surface grinding method and device Pending JPH07186031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34841993A JPH07186031A (en) 1993-12-27 1993-12-27 Spherical surface grinding method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34841993A JPH07186031A (en) 1993-12-27 1993-12-27 Spherical surface grinding method and device

Publications (1)

Publication Number Publication Date
JPH07186031A true JPH07186031A (en) 1995-07-25

Family

ID=18396888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34841993A Pending JPH07186031A (en) 1993-12-27 1993-12-27 Spherical surface grinding method and device

Country Status (1)

Country Link
JP (1) JPH07186031A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689254A (en) * 2011-03-24 2012-09-26 Hoya株式会社 Grinding processing method of optical glass and manufacturing method of optical glass lens
CN102689251A (en) * 2011-03-24 2012-09-26 Hoya株式会社 Grinding processing method of optical glass and manufacturing method of optical glass lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689254A (en) * 2011-03-24 2012-09-26 Hoya株式会社 Grinding processing method of optical glass and manufacturing method of optical glass lens
CN102689251A (en) * 2011-03-24 2012-09-26 Hoya株式会社 Grinding processing method of optical glass and manufacturing method of optical glass lens

Similar Documents

Publication Publication Date Title
JP3344558B2 (en) Electric dressing grinding method and apparatus
JPH0343145A (en) Grinding device
JP3530562B2 (en) Lens grinding method
JP2838314B2 (en) Electrolytic interval dressing grinding method
JPH07186031A (en) Spherical surface grinding method and device
JP3294347B2 (en) Electrolytic in-process dressing grinding method and apparatus
JP3078404B2 (en) Electrolytic dressing grinding method
JP3194624B2 (en) Grinding method and apparatus
JPH11262860A (en) Extremely precise grinding method and device
JP2001062633A (en) Curved surface machining method and device
JPH07328907A (en) Spherical surface creative processing method and device thereof
JPH07195261A (en) Spherical grinding method and device thereof
JPH06335853A (en) Grinding and device therefor
JPH06114732A (en) Grinding wheel side surface shaping method by on-machine discharge truing method
JPH06344254A (en) Grinding method and apparatus
Peng et al. Grinding and dressing tools for precision machines
JP3477260B2 (en) Grinding / polishing whetstone and processing method using the whetstone
JPH06328358A (en) Grinding method and its device
JPH07186029A (en) Spherical surface formation working method and device
JP3397807B2 (en) Electrolytic in-process dressing grinding method and apparatus
JP3356693B2 (en) Ultra-precision grinding method and grinding device
JPH0957622A (en) Grinding method with in-process electrolytic dressing
JPH06170710A (en) Method and device for grinding spherical surface
JPH071310A (en) Grinding machine
JP3194621B2 (en) Method and apparatus for generating spherical surface

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030128