JPH07195261A - Spherical grinding method and device thereof - Google Patents

Spherical grinding method and device thereof

Info

Publication number
JPH07195261A
JPH07195261A JP35202393A JP35202393A JPH07195261A JP H07195261 A JPH07195261 A JP H07195261A JP 35202393 A JP35202393 A JP 35202393A JP 35202393 A JP35202393 A JP 35202393A JP H07195261 A JPH07195261 A JP H07195261A
Authority
JP
Japan
Prior art keywords
grinding wheel
grinding
work
grindstone
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35202393A
Other languages
Japanese (ja)
Inventor
Masaru Saeki
優 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP35202393A priority Critical patent/JPH07195261A/en
Publication of JPH07195261A publication Critical patent/JPH07195261A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform a job for high speed and highly accurate spherical grinding in a short time by forming a cup-shaped grinding wheel with a two-layered stone made up of installing a rough grinding wheel in an outer ring zone on a machined surface and a fine grinding wheel in the inner ring zone, respective ly. CONSTITUTION:During grinding operation, at the bottom surface and inside surface of a grinding wheel 1, a finish grinding wheel 2 alone is conductive to grinding operation. Likewise at an outer surface of the grinding wheel 1, most of infeed rate d1 out of infeed rates of the grinding wheel 1 to a work 4 during rotation at a revolution of 50 to 500rpm are performed by a rough grinding wheel 3. Therefore, on the wheel outer surface where the highest machining efficiency is required in the grinding operation, machining is mainly carried out with the rough grinding wheel 3 being high in this machining efficiency, another machining by a wheel bottom surface determining the accuracy of a machined surface of the work is carried out by the finish grinding wheel 2. Accordingly, a job for highly accurate spherical creative machining is thus performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス,セラミックス
等の光学素子用高脆材料を曲面加工する方法および装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for processing curved surfaces of highly brittle materials for optical elements such as glass and ceramics.

【0002】[0002]

【従来の技術】レンズ等の光学素子の加工方法として、
刊行物「光学素子加工技術」(光学工業技術協会S5
6.10.10発行)の第197頁「5.1 レンズ生
産工程」欄には、「リセスばり高速研磨」が記載されて
いる。ここには、球面加工工程として、球面研削、精研
削、みがきの3工程が示されている。図7および図8は
適用されるCG(カーブジェネレーター)によるガラス
レンズの従来の球面研削方法を示す。図8はCGによる
球面研削装置の機構の概略を示すものであり、かかる球
面研削装置の既知の例としては、特公昭61−3366
5公報および「光学素子加工技術」(光学工業技術協会
S56.10.10発行)第182頁「4.3.1.2
球面研削盤」に示されている。
2. Description of the Related Art As a method for processing an optical element such as a lens,
Publication "Optical element processing technology" (Optical Technology Association S5
"Recessed flash high-speed polishing" is described in the section "5.1 Lens production process" on page 197 (issued 6.10.10.). Here, as the spherical surface processing step, three steps of spherical surface grinding, fine grinding and polishing are shown. 7 and 8 show a conventional spherical grinding method for a glass lens by a CG (curve generator) applied. FIG. 8 shows the outline of the mechanism of a CG-based spherical grinding device. As a known example of such a spherical grinding device, Japanese Patent Publication No. 61-3366 can be used.
5 publication and "Optical element processing technology" (published by the Optical Industry Technical Association S56.10.10), page 182, "4.3.1.2".
Spherical grinder ".

【0003】図8および図9において、20は曲面半径
Rに創成されるワークであり、コレットチャック22に
よりワーク軸に保持されている。23はワーク軸本体で
あり、ワーク20を2〜10rpmで回転させながら切
込みe′を行うように図示しない機構が組み込まれてい
る。また、ワーク20の肉厚調整のために、ワーク軸部
本体23は図示しないハンドルによりe方向に移動調整
できるようになっている。24は砥石であり、21は砥
石軸である。ワーク20と砥石24との間には図示しな
いクーラント(冷却媒体)が供給される。
In FIG. 8 and FIG. 9, reference numeral 20 denotes a work created with a curved surface radius R, which is held on the work shaft by a collet chuck 22. Reference numeral 23 denotes a work shaft main body, which has a mechanism (not shown) incorporated therein for performing the cutting e'while rotating the work 20 at 2 to 10 rpm. Further, in order to adjust the wall thickness of the work 20, the work shaft main body 23 can be moved and adjusted in the e direction by a handle (not shown). Reference numeral 24 is a grindstone, and 21 is a grindstone shaft. A coolant (cooling medium) (not shown) is supplied between the work 20 and the grindstone 24.

【0004】上記構成では、曲率半径Rのワーク20を
創成する砥石24の加工直径をdとした場合、砥石軸2
1をsinθ=d/2Rに相当する角度θだけ傾けた状
態で、加工直径dがワーク軸中心線とP点で一致するよ
うに、砥石軸21を図示しないハンドルによる砥石軸に
対して直角なb方向に移動調整することにより、所望の
曲率半径R=OPを有した球面を創成できる。
In the above structure, when the machining diameter of the grindstone 24 for creating the work 20 having the radius of curvature R is d, the grindstone shaft 2
1 is tilted by an angle θ corresponding to sin θ = d / 2R, the grindstone shaft 21 is perpendicular to the grindstone shaft by a handle (not shown) so that the machining diameter d coincides with the work shaft centerline at point P. By adjusting the movement in the b direction, a spherical surface having a desired radius of curvature R = OP can be created.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の方法で
は、みがき工程へ投入可能な高品位な研削仕上面を得る
ために2つの工程が存在することから、加工コスト削減
ニーズへの対応には限界があった。図9,図10,図1
1は上述した従来研削装置におけるワークと砥石の接触
部を説明しており、図9は砥石軸方向からワーク軸方向
を見た図であり、図10は図9のL−L線断面図、図1
1は図9のM−M線断面図であり、25は研削砥石の加
工面、26はワークを示す。この球面加工は、砥石加工
面の外側面a、内側面bによる加工と、砥石加工面の底
面cによる加工の複合で行われる。また、従来の加工法
においては、加工砥石のメッシュとして通常#200〜
400を使用し、例えばワーク外径φ30mm、砥石外
径φ20mm、図7におけるe′方向の切込み速度を2
mm/min、ワークの回転速度を10rpmとした場
合、砥石の加工面に要求される研削加工能率は、砥石加
工面の底面cに対して砥石外側面aは約6倍、砥石内側
面部bは約2倍の能率が要求され、砥石外側面部aのワ
ークに対する切込み深さは0.15mm、砥石内側面部
bのワークに対する切込み深さは0.05mmとなる。
In the above-mentioned conventional method, there are two processes for obtaining a high-quality grinding surface that can be applied to the polishing process, and therefore, there is a need for processing cost reduction. There was a limit. 9, 10, and 1
1 illustrates a contact portion between a work and a grindstone in the above-described conventional grinding apparatus, FIG. 9 is a view of the grindstone as viewed from the grindstone axis direction, and FIG. 10 is a cross-sectional view taken along line LL of FIG. Figure 1
1 is a sectional view taken along the line MM of FIG. 9, 25 is a processed surface of a grinding wheel, and 26 is a work. This spherical surface processing is performed by a combination of processing by the outer side surface a and the inner side surface b of the grindstone processing surface and processing by the bottom surface c of the grindstone processing surface. Further, in the conventional processing method, the mesh of the processing grindstone is usually # 200-
400 is used, for example, the workpiece outer diameter is 30 mm, the grindstone outer diameter is 20 mm, and the cutting speed in the e ′ direction in FIG. 7 is 2
mm / min, when the rotation speed of the workpiece is 10 rpm, the grinding efficiency required for the grindstone machining surface is about 6 times as large as the bottom surface c of the grindstone machining surface, and about 6 times as much as the grindstone inner surface portion b. About twice the efficiency is required, and the cutting depth of the outer surface a of the grindstone to the work is 0.15 mm, and the cutting depth of the inner surface b of the grindstone to the work is 0.05 mm.

【0006】したがって加工面の品質を高くするために
高メッシュな仕上げ研削用砥石を適用しても、砥粒の微
細化にともない研削加工能力が低下するため、砥石加工
面の側面aおよびbで焼き付きが発生する。これにより
加工速度が必然的に低下するため、従来の2工程によっ
て加工を行うよりも加工時間が長くなり、後工程を省略
することによりコスト的なメリットを得ることはできな
かった。
Therefore, even if a high-mesh grindstone for finish grinding is used to improve the quality of the machined surface, the grinding capacity decreases as the abrasive grains become finer. Burn-in occurs. Since this inevitably reduces the processing speed, the processing time becomes longer than the conventional two-step processing, and the cost advantage cannot be obtained by omitting the subsequent steps.

【0007】本発明はこのような問題点を考慮しなされ
たものであり、高速で且つ高精度な球面加工を1工程で
短時間に行うことを目的とする。
The present invention has been made in consideration of such problems, and an object thereof is to perform high-speed and highly accurate spherical surface processing in one step in a short time.

【0008】[0008]

【課題を解決するための手段および作用】本発明の球面
加工方法は、外輪帯に粗研削用砥石を、内輪帯に仕上げ
研削用砥石を配した2層構造のカップ型研削砥石を用
い、この研削砥石の加工面をワークに当接させ、50〜
5000rpmの回転数でワークを回転させながら加工
するものである。このため本発明の球面加工装置は、ワ
ークを回転させる回転駆動機構と、上述した構造のカッ
プ型研削砥石とを備えるものである。
The spherical processing method of the present invention uses a cup-type grinding wheel having a two-layer structure in which a grindstone for rough grinding is arranged on the outer ring zone and a grindstone for finish grinding is arranged on the inner ring zone. Touch the work surface of the grinding wheel to the workpiece,
The processing is performed while rotating the work at a rotation speed of 5000 rpm. Therefore, the spherical surface processing apparatus of the present invention is provided with the rotation drive mechanism for rotating the work and the cup-type grinding wheel having the above-described structure.

【0009】図1は上記構成を砥石側からワークを見た
平面図、図2および図3は図1のA−A′断面図および
B−B′断面図を示す。カップ型研削砥石1はその加工
部内輪帯に仕上げ研削用砥石2、外輪帯に粗研削用砥石
3が配されている。一般に研削加工においては、ワーク
との接触による加工負荷の大きい部分ほど砥石加工面の
摩耗の進行が早いため、研削砥石1の外側面部と内側面
部には図2および図3のa,bで示すような偏摩耗部が
存在している。このため研削砥石1の外側面部の偏摩耗
部aにおいて、粗研削用砥石3の加工面先端に対して仕
上げ研削用砥石2の加工面先端が、図2のd2 で示す量
だけ突出した状態が維持されている。
FIG. 1 is a plan view of the above construction when the work is viewed from the grindstone side, and FIGS. 2 and 3 are sectional views taken along the lines AA 'and BB' of FIG. The cup-shaped grinding wheel 1 has a grinding wheel 2 for finish grinding on the inner ring zone of the machined portion and a grinding wheel 3 for rough grinding on the outer ring zone. Generally, in the grinding process, the wear of the grindstone processed surface progresses faster in the part where the processing load due to the contact with the work is larger, so that the outer side surface and the inner side surface of the grinding wheel 1 are shown by a and b in FIGS. 2 and 3. There is such an uneven wear portion. Therefore, in the uneven wear portion a on the outer side surface of the grinding wheel 1, the processing surface tip of the finishing grinding wheel 2 is projected from the processing surface tip of the rough grinding wheel 3 by an amount indicated by d 2 in FIG. Has been maintained.

【0010】また研削砥石1は回転軸Oを中心として矢
印X方向に回転駆動する構成となっている。一方、ワー
ク4は回転軸Pを中心に矢印Y方向に回転駆動する構成
となっており、50〜500rpmの回転速度で加工が
行われる。研削加工はワーク4と研削砥石1を当接する
ことによって行われる。
Further, the grinding wheel 1 is configured to be rotationally driven in the direction of arrow X about the rotation axis O. On the other hand, the work 4 is configured to be rotationally driven in the direction of the arrow Y around the rotation axis P, and processing is performed at a rotation speed of 50 to 500 rpm. The grinding process is performed by bringing the work 4 and the grinding wheel 1 into contact with each other.

【0011】上記構成によれば、研削加工中、研削砥石
1の底面と、図3に示すように内側面においては仕上げ
研削用砥石2のみが研削加工に寄与し、図2に示すよう
に研削砥石1の外側面においては、ワーク4に対する研
削砥石1の切込み量Dの内、大部分の切込み量d1 は粗
研削用砥石3によって加工が行われる。したがって、研
削加工中最も高い加工能率が要求される砥石外側面にお
いては、おもに加工能率の高い粗研削加工用砥石3で加
工が行われ、ワークの加工面精度を決定する砥石底面に
よる加工は仕上げ研削用砥石2によって加工が行われる
ため、高精度な球面創成加工が可能となる。
According to the above construction, during the grinding process, only the bottom surface of the grinding wheel 1 and the inner surface of the grinding wheel 2 as shown in FIG. 3 contribute to the grinding process, and as shown in FIG. in the outer surface of the grinding 1, of the depth of cut D of the grinding wheel 1 relative to the workpiece 4, the cutting amount d 1 most processing is done by rough grinding grindstone 3. Therefore, during the grinding process, the outer surface of the grindstone that requires the highest machining efficiency is processed mainly by the grindstone 3 for rough grinding, which has a high machining efficiency, and the grinding wheel bottom surface that determines the machining surface accuracy of the workpiece is finished. Since the grinding stone 2 is used for processing, highly accurate spherical surface creation processing is possible.

【0012】図4はワーク4の外径をφ30mm、研削
砥石1の外径をφ20mm、ワーク4に対する研削砥石
1の切込み速度を2mm/minとしたときの、ワーク
4の回転速度と、砥石内側面のワーク4に対する切込み
深さ(図3におけるd3 )の関係を示す。これによれば
研削砥石内側面による切込み深さはワーク4が50rp
m以上で回転する場合、0.01mm以下となり、仕上
げ研削用砥石2でも十分に安定して加工できる切込み深
さである。また切込み速度としてはワークの破損を避け
るために通常4mm/min以下で加工を行うが、切込
み速度4mm/minでもワークの回転数が500rp
mのとき、砥石内側面の切込み深さは0.002mmま
で低減される。したがって仕上げ研削用砥石として#8
00〜2000のメッシュのものを使用する場合でも安
定した加工が可能となり、ワーク回転数の上限は500
rpmで充分である。
FIG. 4 shows the rotational speed of the work 4 and the inside of the grindstone when the outer diameter of the work 4 is 30 mm, the outer diameter of the grinding wheel 1 is 20 mm, and the cutting speed of the grinding wheel 1 with respect to the work 4 is 2 mm / min. The relationship of the cutting depth (d 3 in FIG. 3 ) with respect to the work 4 on the side surface is shown. According to this, the work 4 has a cutting depth of 50 rp due to the inner surface of the grinding wheel.
When rotating at m or more, the cutting depth becomes 0.01 mm or less, which is a cutting depth that can be sufficiently and stably processed by the finish grinding wheel 2. The cutting speed is usually 4 mm / min or less in order to avoid damage to the work. However, even if the cutting speed is 4 mm / min, the rotation speed of the work is 500 rp.
When m, the cutting depth of the inner surface of the grindstone is reduced to 0.002 mm. Therefore, as a grinding wheel for finish grinding, # 8
Stable machining is possible even when using a mesh of 00 to 2000, and the upper limit of the work rotation speed is 500.
rpm is sufficient.

【0013】[0013]

【実施例1】図5は本発明の一実施例の加工装置を示
す。表1は切込み速度3mm/minで加工する場合
の、砥石側面部切込み深さと、適用する砥石メッシュ、
加工結果の一覧を示す。
[Embodiment 1] FIG. 5 shows a processing apparatus according to an embodiment of the present invention. Table 1 shows the cutting depth on the side surface of the grindstone and the grindstone mesh to be applied when machining at a cutting speed of 3 mm / min.
A list of processing results is shown.

【0014】[0014]

【表1】 [Table 1]

【0015】ワーク5はホルダー6に保持されており、
回転軸Cを中心として図示しない駆動装置によって50
〜500rpmの任意の設定で回転駆動自在となってい
る。カップ型の研削砥石7はスピンドル8を介して図示
しない駆動装置により回転軸Dを中心として回転自在と
なっている。
The work 5 is held by a holder 6,
A drive device (not shown) rotates about the rotation axis C as a center.
Rotational drive is possible at any setting of up to 500 rpm. The cup-shaped grinding wheel 7 is rotatable about a rotation axis D by a driving device (not shown) via a spindle 8.

【0016】カップ型の研削砥石7の加工面はダイヤモ
ンド粉末からなる砥粒と樹脂材料を配合し熱処理を施し
た研削工具からなり、その内輪帯が#800〜2000
の高メッシュな仕上げ研削用砥石10によって構成さ
れ、外輪帯は#400の低メッシュな粗研削用砥石9に
よって構成されている。また、矢印E方向のワーク6の
移動と矢印F方向のスピンドル8の移動は、図示しない
駆動装置によって任意に設定、移動が可能となってい
る。
The machined surface of the cup-shaped grinding wheel 7 is composed of abrasive grains made of diamond powder and a grinding tool which is heat-treated by mixing a resin material, and its inner ring zone is # 800-2000.
Of the high-mesh finish grinding wheel 10 and the outer ring zone of the # 400 low-mesh rough grinding wheel 9. The movement of the work 6 in the direction of arrow E and the movement of the spindle 8 in the direction of arrow F can be arbitrarily set and moved by a driving device (not shown).

【0017】上記装置による研削加工は、研削砥石7と
ワーク5を回動し、ワーク5を矢印Eの方向に、または
スピンドル8を矢印Fの方向へ移動することにより研削
砥石7に対してワーク5を当接させて行う。仕上げ研削
用砥石10はメッシュが高くなるほど加工能率が低下す
るため、安定した加工を行うために砥石側面による切込
み深さを少なく設定する必要がある。
In the grinding process by the above-mentioned apparatus, the grinding grindstone 7 and the work 5 are rotated, and the work 5 is moved in the direction of arrow E or the spindle 8 is moved in the direction of arrow F, with respect to the grindstone 7. 5 are brought into contact with each other. Since the grinding wheel 10 for finish grinding has a lower machining efficiency as the mesh becomes higher, it is necessary to set the depth of cut by the side surface of the grinding wheel to be small in order to perform stable machining.

【0018】したがって、表1に示すように研削仕上げ
面としてそれほど高品位な面を必要としない場合はワー
クの回転数を50rpmに設定し、仕上げ研削用砥石と
して#800メッシュの砥石を用いて研削砥石を形成す
る。さらに高品位な研削仕上げ面を必要とする場合、ワ
ークの回転数を500rpmに設定し、仕上げ研削用砥
石として#2000メッシュの砥石を用いて研削砥石を
形成することにより、1工程で従来の球面創成加工と同
様の加工時間で高品位な球面創成加工を安定して行うこ
とが可能である。
Therefore, as shown in Table 1, when a high quality surface is not required as the grinding finish surface, the number of revolutions of the work is set to 50 rpm and the grinding wheel for finish grinding is ground with a # 800 mesh grindstone. Form a whetstone. When a higher quality grinding finish surface is required, the number of revolutions of the work is set to 500 rpm and a grinding stone of # 2000 mesh is used as the grinding stone for finish grinding to form the grinding stone, and the conventional spherical surface is formed in one step. It is possible to stably perform high-quality spherical surface generation processing in the same processing time as the generation processing.

【0019】本実施例においては、仕上げ研削用砥石に
適用する砥石のメッシュを、求める加工面精度に併せて
更に細かく選定することも可能であり、またワークの材
質に併せてボンド材質を変更(ブロンズ系メタルボンド
等)しても同様の効果が得られる。
In this embodiment, it is possible to further finely select the mesh of the grindstone applied to the grindstone for finish grinding in accordance with the required surface finish accuracy, and to change the bond material in accordance with the material of the work ( The same effect can be obtained by using a bronze-based metal bond, etc.).

【0020】[0020]

【実施例2】図6は本発明の実施例2を示し、実施例1
と同じ部材には同一符号を記しその説明は省略する。本
実施例においては、カップ型の研削砥石11に対して電
解インプロセスドレッシングを用いて加工を行うもので
ある。このため、導電性を有する研削砥石11の加工面
は、ダイヤモンド粉末などの砥粒と、Cu,Sn,Fe
等の金属粉末とを配合し、熱処理した焼結合金により構
成されており、その内輪帯が#4000などの高メッシ
ュの仕上げ研削用砥石19からなり、外輪帯が#400
などの低メッシュの粗研削用砥石18からなっている。
[Embodiment 2] FIG. 6 shows Embodiment 2 of the present invention, and Embodiment 1
The same members as those of 1 are indicated by the same reference numerals and the description thereof will be omitted. In the present embodiment, the cup-shaped grinding wheel 11 is processed using electrolytic in-process dressing. For this reason, the processed surface of the grinding wheel 11 having conductivity is formed of abrasive grains such as diamond powder and Cu, Sn, Fe.
It is composed of a sintered alloy that has been mixed with a metal powder such as, and heat-treated, the inner ring of which is made of a high mesh finish grinding wheel 19 such as # 4000, and the outer ring of which is # 400.
And a low-mesh rough grinding wheel 18.

【0021】また、装置外に設けた電源装置12の
(+)極はブラシ13を介して研削砥石11の外周部に
電気的に接続されている。ドレス電極14は研削砥石1
1の加工面と近似形状に形成され、ドレス電極14と研
削砥石11の加工面との隙間が0.1〜0.3mmとな
るようにドレス電極保持部材15により保持されてい
る。16は、図示しないクーラント供給装置によって、
加工域に弱電性クーラント17を供給するためのノズル
である。
The (+) pole of the power supply device 12 provided outside the device is electrically connected to the outer peripheral portion of the grinding wheel 11 via the brush 13. The dress electrode 14 is the grinding wheel 1
The dressing electrode holding member 15 is formed to have a shape similar to that of the processed surface of No. 1 and has a gap between the dressing electrode 14 and the processed surface of the grinding wheel 11 of 0.1 to 0.3 mm. 16 is a coolant supply device (not shown)
It is a nozzle for supplying the weak electric coolant 17 to the processing area.

【0022】上記加工装置による加工は、実施例1と同
様に研削砥石11、ワーク5を駆動させて研削加工を行
うと同時に、ノズル16から弱電性クーラント17を供
給し、電源装置12によってドレス電極14と研削砥石
11の加工面の間に弱電性クーラント17を介して電圧
を印加する。
In the processing by the above-described processing apparatus, the grinding wheel 11 and the work 5 are driven to perform the grinding processing in the same manner as in the first embodiment, and at the same time, the weak electric coolant 17 is supplied from the nozzle 16 and the dressing electrode is supplied by the power supply device 12. A voltage is applied between the processing surface of the grinding wheel 11 and the grinding wheel 14 via the weakly electric coolant 17.

【0023】本実施例においては、従来の研削加工にお
いて目詰まりのため使用できなかったような、#数千メ
ッシュ以上の超細粒砥石を仕上げ研削用砥石19に用い
ることが可能となり、また従来のドレッシング方法で
は、ドレッシングが困難であった鉄系あるいはニッケル
系のボンド材により構成される高能率加工が可能な砥石
を粗研削用砥石に用いることが可能となる。したがって
本実施例によれば、更に短時間で品質の高い高精度な球
面創成加工を安定して行うことが可能となる。
In the present embodiment, it is possible to use, as the finishing grinding wheel 19, an ultra-fine grained grinding wheel of # several thousand mesh or more, which cannot be used due to clogging in the conventional grinding process. In the dressing method of (1), it is possible to use a grindstone which is made of an iron-based or nickel-based bond material, which has been difficult to be dressed, and which enables high-efficiency processing, as a grindstone for rough grinding. Therefore, according to the present embodiment, it is possible to stably perform high-quality, high-precision spherical surface creation processing in a shorter time.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、光
学素子などに対する高速且つ、高精度な研削加工が1工
程で、しかも従来加工と同様の加工速度で行えるため、
加工工程のサイクルタイムの短縮、および次工程の廃止
による工程簡素化が可能となる。
As described above, according to the present invention, high-speed and high-precision grinding of optical elements and the like can be performed in one step and at the same processing speed as conventional processing.
It is possible to shorten the cycle time of the machining process and simplify the process by eliminating the next process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本構成の平面図。FIG. 1 is a plan view of the basic configuration of the present invention.

【図2】図1のA−A′線断面図。FIG. 2 is a sectional view taken along the line AA ′ of FIG.

【図3】図1のB−B′線断面図。FIG. 3 is a sectional view taken along line BB ′ of FIG.

【図4】ワークの回転数に対する切込み深さを示す特性
図。
FIG. 4 is a characteristic diagram showing a cutting depth with respect to a rotation speed of a work.

【図5】実施例1の部分破断側面図。FIG. 5 is a partially cutaway side view of the first embodiment.

【図6】実施例2の部分破断側面図。FIG. 6 is a partially cutaway side view of the second embodiment.

【図7】従来装置の部分破断側面図。FIG. 7 is a partially cutaway side view of a conventional device.

【図8】従来装置の研削を説明する側面図。FIG. 8 is a side view illustrating grinding of a conventional device.

【図9】従来技術の研削の平面図。FIG. 9 is a plan view of conventional grinding.

【図10】図9のL−L線断面図。10 is a sectional view taken along line LL in FIG.

【図11】図9のM−M線断面図。11 is a sectional view taken along line MM of FIG.

【符号の説明】[Explanation of symbols]

1 カップ型研削砥石 2 仕上げ研削用砥石 3 粗研削用砥石 4 ワーク 1 Cup type grinding wheel 2 Finishing grinding wheel 3 Rough grinding wheel 4 Workpiece

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転駆動されるカップ型研削砥石を回転
自在なワークホルダに保持されたワーク表面に当接して
加工を行う方法において、加工面の外輪帯に粗研削用砥
石、内輪帯に仕上げ用研削砥石を配設した2層の砥石に
より前記カップ型研削砥石を形成し、前記ワークを50
〜500rpmの回転数で回転させなから加工すること
を特徴とする球面加工方法。
1. A method in which a cup-type grinding wheel that is driven to rotate is brought into contact with a surface of a work held by a rotatable work holder to perform processing, and a grinding wheel for rough grinding is finished on the outer ring zone of the machined surface and an inner ring zone is finished. The cup-shaped grinding wheel is formed by two layers of grinding wheels provided with a grinding wheel for use,
A spherical surface processing method, characterized in that processing is carried out without rotating at a rotation speed of up to 500 rpm.
【請求項2】 ワークを保持する回転自在なワークホル
ダと、前記ワークの表面に当接した状態で回転駆動され
るカップ型研削砥石とを備え、前記カップ型研削砥石は
外輪帯に粗研削砥石、内輪帯に仕上げ研削砥石を配設し
た2層の砥石構造となっていることを特徴とする球面加
工装置。
2. A rotatable work holder that holds a work, and a cup-type grinding wheel that is driven to rotate while being in contact with the surface of the work, the cup-type grinding wheel having a rough grinding wheel on an outer ring zone. A spherical surface processing device having a two-layer grindstone structure in which a finish grinding grindstone is arranged in the inner ring zone.
JP35202393A 1993-12-28 1993-12-28 Spherical grinding method and device thereof Pending JPH07195261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35202393A JPH07195261A (en) 1993-12-28 1993-12-28 Spherical grinding method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35202393A JPH07195261A (en) 1993-12-28 1993-12-28 Spherical grinding method and device thereof

Publications (1)

Publication Number Publication Date
JPH07195261A true JPH07195261A (en) 1995-08-01

Family

ID=18421255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35202393A Pending JPH07195261A (en) 1993-12-28 1993-12-28 Spherical grinding method and device thereof

Country Status (1)

Country Link
JP (1) JPH07195261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19809353A1 (en) * 1998-03-05 1999-09-09 Optotech Optikmasch Gmbh Method for grinding and centering optical lenses
JP2016093866A (en) * 2014-11-14 2016-05-26 オリンパス株式会社 Processing device for optical element, grindstone member and processing method for optical element
CN113084599A (en) * 2021-04-02 2021-07-09 成都光明光电股份有限公司 Processing method of glass rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19809353A1 (en) * 1998-03-05 1999-09-09 Optotech Optikmasch Gmbh Method for grinding and centering optical lenses
DE19809353C2 (en) * 1998-03-05 2001-04-26 Optotech Optikmasch Gmbh Method for double-sided grinding of lenses and device for carrying out the method
JP2016093866A (en) * 2014-11-14 2016-05-26 オリンパス株式会社 Processing device for optical element, grindstone member and processing method for optical element
CN113084599A (en) * 2021-04-02 2021-07-09 成都光明光电股份有限公司 Processing method of glass rod

Similar Documents

Publication Publication Date Title
JPH0516070A (en) Diamond grinding wheel, method and device for truing diamond grinding wheel and grinding-finished magnetic head
JP3344558B2 (en) Electric dressing grinding method and apparatus
JPS60207751A (en) Device and method for grinding surface type commutator
JPH0343145A (en) Grinding device
JP4104199B2 (en) Molded mirror grinding machine
JP2838314B2 (en) Electrolytic interval dressing grinding method
JPH07195261A (en) Spherical grinding method and device thereof
JPH06335853A (en) Grinding and device therefor
JPH06114732A (en) Grinding wheel side surface shaping method by on-machine discharge truing method
JP4013240B2 (en) Processing method for work made of brittle materials
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JP2764253B2 (en) High-precision, high-efficiency truing and dressing method of diamond wheel with cup-type compound grinding wheel and its cup-type compound grinding wheel
JP3194624B2 (en) Grinding method and apparatus
JP3078404B2 (en) Electrolytic dressing grinding method
JP3419690B2 (en) Truing method and grinding device for conductive grindstone
JPH06344254A (en) Grinding method and apparatus
JP3294347B2 (en) Electrolytic in-process dressing grinding method and apparatus
CN110573301A (en) method for treating workpiece and grinding and etching machine
JPH08108364A (en) Grinding work method
JP2008030187A (en) Composite machining method
JP2859753B2 (en) Truing method of conductive whetstone
JPH07186031A (en) Spherical surface grinding method and device
JPH0957622A (en) Grinding method with in-process electrolytic dressing
JP3356693B2 (en) Ultra-precision grinding method and grinding device
JPH07328907A (en) Spherical surface creative processing method and device thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031209