JP3477260B2 - Grinding / polishing whetstone and processing method using the whetstone - Google Patents

Grinding / polishing whetstone and processing method using the whetstone

Info

Publication number
JP3477260B2
JP3477260B2 JP25826694A JP25826694A JP3477260B2 JP 3477260 B2 JP3477260 B2 JP 3477260B2 JP 25826694 A JP25826694 A JP 25826694A JP 25826694 A JP25826694 A JP 25826694A JP 3477260 B2 JP3477260 B2 JP 3477260B2
Authority
JP
Japan
Prior art keywords
grinding
abrasive grains
grindstone
fine
rough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25826694A
Other languages
Japanese (ja)
Other versions
JPH08118238A (en
Inventor
雄太 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP25826694A priority Critical patent/JP3477260B2/en
Publication of JPH08118238A publication Critical patent/JPH08118238A/en
Application granted granted Critical
Publication of JP3477260B2 publication Critical patent/JP3477260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスやガラス
などの硬脆材料からなるワークを電解インプロセスドレ
ッシング法により研削・研磨する研削・研磨砥石及び該
砥石による加工方法に係わり、詳しくは粗研削加工と精
研削加工とに共用できる研削・研磨砥石及び該砥石によ
る加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grinding / polishing grindstone for grinding / polishing a work made of a hard and brittle material such as ceramics or glass by an electrolytic in-process dressing method, and a processing method using the grindstone. The present invention relates to a grinding / polishing grindstone that can be commonly used for machining and fine grinding, and a machining method using the grindstone.

【0002】[0002]

【従来の技術】従来、精研削加工と精研削加工とを同一
の砥石を用いて行う研削方法として、特開平4−210
364号公報所載の技術(従来技術1)が開示されてい
る。図16は、この従来技術に係わる研削装置の要部正
面を示す概念図である。図に示す符号21は、回転軸2
1を直立して設けた駆動手段である。回転軸22の先端
部には、被加工物であるガラス素材23が装填配設され
ている。また被加工物23の斜め側方上には、駆動手段
24が配設されて、その一端面より突出した回転軸25
の先端部には、円筒形状の導電性砥石26と27が重ね
合わせ構成されて装着されている。上記導電性砥石26
と27の外周面には、その外周面に沿った形状と相対向
した位置で所定の間隔を設けて電極(陰極)28を配設
している。また上記導電性砥石26と27そのものを陽
極として構成し、その両極間に電圧を印加しつつ被加工
物23を加工するように構成されている。なお、図中符
号29は、導電性砥石26と27および電極28と接続
構成した電源である。また駆動手段24の外周側壁面に
配設したブロック形状は、上記導電性砥石26と27に
給電する給電ブラシ30である。
2. Description of the Related Art Conventionally, as a grinding method for performing a fine grinding process and a fine grinding process using the same grindstone, Japanese Patent Laid-Open No. 4-210
The technology described in Japanese Patent No. 364 (Prior Art 1) is disclosed. FIG. 16 is a conceptual diagram showing a front surface of a main part of a grinding apparatus according to this conventional technique. Reference numeral 21 shown in the figure is the rotary shaft 2.
1 is a drive means provided upright. A glass material 23, which is a workpiece, is loaded and arranged at the tip of the rotary shaft 22. Further, a driving means 24 is provided on the diagonal side of the work piece 23 and has a rotary shaft 25 protruding from one end surface thereof.
The cylindrical conductive grindstones 26 and 27 are superposed and mounted on the tip of the. The conductive grindstone 26
Electrodes (cathodes) 28 are arranged on the outer peripheral surfaces of the electrodes 27 and 27 at predetermined positions at positions facing the shape along the outer peripheral surface. The conductive grindstones 26 and 27 themselves are used as anodes, and the workpiece 23 is processed while applying a voltage between both electrodes. In the figure, reference numeral 29 is a power source connected to the conductive grindstones 26 and 27 and the electrode 28. Further, the block shape provided on the outer peripheral side wall surface of the driving means 24 is a power feeding brush 30 which feeds power to the conductive grindstones 26 and 27.

【0003】まず、駆動手段21と24をそれぞれ矢印
にて示す方向に作動させるとともに、弱電性クーラント
をノズル33より供給しながら研削加工を開始する。こ
の場合被加工物23の外周上に位置し、加工軌跡に従っ
て被加工物23の曲率中心32に沿って仕上砥石27の
曲率創成点31の曲率に従って回転移動する。即ち前段
(先端側導電性砥石)26で粗い研削を行い、同時に後
段(後端側導電性砥石)27で所望の形状の仕上代を研
削加工する。この時上記砥石26と27は導電性であ
り、砥石の形状に沿って所望の間隙を設けてマイナス電
極28を配設してあり、また砥石26と27にプラス電
極として、その両電極に電圧を印加し、弱電性クーラン
トを研削加工位置にノズル33より噴出しながら、被加
工物23の研削加工が行われる。上記のような研削方法
においては、少なくとも2個以上の砥石を用いて粗加工
と仕上加工とを同時に行いかつ仕上砥石で曲率創成点に
て加工し、加工中の自動目立をすることで能率的な研削
加工ができる。
First, the driving means 21 and 24 are actuated in the directions indicated by the arrows, respectively, and the grinding process is started while the weak electric coolant is supplied from the nozzle 33. In this case, it is located on the outer periphery of the work piece 23, and rotates and moves along the center of curvature 32 of the work piece 23 according to the machining trajectory according to the curvature of the curvature generating point 31 of the finishing grindstone 27. That is, rough grinding is performed at the front stage (tip side conductive grindstone) 26, and at the same time, a finishing allowance of a desired shape is ground at the rear stage (rear end side conductive grindstone) 27. At this time, the above-mentioned grindstones 26 and 27 are electrically conductive, and a minus electrode 28 is arranged along the shape of the grindstone with a desired gap provided between them. Is applied, and the workpiece 23 is ground while the weak electric coolant is jetted from the nozzle 33 to the grinding position. In the above grinding method, roughing and finishing are performed at the same time by using at least two or more grindstones, and the finishing grindstones are machined at the curvature generation point to automatically stand out during machining. Grinding process can be performed.

【0004】一方、電解作用を安定させるために、導電
性砥粒および電解砥石の製造方法として、特開平5−2
5462号公報所載の技術(従来技術2)が開示されて
いる。この技術は、図17に示すように、電気伝導性を
有する酸化物等を核粒子11とし、貴金属あるいはその
合金を被覆粒子12としたカプセル粒子13で成るもの
である。また、この技術は、上記構成を利用した方法で
あって、電気伝導性を有する酸化物等を核粒子11と
し、貴金属或いはその合金を被覆粒子12としてカプセ
ル粒子13を形成した後、このカプセル粒子13の粉末
と通常の砥粒の粉末とを混合し、その混合体を通電焼結
するものである。
On the other hand, in order to stabilize the electrolytic action, a method for producing conductive abrasive grains and an electrolytic grindstone is disclosed in Japanese Patent Laid-Open No. 5-2.
The technology disclosed in Japanese Patent No. 5462 (Prior Art 2) is disclosed. As shown in FIG. 17, this technique comprises capsule particles 13 in which an oxide or the like having electrical conductivity is used as core particles 11 and a noble metal or its alloy is used as coated particles 12. In addition, this technique is a method utilizing the above-mentioned configuration, and after forming an encapsulated particle 13 by using an electrically conductive oxide or the like as a core particle 11 and a noble metal or its alloy as a coated particle 12, the encapsulated particle is formed. The powder of No. 13 and the powder of normal abrasive grains are mixed and the mixture is subjected to electric current sintering.

【0005】上記構成によって、核粒子が砥粒として機
能し、導電性が付与されると共に安定した均一性が確保
される。また上記方法によって、カプセル粒子が結合剤
としても機能し、電解による劣化のない電解砥石が得ら
れる。
With the above structure, the core particles function as abrasive grains, impart conductivity, and secure stable uniformity. Further, according to the above method, the capsule particles also function as a binder, and an electrolytic whetstone that is not deteriorated by electrolysis can be obtained.

【0006】[0006]

【発明が解決しようとする課題】従来技術1による研削
方法では、粗研削と精研削とを同一の砥石で行うため
に、粗研削用砥石と精研削用砥石とを重ね合わせた複合
砥石を用いねばならず、砥石の着脱方法および装置が複
雑となり、研削装置自体の改良が必要とされる。さら
に、複合砥石では、それぞれの砥石の磨耗量が異なるこ
とによる補正と、取り代および加工形状の修正とが困難
になるという問題点があった。
In the grinding method according to the prior art 1, a composite grindstone in which a grindstone for rough grinding and a grindstone for precise grinding are overlapped is used in order to perform rough grinding and fine grinding with the same grindstone. Therefore, the grindstone attachment / detachment method and apparatus become complicated, and the grinding apparatus itself needs to be improved. Further, in the composite grindstone, there is a problem that it is difficult to make corrections due to the different wear amounts of the grindstones, and to correct the machining allowance and the machining shape.

【0007】また、従来技術2による砥粒とこれを結合
した電解砥石では、砥粒をコートして導電性を付与する
ことにより印加電圧の増加を防ぎ、電解による劣化のな
い電解インプロセスドレッシング法に用いる砥石を得る
ことに効果があるものの、電解時における砥粒の脱落も
しくは保持を、砥粒のコートの有無により制御するもの
ではない。すなわち、粗研削と精研削とを同一の砥石で
行うことはできないという問題点がある。
Further, in the abrasive grain according to the prior art 2 and the electrolytic grindstone in which the abrasive grain is combined, the abrasive grain is coated to impart conductivity to prevent an increase in the applied voltage, and an electrolytic in-process dressing method without deterioration due to electrolysis. Although it is effective to obtain a grindstone used for the above, the dropping or holding of the abrasive grains during electrolysis is not controlled by the presence or absence of the abrasive grain coating. That is, there is a problem that rough grinding and fine grinding cannot be performed with the same grindstone.

【0008】本発明は上記従来の問題点に鑑みてなされ
たもので、本発明の目的は、電解により砥粒の脱落もし
くは保持を制御することにより、同一の砥石で粗研削と
精研削の双方の加工を行うことのできる、簡易で能率的
な研削・研磨砥石及び該砥石による加工方法を提供する
ことである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to perform both rough grinding and fine grinding with the same grindstone by controlling dropping or holding of abrasive grains by electrolysis. It is to provide a simple and efficient grinding / polishing grindstone capable of performing the above processing and a processing method using the grindstone.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、請求項1、2または3に係る発明は、電解インプロ
セスドレッシング法によりドレッシングしながら、硬脆
材料からなるワークを研削・研磨する研削・研磨砥石に
おいて、粒径の大きな砥粒にボンド材より電解されやす
い金属のコートをしその上に電解しない導電性樹脂のコ
ートをした粗研削用砥粒と、粒径の小さな精研削用砥粒
とを、電解される金属からなるボンド材にて結合して構
成したことを特徴とする。請求項2に係る発明は、上記
手段に加え、前記精研削用砥粒は、導電性樹脂によって
コートされていることを特徴とする。また、請求項4に
係る発明は、請求項1に係る前記砥石の加工面にボンド
材が溶出する強い電解をかけて粗研削用砥粒を突出させ
た後、前記砥石の加工面をワークに接触させて該ワーク
を粗研削加工する工程と、前記粗研削加工により砥石の
加工面の導電性樹脂のコートが剥がれた粗研削用砥粒
を、前記砥石に金属のコートのみが溶出する弱い電解を
かけることにより前記加工面から脱落させる工程と
記砥石に電解をかけることを中断した後、前記砥石の加
工面に存在するボンド材で保持されたままの前記精研削
用砥粒で再び前記ワークを精研削加工する工程と、を有
することを特徴とする。請求項5の係る発明は、上記加
工方法に加え、前記精研削加工した後、前記ボンド材が
溶出する電解を砥石にかけて前記精研削用砥粒および残
留した導電性樹脂のコートを脱落させ、砥石の加工面に
新たな砥粒層を出現させることを特徴とする。
In order to solve the above problems, the invention according to claim 1, 2 or 3 grinds and polishes a work made of a hard and brittle material while dressing by an electrolytic in-process dressing method. For grinding / polishing grindstones, abrasive grains with a large grain size are coated with a metal that is more likely to be electrolyzed than the bond material, and a conductive resin that is not electrolyzed is coated on it. It is characterized in that the abrasive grains are bonded by a bond material made of a metal to be electrolyzed. In addition to the above means, the invention according to claim 2 is characterized in that the abrasive grains for fine grinding are coated with a conductive resin. The invention according to claim 4 is to bond to the processed surface of the grindstone according to claim 1.
After the abrasive particles for rough grinding are projected by applying a strong electrolysis that elutes the material, a step of bringing the processed surface of the grindstone into contact with the work and rough grinding the work, and the processed surface of the grindstone by the rough grinding a step of coarse grinding abrasive coating was peeled off of the conductive resin, only coated metal to the grinding wheel Ru is falling from the processing surface by applying a weak electrolyte eluting before
After stopping the electrolysis of the grindstone, the step of fine-grinding the work again with the fine-grinding abrasive grains held by the bond material existing on the processed surface of the grindstone.
Characterized in that it. In addition to the above-described processing method, the invention according to claim 5 is, in addition to the above-described processing method, subjecting the electrolysis from which the bond material is eluted to a grindstone to remove the fine-grinding abrasive grains and the residual conductive resin coat, It is characterized in that a new abrasive grain layer appears on the processed surface of.

【0010】[0010]

【作用】請求項1、2または3に係る発明の作用では、
粗研削前に、強い電解をかけることにより、ボンド材を
溶出し、粗研削用砥粒と精研削用砥粒との双方を砥石の
加工面に露出させる。砥粒の突出量の大きい粗研削用砥
粒が露出するため加工能力の高い粗研削が可能となる。
精研削を行うときは、弱い電解をかけることにより、ボ
ンド材より電解されやすい金属のコートが溶出し、粗研
削用砥粒のみが脱落する。そして、ボンド材は溶出され
ないので精研削用砥粒のみが砥石の加工面に露出する状
態となる。これにより精研削が可能となる。請求項2に
係る発明の作用では、上記作用に加え、精研削用砥粒を
導電性樹脂によりコートすることによりワークに対して
クッションの作用をする。請求項3に係る発明の作用で
は、上記作用に加え、粗研削用砥粒に硬度の高い材質
を、精研削用砥粒に硬度の低い材質を用いることによ
り、粗研削時に加工能力を高め、精研削時にワークの仕
上げ面を向上させる。請求項4または5に係る発明の作
用では、電解により前記粗研削用砥粒と精研削用砥粒と
の脱落もしくは保持を制御することになり、同一の砥石
で粗研削と精研削の双方の加工を行える。
In the operation of the invention according to claim 1, 2 or 3,
Before the rough grinding, a strong electrolysis is applied to elute the bond material and expose both the rough grinding grains and the fine grinding grains to the processed surface of the grindstone. Since the rough-grinding abrasive grains having a large amount of protrusion of the abrasive grains are exposed, rough-grinding with high processing capability becomes possible.
When performing fine grinding, by applying a weak electrolysis, the metal coat that is more easily electrolyzed than the bond material elutes, and only the abrasive particles for rough grinding fall off. Since the bond material is not eluted, only the fine-grinding abrasive grains are exposed on the processed surface of the grindstone. This enables precise grinding. In the operation of the invention according to claim 2, in addition to the above-mentioned operation, the fine-grinding abrasive grains are coated with a conductive resin to act as a cushion for the work. In the operation of the invention according to claim 3, in addition to the above operation, by using a material having a high hardness for the abrasive grains for rough grinding and a material having a low hardness for the fine grinding abrasive grains, the working capacity is increased during the rough grinding, Improves the finished surface of the work during fine grinding. In the operation of the invention according to claim 4 or 5, dropping or holding of the rough-grinding abrasive grains and the fine-grinding abrasive grains is controlled by electrolysis, and the same grindstone is used for both rough-grinding and fine-grinding. Can be processed.

【0011】[0011]

【実施例1】図1〜図5は実施例1を示し、図1は初期
状態における砥石の縦断面図、図2は粗研削終了時の砥
石の縦断面図、図3は弱電解時の砥石の縦断面図、図4
は精研削終了時の砥石の縦断面図、図5は強電解時の砥
石の縦断面図である。
Embodiment 1 FIGS. 1 to 5 show Embodiment 1, FIG. 1 is a longitudinal sectional view of a grindstone in an initial state, FIG. 2 is a longitudinal sectional view of a grindstone at the end of rough grinding, and FIG. Longitudinal section of the grindstone, Fig. 4
Is a vertical cross-sectional view of the grindstone at the end of fine grinding, and FIG. 5 is a vertical cross-sectional view of the grindstone at the time of strong electrolysis.

【0012】図1において、粗研削用砥粒3と精研削用
砥粒4とはボンド材5によって保持されている。粗研削
用砥粒3と精研削用砥粒4とは、一般的に用いられるダ
イヤモンド、cBN、SiCなどの砥粒である。粒度は
特に限定されず、粗研削用砥粒3は精研削用砥粒4より
砥粒径が大きいという条件のみがある。粗研削用砥粒3
に#400の砥粒を用いた場合、精研削用砥粒4には#
1000を用いるようにすればよい。また、粗研削用砥
粒3は、ボンド材5より電解されやすい金属コート2
と、その上の電解されない導電性樹脂コート1とによっ
て被覆されており、精研削用砥粒4は電解されない導電
性樹脂コート1によって被覆されている。金属コート2
はNiコートが好ましく、ボンド材5はNiコートより
電解されにくい鉄系のものがよい。また、導電性樹脂コ
ート1はカーボンによる樹脂や、金属粉(Ag、Cuな
ど)を含んだ樹脂(エポキシ樹脂など)などである。さ
らに、粗研削用砥粒3と精研削用砥粒4とをコートする
導電性樹脂は同一のものを用いる。
In FIG. 1, the abrasive grains 3 for rough grinding and the abrasive grains 4 for fine grinding are held by a bond material 5. The rough grinding abrasive grains 3 and the fine grinding abrasive grains 4 are generally used abrasive grains such as diamond, cBN, and SiC. The grain size is not particularly limited, and there is only a condition that the abrasive grain 3 for rough grinding has a larger grain size than the abrasive grain 4 for fine grinding. Abrasive grains for rough grinding 3
When # 400 abrasive grains are used for the
It suffices to use 1000. Further, the abrasive grains 3 for rough grinding are the metal coat 2 which is more likely to be electrolyzed than the bond material 5.
And the conductive resin coat 1 which is not electrolyzed thereon, and the fine-grinding abrasive grains 4 are covered by the electroconductive resin coat 1 which is not electrolyzed. Metal coat 2
Is preferably Ni-coated, and the bond material 5 is preferably an iron-based material which is less likely to be electrolyzed than the Ni-coated. The conductive resin coat 1 is a resin made of carbon, a resin containing metal powder (Ag, Cu, etc.) (epoxy resin, etc.), or the like. Further, the same conductive resin is used for coating the rough grinding abrasive grains 3 and the fine grinding abrasive grains 4.

【0013】この砥石の製造方法を説明する。粗研削用
砥粒3には、砥粒径の大きな砥粒にNiの金属コート2
を通常の方法により施し、さらにその上に、数μm〜数
十μmの厚さの導電性樹脂1を被覆する。また、精研削
用砥粒4には、砥粒径の小さな砥粒に数μm〜数十μm
の厚さの導電性樹脂1のみ被覆する。その後、粗研削用
砥粒3、精研削用砥粒4およびボンド材5となる金属粉
を均一に混合し、型に充填した後、荷重をかけて焼成す
る。
A method of manufacturing this grindstone will be described. The rough-grinding abrasive grain 3 includes a Ni-metal coating 2 on the abrasive grain having a large abrasive grain size.
Is applied by a usual method, and the conductive resin 1 having a thickness of several μm to several tens of μm is further coated thereon. In addition, the fine-grinding abrasive grains 4 include several μm to several tens of μm for abrasive grains having a small abrasive grain size.
Only the conductive resin 1 having the thickness of is coated. After that, the rough-grinding abrasive grains 3, the fine-grinding abrasive grains 4 and the metal powder to be the bonding material 5 are uniformly mixed and filled in a mold, and then a load is applied for firing.

【0014】つぎに、この砥石を用いた研削加工におけ
る砥石の加工面の変化の過程を説明する。砥石の加工面
の初期状態は、図1に示すように、粗研削用砥粒3と精
研削用砥粒4とが加工面に露出している。この状態で、
硬脆材料のワークを粗研削すると、ワークとの接触によ
り、砥粒の突出部分のコートが剥がれた状態となる。こ
の状態を図2に示す。ここで、弱い電解(砥石の大きさ
により30〜60Vの範囲で決める)をかけることによ
り粗研削用砥粒3の金属コート2が溶出し、それに伴い
保持されていた粗研削用砥粒3が脱落する。その跡に
は、ボイド7が形成され導電性樹脂コート1の層が残
る。ボンド材5が溶出するほどの電解ではないので、表
面に酸化被膜6が付着し電解作用が弱まる。精研削砥粒
4は電解物質ではないので電解には関与せず、ボンド材
5に保持されたままである。また導電性樹脂コート1に
ついても、導電性はあるが、電気分解されないので、精
研削用砥粒4および残留した導電性樹脂コート1が脱落
することはない。この状態を図3に示す。
Next, the process of changing the working surface of the grindstone in the grinding process using this grindstone will be described. In the initial state of the processed surface of the grindstone, as shown in FIG. 1, the rough grinding abrasive grains 3 and the fine grinding abrasive grains 4 are exposed on the processed surface. In this state,
When a work made of a hard and brittle material is roughly ground, the coating on the protruding portion of the abrasive grains comes off due to contact with the work. This state is shown in FIG. Here, by applying a weak electrolysis (determined in the range of 30 to 60 V depending on the size of the grindstone), the metal coat 2 of the abrasive grain 3 for rough grinding is eluted, and the abrasive grain 3 for coarse grinding held along with it is removed. take off. In the trace, voids 7 are formed and the layer of the conductive resin coat 1 remains. Since the electrolysis is not so large that the bond material 5 is eluted, the oxide film 6 is attached to the surface and the electrolytic action is weakened. Since the fine grinding abrasive grains 4 are not an electrolytic substance, they do not participate in electrolysis and remain held by the bond material 5. The electroconductive resin coat 1 is also electroconductive, but is not electrolyzed, so that the fine-grinding abrasive grains 4 and the remaining electroconductive resin coat 1 do not fall off. This state is shown in FIG.

【0015】つぎに、電解を中断し、再び研削加工を行
う。このときは、砥石の加工面には精研削用砥粒4しか
存在していないので、精研削用砥粒4のみで精研削加工
が行わる。そして、砥石の加工面がワークと接触するこ
とで電解によって生成された酸化被膜6が剥がれ、ボン
ド材5が再び電解可能な状態となる。この状態を図4に
示す。加工終了後、ボンド材5が溶出するような強い電
解(砥石の大きさにより60〜90Vの範囲で決める)
をかけることにより、精研削用砥粒4および残留した導
電性樹脂コ−ト1が脱落し、砥石の加工面に新たな砥粒
層が出現し、初期状態に戻る。この状態を図5に示す。
Next, the electrolysis is interrupted and the grinding process is performed again. At this time, since only the fine-grinding abrasive grains 4 are present on the processed surface of the grindstone, the fine-grinding processing is performed only with the fine-grinding abrasive grains 4. Then, when the processed surface of the grindstone comes into contact with the work, the oxide film 6 generated by the electrolysis is peeled off, and the bond material 5 is again in the electrolyzable state. This state is shown in FIG. Strong electrolysis that elutes the bond material 5 after processing (determined in the range of 60 to 90 V depending on the size of the grindstone)
As a result, the fine-grinding abrasive grains 4 and the remaining conductive resin coat 1 drop off, a new abrasive grain layer appears on the processed surface of the grindstone, and the initial state is restored. This state is shown in FIG.

【0016】本実施例によれば、粗研削加工を行う際に
は、粗研削用砥粒を主に作用させることができ、精研削
加工を行う際には、精研削用砥粒のみを作用させること
ができる。従って、砥石を電解することにより、砥石交
換することなく、1つの砥石で粗研削と精研削との双方
の加工をすることができる。また、精研削用砥粒の導電
性コートを前記所定の厚さの1.5〜2倍に厚くするよ
うにすれば、コート部分がクッションの役目をし、精研
削加工時にワークに与えるダメージを最小限に抑えるこ
とができる。さらに、粗研削用砥粒が脱落することに伴
い、ボイドが生成され、そのボイドがチップポッケット
としての働きをし、目詰まりを防止して、精研削加工が
円滑に行われる。
According to this embodiment, when performing the rough grinding, the rough-grinding abrasive grains can mainly act, and when performing the fine-grinding process, only the fine-grinding abrasive grains act. Can be made. Therefore, by electrolyzing the grindstone, it is possible to perform both rough grinding and fine grinding with one grindstone without exchanging the grindstone. Further, if the conductive coating of the fine-grinding abrasive grains is made 1.5 to 2 times thicker than the predetermined thickness, the coated portion acts as a cushion and damages the work during fine-grinding processing. Can be kept to a minimum. Further, with the removal of the abrasive grains for rough grinding, voids are generated, the voids function as chip pockets, clogging is prevented, and fine grinding is smoothly performed.

【0017】[0017]

【実施例2】図6〜図10は実施例2を示し、図6は初
期状態における砥石の縦断面図、図7は粗研削終了時の
砥石の縦断面図、図8は弱電解時の砥石の縦断面図、図
9は精研削終了時の砥石の縦断面図、図10は強電解時
の砥石の縦断面図である。本実施例は、実施例1におい
て精研削用砥粒4を導電性樹脂コート1により被覆して
いたのに替えて、精研削用砥粒4をコートせずに裸のま
ま使用しているところに特徴がある。その他の構成は実
施例1と同一であるため、特徴部分に関してのみ説明
し、同一部分の説明を省略する。
[Embodiment 2] FIGS. 6 to 10 show Embodiment 2, FIG. 6 is a vertical sectional view of a grindstone in an initial state, FIG. 7 is a vertical sectional view of a grindstone at the end of rough grinding, and FIG. FIG. 9 is a vertical sectional view of the grindstone, FIG. 9 is a vertical sectional view of the grindstone at the time of finishing the fine grinding, and FIG. 10 is a vertical sectional view of the grindstone at the time of strong electrolysis. In this example, instead of coating the fine-grinding abrasive grains 4 with the conductive resin coat 1 in the first embodiment, the fine-grinding abrasive grains 4 are used without being coated. Is characterized by. Since other configurations are the same as those of the first embodiment, only the characteristic parts will be described and the description of the same parts will be omitted.

【0018】図6において、粗研削用砥粒3と精研削用
砥粒4とはボンド材5によって保持されている。粗研削
用砥粒3は、実施例1と同様に、ボンド材5より電解さ
れやすい金属コート2と、電解されない導電性樹脂コー
ト1によって被覆されている。一方、精研削用砥粒4は
上記のように、コートはされておらず裸のまま粗研削用
砥粒3とともにボンド材5により結合されている。
In FIG. 6, the rough grinding abrasive grains 3 and the fine grinding abrasive grains 4 are held by a bond material 5. Similar to the first embodiment, the rough-grinding abrasive grains 3 are covered with the metal coat 2 that is more likely to be electrolyzed than the bond material 5 and the conductive resin coat 1 that is not electrolyzed. On the other hand, as described above, the fine-grinding abrasive grains 4 are bonded together with the rough-grinding abrasive grains 3 by the bonding material 5 without being coated.

【0019】つぎに、この砥石を用いた研削加工におけ
る砥石の加工面の変化の過程を説明する。砥石の加工面
の初期状態は、図6に示すように、粗研削用砥粒3と精
研削用砥粒4とが加工面に露出している。この状態で、
硬脆材料のワークを粗研削すると、ワークとの接触によ
り、砥粒の突出部分のコートが剥がれた状態となる。こ
の状態を図7に示す。ここで、弱い電解(砥石の大きさ
により30〜60Vの範囲で決める)をかけることによ
り粗研削用砥粒3の金属コート2が溶出し、それに伴い
保持されていた粗研削用砥粒3が脱落する。その跡に
は、ボイド7が形成され導電性樹脂コート1の層が残
る。ボンド材5が溶出するほどの電解ではないので、表
面に酸化被膜6が付着し電解作用が弱まる。精研削砥粒
4は電解物質ではないので電解には関与せず、ボンド材
5に保持されたままである。また導電性樹脂コート1に
ついても、導電性はあるが、電気分解されないので、導
電性コート1が脱落することはない。この状態を図8に
示す。
Next, the process of changing the working surface of the grindstone in the grinding process using this grindstone will be described. In the initial state of the processed surface of the grindstone, as shown in FIG. 6, the rough grinding abrasive grains 3 and the fine grinding abrasive grains 4 are exposed on the processed surface. In this state,
When a work made of a hard and brittle material is roughly ground, the coating on the protruding portion of the abrasive grains comes off due to contact with the work. This state is shown in FIG. Here, by applying a weak electrolysis (determined in the range of 30 to 60 V depending on the size of the grindstone), the metal coat 2 of the abrasive grain 3 for rough grinding is eluted, and the abrasive grain 3 for coarse grinding held along with it is removed. take off. In the trace, voids 7 are formed and the layer of the conductive resin coat 1 remains. Since the electrolysis is not so large that the bond material 5 is eluted, the oxide film 6 is attached to the surface and the electrolytic action is weakened. Since the fine grinding abrasive grains 4 are not an electrolytic substance, they do not participate in electrolysis and remain held by the bond material 5. The conductive resin coat 1 also has conductivity, but is not electrolyzed, so that the conductive coat 1 does not fall off. This state is shown in FIG.

【0020】つぎに、電解を中断し、再び研削加工を行
う。このときは、砥石の加工面には精研削用砥粒4しか
存在していないので、精研削用砥粒4のみで精研削加工
が行わる。そして、砥石の加工面がワークと接触するこ
とで電解によって生成された酸化被膜6が剥がれ、ボン
ド材5が再び電解可能な状態となる。この状態を図9に
示す。加工終了後、ボンド材5が溶出するような強い電
解(砥石の大きさにより60〜90Vの範囲で決める)
をかけることにより、精研削用砥粒4および残留した導
電性樹脂コ−ト1が脱落し、砥石の加工面に新たな砥粒
層が出現し、初期状態に戻る。この状態を図10に示
す。
Next, the electrolysis is interrupted and the grinding process is performed again. At this time, since only the fine-grinding abrasive grains 4 are present on the processed surface of the grindstone, the fine-grinding processing is performed only with the fine-grinding abrasive grains 4. Then, when the processed surface of the grindstone comes into contact with the work, the oxide film 6 generated by the electrolysis is peeled off, and the bond material 5 is again in the electrolyzable state. This state is shown in FIG. Strong electrolysis that elutes the bond material 5 after processing (determined in the range of 60 to 90 V depending on the size of the grindstone)
As a result, the fine-grinding abrasive grains 4 and the remaining conductive resin coat 1 drop off, a new abrasive grain layer appears on the processed surface of the grindstone, and the initial state is restored. This state is shown in FIG.

【0021】本実施例によれば、実施例1と同様な効果
が得られるとともに、精研削用砥粒に導電性樹脂のコー
トを施す工程を省略できるので、この研削・研磨砥石の
製作を簡略にすることができる。また、無コート砥粒の
砥粒表面積はコートしてある砥粒と比べ小さくなるた
め、砥粒保持力は減少する。すなわち、研削抵抗が大き
い場合、砥粒の脱落が起きやすくなるため、砥石の加工
面に余分な負荷をかけずに加工を行うことができる。さ
らに、精研削時に精研削用砥粒を保持しているのは、鉄
系のメタルボンドであるため、実施例1のようにボンド
材と砥粒の間にクッションの作用をするものが介在しな
いので、加工面精度は実施例1の砥石による場合より高
い。
According to this embodiment, the same effect as that of the first embodiment can be obtained, and the step of applying the conductive resin coating to the fine-grinding abrasive grains can be omitted. Therefore, the production of this grinding / polishing grindstone is simplified. Can be Further, since the surface area of the uncoated abrasive grains is smaller than that of the coated abrasive grains, the abrasive grain holding power is reduced. That is, when the grinding resistance is large, the abrasive grains are likely to fall off, so that it is possible to perform processing without applying an extra load to the processing surface of the grindstone. Further, since the iron-based metal bond holds the fine-grinding abrasive grains during the fine-grinding, there is no cushioning material between the bond material and the abrasive grains as in the first embodiment. Therefore, the processed surface accuracy is higher than that of the grindstone of Example 1.

【0022】[0022]

【実施例3】図11〜図15は実施例3を示し、図11
は初期状態における砥石の縦断面図、図12は粗研削終
了時の砥石の縦断面図、図13は弱電解時の砥石の縦断
面図、図14は精研削終了時の砥石の縦断面図、図15
は強電解時の砥石の縦断面図である。本実施例は、実施
例1において粗研削用砥粒3と精研削用砥粒4とは同一
の材料を使用していたのに替えて、互いに異なる材料を
用いるところに特徴がある。その他の構成は実施例1と
同一であるため、特徴部分に関してのみ説明し、同一部
分の説明を省略する。
Third Embodiment FIGS. 11 to 15 show a third embodiment, and FIG.
Is a longitudinal sectional view of the grindstone in the initial state, FIG. 12 is a longitudinal sectional view of the grindstone at the end of rough grinding, FIG. 13 is a longitudinal sectional view of the grindstone at the time of weak electrolysis, and FIG. 14 is a longitudinal sectional view of the grindstone at the end of fine grinding. , Fig. 15
FIG. 4 is a vertical sectional view of a grindstone during strong electrolysis. The present embodiment is characterized in that the rough-grinding abrasive grain 3 and the fine-grinding abrasive grain 4 are made of the same material in the first embodiment, but are made of different materials. Since other configurations are the same as those of the first embodiment, only the characteristic parts will be described and the description of the same parts will be omitted.

【0023】図11において、粗研削用砥粒3と精研削
用砥粒4とはボンド材5によって保持されている。この
粗研削用砥粒3には、硬度的に精研削用砥粒より優れた
ものを用いる。例えば、粗研削用砥粒3にダイヤモンド
を使用した場合、精研削用砥粒4には、cBNやSiC
を用いる。また実施例1と同様に、粗研削用砥粒3は、
ボンド材5より電解されやすい金属コート2と、電解さ
れない導電性樹脂コート1によって被覆されており、精
研削用砥粒4は、電解されない導電性樹脂コート1によ
って被覆されている。ここで、金属コート2、導電性樹
脂コート1、ボンド材5はそれぞれ実施例1と同一の材
質のものを用いる。
In FIG. 11, the rough grinding abrasive grains 3 and the fine grinding abrasive grains 4 are held by a bond material 5. As the abrasive grains 3 for rough grinding, those which are superior in hardness to the abrasive grains for fine grinding are used. For example, when diamond is used for the rough grinding abrasive grains 3, the fine grinding abrasive grains 4 include cBN and SiC.
To use. Further, similarly to Example 1, the abrasive grains 3 for rough grinding are
The metal coat 2 which is easily electrolyzed by the bond material 5 and the electroconductive resin coat 1 which is not electrolyzed are covered, and the fine-grinding abrasive grains 4 are covered by the electroconductive resin coat 1 which is not electrolyzed. Here, the metal coat 2, the conductive resin coat 1, and the bond material 5 are made of the same materials as those in the first embodiment.

【0024】つぎに、この砥石を用いた研削加工におけ
る砥石の加工面の変化の過程を説明する。砥石の加工面
の初期状態は、図11に示すように、粗研削用砥粒3と
精研削用砥粒4とが加工面に露出している。この状態
で、硬脆材料のワークを粗研削すると、ワークとの接触
により、砥粒の突出部分のコートが剥がれた状態とな
る。このとき、砥粒硬度の高い粗研削用砥粒3は磨耗
や、破砕は起きにくいが、砥粒硬度の低い精研削用砥粒
4は磨耗や破砕が起きやすい。この状態を図12に示
す。ここで、弱い電解(砥石の大きさにより30〜60
Vの範囲で決める)をかけることにより粗研削用砥粒3
の金属コート2が溶出し、それに伴い保持されていた粗
研削用砥粒3が脱落する。その跡には、ボイド7が形成
され導電性樹脂コート1の層が残る。ボンド材5が溶出
するほどの電解ではないので、表面に酸化被膜6が付着
し電解作用が弱まる。精研削砥粒4は電解物質ではない
ので電解には関与せず、ボンド材5に保持されたままで
ある。また導電性樹脂コート1についても、導電性はあ
るが、電気分解されないので、精研削砥粒4および残留
した導電性コート1が脱落することはない。この状態を
図13に示す。
Next, the process of changing the working surface of the grindstone in the grinding process using this grindstone will be described. In the initial state of the processed surface of the grindstone, as shown in FIG. 11, the rough grinding abrasive grains 3 and the fine grinding abrasive grains 4 are exposed on the processed surface. In this state, when a work made of a hard and brittle material is roughly ground, the coating of the protruding portion of the abrasive grains is peeled off due to contact with the work. At this time, the coarse-grinding abrasive grain 3 having high abrasive grain hardness is less likely to be worn or crushed, but the fine-grinding abrasive grain 4 having low abrasive grain hardness is likely to be worn or crushed. This state is shown in FIG. Here, weak electrolysis (30-60 depending on the size of the grindstone)
(Determined within the range of V) 3 for rough grinding
The metal coat 2 of No. 3 is eluted, and the abrasive grains 3 for rough grinding held by the metal coat 2 fall off. In the trace, voids 7 are formed and the layer of the conductive resin coat 1 remains. Since the electrolysis is not so large that the bond material 5 is eluted, the oxide film 6 is attached to the surface and the electrolytic action is weakened. Since the fine grinding abrasive grains 4 are not an electrolytic substance, they do not participate in electrolysis and remain held by the bond material 5. The electroconductive resin coat 1 is also electroconductive, but is not electrolyzed, so that the fine-grinding abrasive grains 4 and the remaining electroconductive coat 1 do not fall off. This state is shown in FIG.

【0025】つぎに、電解を中断し、再び研削加工を行
う。このときは、砥石の加工面には精研削用砥粒4しか
存在していないので、精研削用砥粒4のみで精研削加工
が行わる。しかもこの時点で、精研削用砥粒4はある程
度磨耗したり、破砕した状態となっている。そして、砥
石の加工面がワークと接触することで電解によって生成
された酸化被膜6が剥がれ、ボンド材5が再び電解可能
な状態となる。この状態を図14に示す。加工終了後、
ボンド材5が溶出するような強い電解(砥石の大きさに
より60〜90Vの範囲で決める)をかけることによ
り、精研削用砥粒4および残留した導電性樹脂コ−ト1
が脱落し、砥石の加工面に新たな砥粒層が出現し、初期
状態に戻る。この状態を図15に示す。
Next, the electrolysis is interrupted and the grinding process is performed again. At this time, since only the fine-grinding abrasive grains 4 are present on the processed surface of the grindstone, the fine-grinding processing is performed only with the fine-grinding abrasive grains 4. Moreover, at this point, the fine-grinding abrasive grains 4 have been worn or crushed to some extent. Then, when the processed surface of the grindstone comes into contact with the work, the oxide film 6 generated by the electrolysis is peeled off, and the bond material 5 is again in the electrolyzable state. This state is shown in FIG. After processing,
By applying a strong electrolysis (determined in the range of 60 to 90 V depending on the size of the grindstone) so that the bond material 5 is eluted, the fine grinding abrasive grains 4 and the remaining conductive resin coat 1
Are removed, a new abrasive grain layer appears on the processed surface of the grindstone, and the initial state is restored. This state is shown in FIG.

【0026】本実施例によれば、実施例1と同様な効果
が得られるとともに、粗研削用砥粒に比較的硬度の高い
ものを用い、精研削用砥粒には粗研削用砥粒より硬度の
低いものを用いることにより、粗研削時には加工能力の
高い砥石として、精研削時にはワークの仕上げ面の品質
を良好にする砥石として機能させることができる。なぜ
なら、砥粒硬度が高いほどワークに対する機械的作用が
大きくなるので、加工能力(ワークの研削屑が除去され
る度合い)が大きくなり、砥粒硬度が低いものはその逆
となるからである。また、砥粒硬度の低い精研削用砥粒
においては、加工時の負荷により砥粒の磨耗や破砕が起
きやすく、磨耗により砥粒表面の鋭利な部分が減少し、
破砕により砥粒の大きさが小さくなる。よって、ワーク
の仕上げ面の品質を向上させることができる。
According to this embodiment, the same effect as in Embodiment 1 can be obtained, and the coarse-grinding abrasive grains having a relatively high hardness are used. By using the one having a low hardness, it can be made to function as a grindstone having a high processing ability during rough grinding and as a grindstone for improving the quality of the finished surface of the work during fine grinding. This is because the higher the abrasive grain hardness, the greater the mechanical action on the work, and thus the greater the processing capability (the degree to which the grinding dust of the work is removed) becomes, and the lower the abrasive grain hardness becomes. Further, in fine grinding abrasive grains with low abrasive grain hardness, abrasion or crushing of the abrasive grains easily occurs due to the load during processing, and the sharp portion of the abrasive grain surface decreases due to abrasion,
The crushing reduces the size of the abrasive grains. Therefore, the quality of the finished surface of the work can be improved.

【0027】本発明は、砥石のボンド材をメタルボンド
に規定したが、メタルボンド自体の材料は金属コートよ
り電解されにくければ何を用いてもよい。導電性樹脂に
関しては、導電性のある樹脂であれば、どのような材料
を使用しても構わない。また、砥粒は、ダイヤモンド、
cBN,SiCの外、どのような砥粒であってもよい。
さらに、砥石形状についても、電解するための装置が取
り付け可能であれば、カップ型、ストレート型、球形型
など、どのような砥石形状であってもよい。
In the present invention, the bond material of the grindstone is defined as a metal bond, but any material may be used as the material of the metal bond itself as long as it is hard to be electrolyzed by the metal coat. Regarding the conductive resin, any material may be used as long as it is a conductive resin. The abrasive grains are diamond,
Any abrasive grains other than cBN and SiC may be used.
Further, the shape of the grindstone may be any shape such as a cup type, a straight type, and a spherical type as long as a device for electrolysis can be attached.

【0028】さらに、実施例3は実施例1の粗研削用砥
粒と精研削用砥粒とを互いに硬度の異なる材質のものに
替えたものであるが、実施例2における粗研削用砥粒と
精研削用砥粒とを互いに硬度の異なるものに替えたもの
にすることができる。
Further, in the third embodiment, the rough grinding abrasive grains and the fine grinding abrasive grains of the first embodiment are replaced with those having different hardness. And the abrasive grains for precise grinding can be replaced with those having different hardness.

【0029】[0029]

【発明の効果】請求項1、2または3に係る発明および
請求項4または5に係る発明によれば、電解によって砥
粒の脱落もしくは保持を制御することにより、同一の砥
石で粗研削と精研削の双方を簡易な方法で能率的に行う
ことができる。また、電解装置を必要とするものの、研
削装置の改良や特別な治工具を必要としない。さらに、
電解することにより、粗研削時には常に新しい砥粒で加
工することができ、精研削時には粗研削砥粒の脱落によ
って生成されるボイドがチップポケットの役目をするた
め、目詰まりなどの不具合を防ぐことができる。請求項
2に係る発明によれば、上記効果に加え、精研削用砥粒
は弾力性のある導電性樹脂を介してボンド材に保持され
ているため、精研削時にワークへのダメージ(クラック
など)を最小限に抑える働きがある。請求項3に係る発
明によれば、上記効果に加え、粗研削時には加工能力の
高い砥粒を作用させ、精研削時にはワークの仕上げ面の
品質を重視した砥粒を作用させることができる。
According to the invention of claim 1, 2 or 3 and the invention of claim 4 or 5, the removal or retention of the abrasive grains is controlled by electrolysis, so that rough grinding and fine grinding can be performed with the same grindstone. Both grinding can be performed efficiently by a simple method. Further, although the electrolytic device is required, the improvement of the grinding device and the special jigs and tools are not required. further,
By electrolyzing, it is possible to always process with new abrasive grains during rough grinding, and during fine grinding, voids generated due to the removal of rough grinding grains serve as chip pockets, preventing problems such as clogging. You can According to the invention of claim 2, in addition to the above effects, since the fine-grinding abrasive grains are held by the bond material via the conductive resin having elasticity, damage to the work (crack or the like during fine-grinding) ) Is minimized. According to the third aspect of the invention, in addition to the above effects, it is possible to cause the abrasive grains having a high processing ability to act during the rough grinding, and to act on the finished surface quality of the workpiece during the fine grinding.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の初期状態における砥石の縦断面図で
ある。
FIG. 1 is a vertical sectional view of a grindstone in an initial state of Example 1.

【図2】実施例1の粗研削終了時の砥石の縦断面図であ
る。
FIG. 2 is a vertical cross-sectional view of a grindstone at the end of rough grinding in Example 1.

【図3】実施例1の弱電解時の砥石の縦断面図である。FIG. 3 is a vertical cross-sectional view of a grindstone during weak electrolysis of Example 1.

【図4】実施例1の精研削終了時の砥石の縦断面図であ
る。
FIG. 4 is a vertical cross-sectional view of a grindstone at the end of precise grinding according to the first embodiment.

【図5】実施例1の強電解時の砥石の縦断面図である。5 is a vertical cross-sectional view of a grindstone during strong electrolysis of Example 1. FIG.

【図6】実施例2の初期状態における砥石の縦断面図で
ある。
FIG. 6 is a vertical sectional view of a grindstone in an initial state of Example 2.

【図7】実施例2の粗研削終了時の砥石の縦断面図であ
る。
FIG. 7 is a vertical sectional view of a grindstone at the end of rough grinding according to a second embodiment.

【図8】実施例2の弱電解時の砥石の縦断面図である。FIG. 8 is a vertical cross-sectional view of a grindstone during weak electrolysis of Example 2.

【図9】実施例2の精研削終了時の砥石の縦断面図であ
る。
FIG. 9 is a vertical cross-sectional view of a grindstone at the end of precise grinding according to a second embodiment.

【図10】実施例2の強電解時の砥石の縦断面図であ
る。
FIG. 10 is a vertical sectional view of a grindstone during strong electrolysis of Example 2.

【図11】実施例3の初期状態における砥石の縦断面図
である。
FIG. 11 is a vertical cross-sectional view of a grindstone in an initial state of Example 3.

【図12】実施例3の粗研削終了時の砥石の縦断面図で
ある。
FIG. 12 is a vertical sectional view of a grindstone at the end of rough grinding according to a third embodiment.

【図13】実施例3の弱電解時の砥石の縦断面図であ
る。
FIG. 13 is a vertical cross-sectional view of a grindstone during weak electrolysis of Example 3.

【図14】実施例3の精研削終了時の砥石の縦断面図で
ある。
FIG. 14 is a vertical cross-sectional view of a grindstone at the end of precise grinding according to a third embodiment.

【図15】実施例3の強電解時の砥石の縦断面図であ
る。
FIG. 15 is a vertical cross-sectional view of a grindstone during strong electrolysis of Example 3.

【図16】従来技術1の研削装置の要部正面を示す概念
図である。
FIG. 16 is a conceptual diagram showing a front surface of a main part of a grinding device of prior art 1.

【図17】従来技術2のカプセル粒子を示す縦断面図で
ある。
FIG. 17 is a vertical cross-sectional view showing a capsule particle of Prior Art 2.

【符号の説明】[Explanation of symbols]

1 導電性樹脂コート 2 金属コート 3 粗研削用砥粒 4 精研削用砥粒 5 ボンド材 6 酸化被膜 7 ボイド 1 Conductive resin coat 2 metal coat 3 Coarse grinding abrasive grains 4 Abrasive grains for fine grinding 5 Bond material 6 oxide film 7 void

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解インプロセスドレッシング法により
ドレッシングしながら、硬脆材料からなるワークを研削
・研磨する研削・研磨砥石において、 粒径の大きな砥粒にボンド材より電解されやすい金属の
コートをしその上に電解しない導電性樹脂のコートをし
た粗研削用砥粒と、粒径の小さな精研削用砥粒とを、電
解される金属からなるボンド材にて結合して構成したこ
とを特徴とする研削・研磨砥石。
1. In a grinding / polishing grindstone for grinding / polishing a work made of a hard and brittle material while dressing by an electrolytic in-process dressing method, a large grain size abrasive grain is coated with a metal that is easily electrolyzed by a bond material. Rough grinding abrasive grains coated with a conductive resin that does not electrolyze thereon, and fine grinding abrasive grains having a small particle size are configured by bonding with a bond material made of a metal to be electrolyzed. Grinding / polishing whetstone.
【請求項2】 前記精研削用砥粒は、導電性樹脂によっ
てコートされていることを特徴とする請求項1記載の研
削・研磨砥石。
2. The grinding / polishing grindstone according to claim 1, wherein the fine-grinding abrasive grains are coated with a conductive resin.
【請求項3】 前記粗研削用砥粒は硬度の高い材質から
なり、前記精研削用砥粒は硬度の低い材質からなること
を特徴とする請求項1記載または請求項2記載の研削・
研磨砥石。
3. The grinding / grinding method according to claim 1, wherein the rough-grinding abrasive grains are made of a material having a high hardness, and the fine-grinding abrasive grains are made of a material having a low hardness.
Polishing whetstone.
【請求項4】 粒径の大きな砥粒にボンド材より電解さ
れやすい金属のコートをしその上に電解しない導電性樹
脂のコートをした粗研削用砥粒と、粒径の小さな精研削
用砥粒とを、電解される金属からなるボンド材にて結合
して構成した砥石に、前記ボンド材が溶出する強い電解
をかけて前記粗研削用砥粒を突出させた後、前記砥石の
加工面をワークに接触させて該ワークを粗研削加工する
工程と、 前記粗 研削加工により砥石の加工面の前記導電性樹脂の
コートが剥がれた粗研削用砥粒を、前記砥石に前記金属
のコートのみが溶出する弱い電解をかけることにより
加工面から脱落させる工程と前記砥石に電解をかけることを中断した 後、前記砥石の
加工面に存在するボンド材で保持されたままの前記精研
削用砥粒で再び前記ワークを精研削加工する工程と、 を有する ことを特徴とする加工方法。
4. Abrasive grains for coarse grinding, in which abrasive grains having a large grain size are coated with a metal that is more likely to be electrolyzed than a bond material, and a conductive resin that is not electrolyzed is coated thereon, and fine-grinding grains having a small grain size and grain, the grinding wheel constructed bonded to at bond material made of a metal that is electrolytic, after the bonding material has is projected abrasive grains for the rough grinding over a strong electrolyte you elution, machining of the grinding wheel The surface is brought into contact with the work and the work is roughly ground .
A step, wherein the conductive resin <br/> coat peeled rough grinding abrasive machining surface of the grinding by the rough grinding, the metal in said grindstone
Before by only coat exerts a weak electrolytic eluting
A step of Ru is falling from the serial processing surface, after interrupting the applying electrolysis to the grindstone, fine the fine the workpiece again in a grinding abrasive grain remains held by bond material present in the working surface of the grinding wheel processing method characterized by comprising the steps of grinding, the.
【請求項5】 前記精研削加工した後、前記ボンド材が
溶出する電解を砥石にかけて前記精研削用砥粒および残
留した導電性樹脂のコートを脱落させ、砥石の加工面に
新たな砥粒層を出現させることを特徴とする請求項4記
載の加工方法。
5. After the precise grinding process, an electrolysis that elutes the bond material is applied to a grindstone to remove the fine-grinding abrasive grains and the remaining conductive resin coat, and a new abrasive grain layer is formed on the surface of the grindstone. processing method according to claim 4, wherein the make emerge.
JP25826694A 1994-10-24 1994-10-24 Grinding / polishing whetstone and processing method using the whetstone Expired - Fee Related JP3477260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25826694A JP3477260B2 (en) 1994-10-24 1994-10-24 Grinding / polishing whetstone and processing method using the whetstone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25826694A JP3477260B2 (en) 1994-10-24 1994-10-24 Grinding / polishing whetstone and processing method using the whetstone

Publications (2)

Publication Number Publication Date
JPH08118238A JPH08118238A (en) 1996-05-14
JP3477260B2 true JP3477260B2 (en) 2003-12-10

Family

ID=17317856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25826694A Expired - Fee Related JP3477260B2 (en) 1994-10-24 1994-10-24 Grinding / polishing whetstone and processing method using the whetstone

Country Status (1)

Country Link
JP (1) JP3477260B2 (en)

Also Published As

Publication number Publication date
JPH08118238A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
JP3344558B2 (en) Electric dressing grinding method and apparatus
US6117001A (en) Electrolytic in-process dressing method, electrolytic in-process dressing apparatus and grindstone
JP4104199B2 (en) Molded mirror grinding machine
JP3530562B2 (en) Lens grinding method
JP3477260B2 (en) Grinding / polishing whetstone and processing method using the whetstone
JPH10175165A (en) Centerless grinding method using metal bond grinding wheel, and its device
JP3295896B2 (en) Electrolytic dressing method using adjustable total grinding wheel
JP3320194B2 (en) Electrolytic dressing grinding method and apparatus
JPH11262860A (en) Extremely precise grinding method and device
JP3078404B2 (en) Electrolytic dressing grinding method
JP3194624B2 (en) Grinding method and apparatus
JPH01188266A (en) Electrolytic dressing for electric conductive grindstone and device thereof
JP3294347B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPH0957622A (en) Grinding method with in-process electrolytic dressing
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JPH07186031A (en) Spherical surface grinding method and device
Peng et al. Grinding and dressing tools for precision machines
JPH07328907A (en) Spherical surface creative processing method and device thereof
JP2000288944A (en) Electrolytic in-process dressing machining grinding wheel
JPH07195261A (en) Spherical grinding method and device thereof
JP3048461B2 (en) Method for producing grinding wheel for electrolytic dressing containing submicron abrasive grains
JP3324778B2 (en) Processing method using grinding / polishing whetstone
JPH0885056A (en) Grinding method and grinding device
JPH11207618A (en) Method and device for truing conductive grinding wheel
JPH07290366A (en) Metal bond grinding wheel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees