JPH07183519A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07183519A
JPH07183519A JP32560493A JP32560493A JPH07183519A JP H07183519 A JPH07183519 A JP H07183519A JP 32560493 A JP32560493 A JP 32560493A JP 32560493 A JP32560493 A JP 32560493A JP H07183519 A JPH07183519 A JP H07183519A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
silicon film
insulating film
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32560493A
Other languages
Japanese (ja)
Inventor
Takaaki Kamimura
孝明 上村
Yasuto Kawahisa
慶人 川久
Yasumasa Goto
康正 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32560493A priority Critical patent/JPH07183519A/en
Publication of JPH07183519A publication Critical patent/JPH07183519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To improve the characteristics of a top gate type TFT in which polycrystalline silicon is used as an active layer. CONSTITUTION:The title semiconductor device manufacturing method consists of a process in which a polycrystalline silicon film 3 is formed on a translucent insulating substrate 1, a process in which the polycrystalline silicon film 3 is insularly patterned, a process in which a part of the surface of the polycrystalline silicon film 3 is removed by etching, a process in which a gate insulating film 4 is formed on the whole surface, a process with which a gate electrode 5 is formed on the gate insulating film 4, and a process in which a source/drain region 6 is formed by introducing a dopant into the polycrystalline silicon film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多結晶半導体膜上に絶
縁膜を介して制御電極が形成された構造を有する半導体
装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having a structure in which a control electrode is formed on a polycrystalline semiconductor film via an insulating film.

【0002】[0002]

【従来の技術】エレクトロルミネッセンス、発光ダイオ
−ド、プラズマ、液晶等を用いた表示デバイスは、表示
部の薄型化が可能であるため、計測機器や事務機器やコ
ンピュ−タ等の端末表示装置、或いは特殊な表示装置へ
の用途として要求が高まっている。
2. Description of the Related Art Display devices using electroluminescence, light-emitting diode, plasma, liquid crystal, etc. are capable of reducing the thickness of the display unit, so that terminal display devices for measuring instruments, office equipment, computers, etc., Alternatively, there is an increasing demand for use as a special display device.

【0003】これらの中で、近年、薄膜トランジスタ
(TFT)をスイッチング素子として用いたアクティブ
マトリックス型液晶表示装置が注目されている。特に高
精細液晶ディスプレイ(TFT−LCD)と周辺駆動回
路とを同一の透光性絶縁基板(例えばガラス基板や石英
基板)上に形成するいわゆる駆動回路一体型のものが現
在盛んに研究・開発されている。
Among these, in recent years, an active matrix type liquid crystal display device using a thin film transistor (TFT) as a switching element has attracted attention. Particularly, a so-called drive circuit integrated type in which a high-definition liquid crystal display (TFT-LCD) and a peripheral drive circuit are formed on the same translucent insulating substrate (for example, a glass substrate or a quartz substrate) has been actively researched and developed. ing.

【0004】このような液晶表示装置では、透光性絶縁
基板に歪みが入らないように、基板の歪み点以下の低温
で活性層としての多結晶シリコン膜を形成する技術が重
要となってくる。
In such a liquid crystal display device, a technique of forming a polycrystalline silicon film as an active layer at a low temperature below the strain point of the substrate is important so that no strain is introduced into the translucent insulating substrate. .

【0005】低温プロセスによる多結晶シリコン膜の成
膜方法としては、エキシマレーザアニール法や、プラズ
マCVD法があるが、前者の場合には大面積の多結晶シ
リコン膜を均一性良く形成できない欠点がある。
As a method of forming a polycrystalline silicon film by a low temperature process, there are an excimer laser annealing method and a plasma CVD method. However, the former method has a drawback that a large area polycrystalline silicon film cannot be formed with good uniformity. is there.

【0006】しかしながら、TFTの活性層である多結
晶シリコン膜をプラズマCVD法により形成する方法に
は以下のような問題があった。すなわち、コプラナ型T
FTや順スタガ型TFTのトップゲート型TFTの場
合、基板と多結晶シリコン膜との界面近傍において多結
晶シリコン膜の結晶性が劣化し、良好なTFT特性が得
られないという問題があった。
However, the method of forming the polycrystalline silicon film which is the active layer of the TFT by the plasma CVD method has the following problems. That is, coplanar type T
In the case of a top gate type TFT such as an FT or a forward stagger type TFT, there is a problem that the crystallinity of the polycrystalline silicon film deteriorates near the interface between the substrate and the polycrystalline silicon film, and good TFT characteristics cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】上述の如く、TFTの
活性層である多結晶シリコン膜をプラズマCVD法によ
り形成すると、基板と多結晶シリコン膜との界面近傍に
おいて多結晶シリコン膜の結晶性が乱れ、TFT特性が
劣化するという問題があった。
As described above, when the polycrystal silicon film which is the active layer of the TFT is formed by the plasma CVD method, the crystallinity of the polycrystal silicon film is increased in the vicinity of the interface between the substrate and the polycrystal silicon film. There is a problem that the TFT characteristics are disturbed and the TFT characteristics are deteriorated.

【0008】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、多結晶半導体膜上に絶
縁膜を介して制御電極が形成され、この制御電極により
絶縁膜側の多結晶半導体膜の表面のキャリア濃度を制御
する構造を備えた半導体装置の製造方法において、上記
多結晶半導体膜に起因する特性特性の劣化を改善するこ
とを目的とする。
The present invention has been made in view of the above circumstances. An object of the present invention is to form a control electrode on a polycrystalline semiconductor film via an insulating film, and the control electrode forms a control electrode on the insulating film side. In a method of manufacturing a semiconductor device having a structure for controlling the carrier concentration on the surface of a polycrystalline semiconductor film, it is an object of the present invention to improve deterioration of characteristic characteristics due to the polycrystalline semiconductor film.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の半導体装置の製造方法は、多結晶半導体
膜上に絶縁膜を介して制御電極が形成され、この制御電
極により絶縁膜側の多結晶半導体膜の表面のキャリア濃
度を制御する構造を備えた半導体装置の製造方法におい
て、多結晶半導体膜を形成し、その表面の一部を除去し
た後に、多結晶半導体膜上に絶縁膜を形成し、そして、
この絶縁膜上に制御電極を形成するようにしたものであ
る。
In order to achieve the above object, in a method of manufacturing a semiconductor device of the present invention, a control electrode is formed on a polycrystalline semiconductor film via an insulating film, and the control electrode is used for insulation. In a method for manufacturing a semiconductor device having a structure for controlling a carrier concentration on a surface of a polycrystalline semiconductor film on a film side, a polycrystalline semiconductor film is formed, and after removing a part of the surface, the polycrystalline semiconductor film is formed on the polycrystalline semiconductor film. Forming an insulating film, and
A control electrode is formed on this insulating film.

【0010】[0010]

【作用】従来、素子特性劣化の原因として、基板と多結
晶半導体膜との界面における多結晶半導体膜の結晶性の
劣化が大きな原因と考えられていたが、本発明者等の研
究によればこれ以外に、基板と反対側の多結晶半導体膜
の表面状態も素子特性に大きな影響を与えることが分か
った。
In the past, as the cause of the deterioration of the element characteristics, it was considered that the deterioration of the crystallinity of the polycrystalline semiconductor film at the interface between the substrate and the polycrystalline semiconductor film was a major cause. In addition to this, it was found that the surface state of the polycrystalline semiconductor film on the side opposite to the substrate also greatly affects the device characteristics.

【0011】すなわち、本発明者等によるTEM断面観
察の結果、多結晶半導体膜の表面の結晶性が悪く、これ
によって素子特性の劣化することが分かった。したがっ
て、上記知見に基づいて、多結晶半導体膜の表面の一部
を除去した後に、多結晶半導体膜上に絶縁膜を形成する
という本発明によれば、多結晶半導体膜と絶縁膜との界
面状態を良好なものとすることができ、素子特性を改善
できるようになる。
That is, as a result of TEM cross-section observation by the present inventors, it was found that the crystallinity of the surface of the polycrystalline semiconductor film was poor and the device characteristics were deteriorated. Therefore, based on the above findings, according to the present invention that the insulating film is formed on the polycrystalline semiconductor film after removing a part of the surface of the polycrystalline semiconductor film, an interface between the polycrystalline semiconductor film and the insulating film is obtained. The state can be improved and the device characteristics can be improved.

【0012】[0012]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1は、本発明の第1の実施例に係るコプラナ型T
FTの製造方法を示す工程断面図である。
Embodiments will be described below with reference to the drawings. FIG. 1 is a coplanar type T according to a first embodiment of the present invention.
It is process sectional drawing which shows the manufacturing method of FT.

【0013】まず、図1(a)に示すように、ガラス基
板などの透光性絶縁基板1上にSiO2 からなるアンダ
ーコート絶縁膜2を形成する。次いで原料ガスとしてS
iH4 とSiF4 との混合ガス、或いはSiH4 とSi
4 とH2 との混合ガスを用いたプラズマCVD法によ
り、アンダーコード絶縁膜2上に活性層となる約100
nmの多結晶シリコン膜3を形成する。
[0013] First, as shown in FIG. 1 (a), to form an undercoat insulating film 2 made of SiO 2 on the transparent insulating substrate 1 such as a glass substrate. Then S as a source gas
Mixed gas of iH 4 and SiF 4 , or SiH 4 and Si
A plasma CVD method using a mixed gas of F 4 and H 2 forms an active layer on the undercord insulating film 2 at about 100.
A polycrystalline silicon film 3 having a thickness of nm is formed.

【0014】ここで、多結晶シリコン膜3の形成前に、
2 プラズマやSiF4 プラズマによる界面処理を行な
っても良い。上記多結晶シリコン膜3のプラズマCVD
法による成膜方法を具体的に説明すると、平行平板型プ
ラズマCVD装置を用いて、例えば、基板温度を400
℃に設定し、原料ガスとしてSiH4 とSiF4 とH2
との混合ガスを使用し、それぞれの原料ガスを2scc
m、98sccm、50sccmの流量で圧力1Tor
rで導入するとともに、200WのRFパワーを投入し
て放電を発生させることにより、多結晶シリコン膜3を
形成する。
Here, before forming the polycrystalline silicon film 3,
Interface treatment with H 2 plasma or SiF 4 plasma may be performed. Plasma CVD of the polycrystalline silicon film 3
The film forming method by the method will be described in detail. For example, a parallel plate plasma CVD apparatus is used and the substrate temperature is set to 400.
Set to ℃, and use SiH 4 and SiF 4 and H 2 as source gases
2 sccc for each source gas using a mixed gas of
m, 98 sccm, 50 sccm flow rate 1 Torr
The polycrystalline silicon film 3 is formed by introducing an RF power of 200 W and applying an RF power of 200 W to generate a discharge.

【0015】次に図1(b)に示すように、多結晶シリ
コン膜3を島状にパターニングした後、H2 プラズマ
(H2 ラジカル)やSiF4 プラズマ(SiF4 ラジカ
ル)により多結晶シリコン膜3の表面を一部エッチング
除去し、続いて、真空一貫プロセスによりSiO2 から
なるゲート絶縁膜4を例えばプラズマCVD法により形
成する。
Next, as shown in FIG. 1B, after the polycrystalline silicon film 3 is patterned into an island shape, the polycrystalline silicon film is formed by H 2 plasma (H 2 radical) or SiF 4 plasma (SiF 4 radical). A part of the surface of 3 is removed by etching, and subsequently, a gate insulating film 4 made of SiO 2 is formed by, for example, a plasma CVD method by a vacuum consistent process.

【0016】ここで、多結晶シリコン膜3の表面を一部
エッチング除去したのは以下の理由による。すなわち、
本発明者等は、多結晶シリコン膜の表面の結晶性の劣化
が、素子特性を劣化させる大きな要因の一つであること
をつきとめた。
The reason why the surface of the polycrystalline silicon film 3 is partially removed by etching is as follows. That is,
The present inventors have found that the deterioration of the crystallinity of the surface of the polycrystalline silicon film is one of the major factors that deteriorate the device characteristics.

【0017】したがって、本実施例のように、多結晶シ
リコン膜3の表面の結晶性不良部を除去してから、多結
晶シリコン膜3上にゲート絶縁膜4を形成すれば、多結
晶シリコン膜3とゲート絶縁膜4との界面状態が良好な
ものとなり、素子特性を改善できるようになる。
Therefore, if the gate insulating film 4 is formed on the polycrystalline silicon film 3 after the defective crystallinity portion on the surface of the polycrystalline silicon film 3 is removed as in the present embodiment, the polycrystalline silicon film is formed. The state of the interface between the gate insulating film 3 and the gate insulating film 4 becomes good, and the device characteristics can be improved.

【0018】更に、真空一貫プロセスにより多結晶シリ
コン膜3およびゲート絶縁膜4を形成していることも、
多結晶シリコン膜3とゲート絶縁膜4との界面状態の改
善に寄与している。
Furthermore, the polycrystalline silicon film 3 and the gate insulating film 4 are formed by a vacuum integrated process.
It contributes to the improvement of the interface state between the polycrystalline silicon film 3 and the gate insulating film 4.

【0019】上記多結晶シリコン膜3の表面の一部をエ
ッチング除去する方法を具体的に説明すると、平行平板
型プラズマCVD装置を用いて、例えば、基板温度を室
温に保持し、エッチングガスとしてのH2 を100sc
cm、1Torrの条件で導入するとともに、100W
のRFパワーを投入して放電を発生させることにより、
多結晶シリコン膜3の表面を一部エッチング除去する。
A method for removing a part of the surface of the polycrystalline silicon film 3 by etching will be specifically described. For example, using a parallel plate plasma CVD apparatus, the substrate temperature is kept at room temperature and an etching gas is used. the H 2 100sc
cm, 1 Torr and 100W
By applying the RF power of
The surface of the polycrystalline silicon film 3 is partially removed by etching.

【0020】また、多結晶シリコン膜3のエッチング除
去量は、10nm程度であることが好ましい。次に図1
(c)に示すように、MoやTa等の高融点金属、或い
はドープした多結晶シリコンからなるゲート電極5を形
成する。次いでゲート電極5をマスクとして用いたイオ
ンドーピング法等により、例えば、PやB等のドーパン
トを多結晶シリコン膜3に打ち込み、この後、エキシマ
レーザアニール法等によりドーパントを活性化し、ソー
ス・ドレイン領域6を形成する。
The amount of the polycrystalline silicon film 3 removed by etching is preferably about 10 nm. Next in FIG.
As shown in (c), a gate electrode 5 made of refractory metal such as Mo or Ta or doped polycrystalline silicon is formed. Then, a dopant such as P or B is implanted into the polycrystalline silicon film 3 by an ion doping method or the like using the gate electrode 5 as a mask, and thereafter, the dopant is activated by an excimer laser annealing method or the like to form the source / drain regions. 6 is formed.

【0021】最後に、図1(d)に示すように、例え
ば、SiO2 からなる層間絶縁膜7を全面に形成し、ソ
ース・ドレイン領域6上にコンタクトホールを開孔した
後、例えば、Alからなるソース・ドレイン電極8の形
成してコプラナ型TFTが完成する。
Finally, as shown in FIG. 1D, an interlayer insulating film 7 made of, for example, SiO 2 is formed on the entire surface, contact holes are formed on the source / drain regions 6, and then, for example, Al is used. A source / drain electrode 8 made of is formed to complete a coplanar TFT.

【0022】このような製造方法により作成したコプラ
ナ型TFTを評価したところ、ON/OFF比が105
以上、電界効果移動度が50cm2 /V・sec程度と
いう良好なTFT特性が得られた。
When the coplanar TFT manufactured by the above manufacturing method was evaluated, the ON / OFF ratio was 10 5
As described above, good TFT characteristics with a field effect mobility of about 50 cm 2 / V · sec were obtained.

【0023】以上述べたように、本実施例によれば、多
結晶シリコン膜3の表面を一部エッチング除去してから
ゲート絶縁膜4を形成しているので、多結晶シリコン膜
3と絶縁膜4との界面状態が良好になり、素子特性を改
善できる。
As described above, according to the present embodiment, the gate insulating film 4 is formed after the surface of the polycrystalline silicon film 3 is partially removed by etching. Therefore, the polycrystalline silicon film 3 and the insulating film are formed. The interface state with 4 becomes favorable, and the device characteristics can be improved.

【0024】図2は、本発明の第2の実施例に係る順ス
タガ型TFTの製造方法を示す工程断面図である。ま
ず、図2(a)に示すように、ガラス基板等の透光性絶
縁基板21上にSiO2 からなるアンダーコート絶縁膜
22を形成する。次いでMoやTa等の高融点金属膜、
或いはドープした多結晶シリコン膜と高融点金属膜との
積層膜からなるソース・ドレイン電極23を形成する。
この後、第1の実施例と同様な方法により、全面に多結
晶シリコン膜24を形成する。
FIG. 2 is a process sectional view showing a method of manufacturing a forward stagger type TFT according to a second embodiment of the present invention. First, as shown in FIG. 2A, an undercoat insulating film 22 made of SiO 2 is formed on a transparent insulating substrate 21 such as a glass substrate. Next, a refractory metal film such as Mo or Ta,
Alternatively, the source / drain electrodes 23 are formed of a laminated film of a doped polycrystalline silicon film and a refractory metal film.
After that, the polycrystalline silicon film 24 is formed on the entire surface by the same method as in the first embodiment.

【0025】次に図2(b)に示すように、多結晶シリ
コン膜24を島状にパターニングした後、第1の実施例
と同様な方法により、多結晶シリコン膜23の表面を一
部エッチング除去する。そして、真空一貫プロセスによ
りSiO2 からなるゲート絶縁膜25を例えばプラズマ
CVD法により全面に形成する。
Next, as shown in FIG. 2B, after the polycrystalline silicon film 24 is patterned into an island shape, the surface of the polycrystalline silicon film 23 is partially etched by the same method as in the first embodiment. Remove. Then, the gate insulating film 25 made of SiO 2 is formed on the entire surface by, for example, the plasma CVD method by the vacuum consistent process.

【0026】次に図2(c)に示すように、MoやTa
等の高融点金属、あるいはドープした多結晶シリコンか
らなるゲート電極26を形成する。次いでゲート電極2
6をマスクとして用いたイオンドーピング法等により、
例えば、PやB等のドーパントを多結晶シリコン膜23
を打ち込む。最後に、エキシマレーザアニール法等によ
り上記ドーパントを活性化し、ソース・ドレイン領域2
7を形成して、順スタガ型TFTが完成する。
Next, as shown in FIG. 2C, Mo and Ta
A gate electrode 26 made of a refractory metal such as the above or doped polycrystalline silicon is formed. Then the gate electrode 2
By the ion doping method using 6 as a mask,
For example, a dopant such as P or B is added to the polycrystalline silicon film 23.
Type in. Finally, the source / drain region 2 is activated by activating the above-mentioned dopant by an excimer laser annealing method or the like.
7 is formed to complete the forward stagger type TFT.

【0027】このような製造方法により作成した順スタ
ガ型TFTを評価したところ、先の実施例のコプラナ型
TFTと同様に良好なTFT特性を示すことが分かっ
た。なお、本発明は上述した実施例に限定されるもので
はない。
When the forward stagger type TFT manufactured by such a manufacturing method was evaluated, it was found that the TFT exhibited favorable TFT characteristics like the coplanar type TFT of the previous embodiment. The present invention is not limited to the above embodiment.

【0028】例えば、上記実施例では、多結晶半導体膜
として多結晶シリコン膜を用いたが、シリコンカーバイ
トやシリコンゲルマなど、真性半導体の多結晶膜や化合
物半導体などの他の多結晶半導体膜に対しても本発明は
有効である。
For example, although a polycrystalline silicon film is used as the polycrystalline semiconductor film in the above-described embodiments, it may be used as another polycrystalline semiconductor film such as an intrinsic semiconductor polycrystalline film such as silicon carbide or silicon germanium or a compound semiconductor. On the other hand, the present invention is effective.

【0029】また、絶縁膜としてSiO2 膜を例にあげ
たが、他の絶縁膜、例えば、シリコン窒化膜、メタルの
陽極酸化膜等を用いても良い。また、多結晶半導体膜の
表面のエッチング方法としてプラズマエッチングを例に
あげたが、他のエッチング方法、例えば、ウエットエッ
チングや水銀増感反応を用いたラジカル水素によるエッ
チングであっても良い。
Although the SiO 2 film is used as an example of the insulating film, other insulating films such as a silicon nitride film and a metal anodic oxide film may be used. Further, although plasma etching has been described as an example of the method for etching the surface of the polycrystalline semiconductor film, other etching methods such as wet etching and etching with radical hydrogen using a mercury sensitization reaction may be used.

【0030】また、半導体装置としてTFTを例にあげ
たが、CCDやDRAMにも適用できる。要は多結晶半
導体膜上に絶縁膜を介して制御電極が形成され、この制
御電極により前記絶縁膜側の前記多結晶半導体膜の表面
のキャリア密度を制御する構造を備えた半導体装置であ
れば良い。その他、本発明の要旨を逸脱しない範囲で、
種々変形して実施できる。
Although the TFT is taken as an example of the semiconductor device, it can be applied to a CCD or a DRAM. In short, a semiconductor device having a structure in which a control electrode is formed on a polycrystalline semiconductor film via an insulating film, and the control electrode controls the carrier density on the surface of the polycrystalline semiconductor film on the insulating film side good. In addition, within the scope of the present invention,
Various modifications can be implemented.

【0031】[0031]

【発明の効果】以上詳述したように本発明によれば、結
晶性が悪い部分である多結晶シリコン膜の表面部を除去
してから、多結晶シリコン膜上に絶縁膜を形成している
ので、素子特性を改善できるようになる。
As described above in detail, according to the present invention, the insulating film is formed on the polycrystalline silicon film after removing the surface portion of the polycrystalline silicon film, which is the portion having poor crystallinity. Therefore, the device characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係るコプラナ型TFT
の製造方法を示す工程断面図
FIG. 1 is a coplanar type TFT according to a first embodiment of the present invention.
Process sectional drawing showing the manufacturing method of

【図2】本発明の第2の実施例に係る順スタガ型TFT
の製造方法を示す工程断面図
FIG. 2 is a forward stagger type TFT according to a second embodiment of the present invention.
Process sectional drawing showing the manufacturing method of

【符号の説明】[Explanation of symbols]

1…透光性絶縁基板 2…アンダーコート絶縁膜 3…多結晶シリコン膜 4…ゲート絶縁膜 5…ゲート電極(制御電極) 6…ソース・ドレイン領域 7…層間絶縁膜 8…ソース・ドレイン電極 21…透光性絶縁基板 22…アンダーコート絶縁膜 23…ソース・ドレイン電極 24…多結晶シリコン膜 25…ゲート絶縁膜(制御電極) 26…ゲート電極 27…ソース・ドレイン領域 DESCRIPTION OF SYMBOLS 1 ... Translucent insulating substrate 2 ... Undercoat insulating film 3 ... Polycrystalline silicon film 4 ... Gate insulating film 5 ... Gate electrode (control electrode) 6 ... Source / drain region 7 ... Interlayer insulating film 8 ... Source / drain electrode 21 Translucent insulating substrate 22 Undercoat insulating film 23 Source / drain electrode 24 Polycrystalline silicon film 25 Gate insulating film (control electrode) 26 Gate electrode 27 Source / drain region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多結晶半導体膜上に絶縁膜を介して制御電
極が形成され、この制御電極により前記絶縁膜側の前記
多結晶半導体膜の表面のキャリア濃度を制御する構造を
備えた半導体装置の製造方法において、 前記多結晶半導体膜を形成する工程と、この多結晶シリ
コン膜の表面の一部を除去した後に、前記多結晶半導体
膜上に前記絶縁膜を形成する工程と、この絶縁膜上に前
記制御電極を形成する工程とを有することを特徴とする
半導体装置の製造方法。
1. A semiconductor device having a structure in which a control electrode is formed on a polycrystalline semiconductor film via an insulating film, and the control electrode controls the carrier concentration on the surface of the polycrystalline semiconductor film on the insulating film side. In the manufacturing method, the step of forming the polycrystalline semiconductor film, the step of forming the insulating film on the polycrystalline semiconductor film after removing a part of the surface of the polycrystalline silicon film, and the insulating film And a step of forming the control electrode thereon.
JP32560493A 1993-12-24 1993-12-24 Manufacture of semiconductor device Pending JPH07183519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32560493A JPH07183519A (en) 1993-12-24 1993-12-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32560493A JPH07183519A (en) 1993-12-24 1993-12-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH07183519A true JPH07183519A (en) 1995-07-21

Family

ID=18178734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32560493A Pending JPH07183519A (en) 1993-12-24 1993-12-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH07183519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036604A (en) * 1998-07-21 2000-02-02 Matsushita Electric Ind Co Ltd Manufacture of thin-film transistor circuit and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036604A (en) * 1998-07-21 2000-02-02 Matsushita Electric Ind Co Ltd Manufacture of thin-film transistor circuit and liquid crystal display device

Similar Documents

Publication Publication Date Title
JP5317384B2 (en) Control of silicon nitride film properties and uniformity by controlling film-forming precursors
US5977559A (en) Thin-film transistor having a catalyst element in its active regions
KR100191091B1 (en) Thin film transistor and its fabrication method
KR100417539B1 (en) A semiconductor device
JPH08228011A (en) Semiconductor device and manufacture thereof
JP2012119691A (en) Thin film transistor manufacturing method
US5700699A (en) Method for fabricating a polycrystal silicon thin film transistor
KR100344845B1 (en) semiconductor equipment and the same methode
JP3171673B2 (en) Thin film transistor and method of manufacturing the same
JP5344205B2 (en) Multilayer wiring, semiconductor device using the multilayer wiring, and manufacturing method thereof
JPH07183519A (en) Manufacture of semiconductor device
JPH06260644A (en) Manufacture of semiconductor device
JP2925007B2 (en) Method for manufacturing thin film transistor
JP2001036078A (en) Mos-type transistor and manufacture thereof
JPH04221854A (en) Thin film semiconductor device
KR101201316B1 (en) buffer insulation layer and semiconductor device having the same and method for fabricating of the semiconductor device
KR970011502B1 (en) Thin film transistor manufacturing method
JPH05291220A (en) Manufacture of semiconductor device
JPH09162405A (en) Semiconductor device and its manufacture
JP2002190606A (en) Method for manufacturing top gate thin-film transistor
JPH11274508A (en) Method for manufacturing thin film transistor
JPH08186262A (en) Manufacture of thin film transistor
JP3346060B2 (en) Method for manufacturing thin film semiconductor device
WO2010024278A1 (en) Method for manufacturing thin film transistor and thin film transistor
JP2877129B2 (en) Thin film transistor and method of manufacturing the same