JPH07177769A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPH07177769A
JPH07177769A JP5325436A JP32543693A JPH07177769A JP H07177769 A JPH07177769 A JP H07177769A JP 5325436 A JP5325436 A JP 5325436A JP 32543693 A JP32543693 A JP 32543693A JP H07177769 A JPH07177769 A JP H07177769A
Authority
JP
Japan
Prior art keywords
rotor
vibrator
contact
exciter
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5325436A
Other languages
Japanese (ja)
Inventor
Takashi Maeno
隆司 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5325436A priority Critical patent/JPH07177769A/en
Publication of JPH07177769A publication Critical patent/JPH07177769A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To provide a vibration wave motor which can form a travelling wave without using a piezoelectric element. CONSTITUTION:A vibration wave motor comprises a vibrator and a member, for example, a rotor 1 which is in contact with the vibrator. The vibrator has a field generating means comprising a plurality of drive coils 2 which generate one or a plurality of magnetic fields at the surface in contact with the rotor. The magnetic field generating means is driven with a rotating magnetic field which is almost matched with the natural frequency of the rotor 1 so that the rotor 1 is excited with a travelling wave to generate elliptical movement of the surface particles at the area of rotor 1 in contact with the vibrator. Thereby, the rotor 1 is rotated against the vibrator. A part of the rotor 1 corresponding to the area where the magnetic field excited by the vibrator is generated is attracted and deformed. When this area proceeds in the moving direction, the travelling wave is generated in the rotor 1 and the rotor 1 rotates when it receives a pressurizing force resulting from attraction force between the vibrator and rotor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は振動波モータに係り、詳
しくは加振子に励起した磁気的な吸着力の変化を利用し
て進行波を例えばロータに形成してロータを回転させる
振動波モータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration wave motor, and more particularly to a vibration wave motor for forming a traveling wave on a rotor by utilizing a change in magnetic attraction force excited on an exciter and rotating the rotor. Regarding

【0002】[0002]

【従来の技術】振動を利用したモータとしては、特開昭
59−201684号、特開昭59−201685号公
報に記載の円環型の超音波モータが知られている。
2. Description of the Related Art As a motor utilizing vibration, an annular ultrasonic motor described in JP-A-59-201684 and JP-A-59-201685 is known.

【0003】この超音波モータの概略を図13に基づい
て説明すると、振動子4の1部に設けられた圧電素子4
aによって振動子4の固有振動が励起され、ロータ3と
の接触面に楕円運動が発生する。するとロータ3は楕円
の上部に接して回転する。3aは振動子4とロータ3の
接触面積調整用弾性部材、4bは周方向振幅拡大用突起
である。
The outline of this ultrasonic motor will be described with reference to FIG. 13. A piezoelectric element 4 provided in a part of a vibrator 4 is described.
The natural vibration of the oscillator 4 is excited by a, and an elliptic motion is generated on the contact surface with the rotor 3. Then, the rotor 3 rotates in contact with the upper part of the ellipse. 3a is an elastic member for adjusting the contact area between the vibrator 4 and the rotor 3, and 4b is a projection for enlarging the amplitude in the circumferential direction.

【0004】[0004]

【発明が解決しようとする課題】上記の超音波モータは
種々の利点があるものの、以下のような難点も指摘され
ている。
Although the above ultrasonic motor has various advantages, the following problems have been pointed out.

【0005】圧電素子を用いるためコスト高となる。
また、圧電素子は鉛を用いるため、環境に影響がある。
Since a piezoelectric element is used, the cost is high.
Further, since the piezoelectric element uses lead, it has an effect on the environment.

【0006】加圧力が常に一定なので低速で動作させ
にくい。また、低速時の摺動部での損失が大きい。
Since the pressing force is always constant, it is difficult to operate at low speed. Also, the loss at the sliding portion is large at low speeds.

【0007】軸方向の圧接力を支えるための軸受が必
要。
A bearing is required to support the axial pressure contact force.

【0008】振動子に圧電素子が取りつけられるた
め、振動子の内部損失が大。
Since the piezoelectric element is attached to the vibrator, the internal loss of the vibrator is large.

【0009】本発明はこのような問題を解決し、圧電素
子を用いることなく進行波を形成することができる振動
波モータを提供することにある。
An object of the present invention is to solve the above problems and provide a vibration wave motor capable of forming a traveling wave without using a piezoelectric element.

【0010】[0010]

【課題を解決するための手段および作用】本発明の目的
を実現する振動波モータの構成は、加振子と該加振子に
接触する部材とを有し、該加振子は該部材との接触面に
1又は複数の磁界を発生させる磁界発生手段を有し、該
部材の有する固有振動数と略一致した周期で該磁界発生
手段を駆動することにより該部材に弾性進行波を励起
し、該部材の該加振子との接触部の表面粒子に楕円運動
を生じさせ、該加振子と該部材とを相対移動させること
を特徴とし、加振子に励起される磁界の発生する個所に
対応するロータ等の該物体が吸引変形され、この箇所が
移動方向に進行することにより、該ロータに進行波が形
成され、該両者の吸引力に伴う加圧力を受けてロータが
回転する。
A structure of a vibration wave motor for achieving the object of the present invention includes a vibrating element and a member that comes into contact with the vibrating element, and the vibrating element has a contact surface with the member. Has a magnetic field generating means for generating one or a plurality of magnetic fields, and the elastic traveling wave is excited in the member by driving the magnetic field generating means at a cycle substantially matching the natural frequency of the member, Of the rotor, which is characterized by causing an elliptical motion in the surface particles at the contact portion with the exciter to move the exciter and the member relative to each other, and corresponding to a location where a magnetic field excited by the exciter is generated. The object is sucked and deformed, and a traveling wave is formed in the rotor by advancing in this direction in the moving direction, and the rotor rotates under the pressure applied by the suction force of the both.

【0011】[0011]

【実施例】図1は第1の実施例である。EXAMPLE FIG. 1 shows a first example.

【0012】図1の(a)において1は鉄等の磁性体か
らなる円環形状に形成された金属製のロータである。図
1の(b)において2は加振子である。2aは弾性部
材、2bは鉄芯、2cはコイル、2dは基板で、鉄芯2
bには放射方向に等ピッチで6箇所の切溝が形成され、
その間の凸部夫々コイル2cが巻れている。図(c)の
ように、対向する一対のコイル2cに交流電流i1 ,i
2 ,i3 を夫々流すと、鉄芯2bには磁束が発生し、加
振子2の上面には磁気吸引力が生じ、図1の(d)に示
すようにロータ1と加振子2は吸着される。いま、図2
(a)〜(c)〜(A)側に示すように、磁束密度B1
〜B3 が発生するように、電流i1 〜i3を、時間的位
相を変えて入力する。すると、磁気吸引力は、図2の
(a)〜(c)の(B)側に示すような形、即ち f1 (t)=f1 ’(1−cosωt) f2 (t)=f2 ’{1−cos(ωt+2/3π)} f3 (t)=f3 ’{1−cos(ωt+4/3π)} のような分布となる。ここでωは加振角周波数である。
In FIG. 1 (a), reference numeral 1 designates a metallic rotor made of a magnetic material such as iron and formed in an annular shape. In FIG. 1B, 2 is an exciter. 2a is an elastic member, 2b is an iron core, 2c is a coil, 2d is a substrate, and the iron core 2 is
In b, 6 kerfs are formed at equal pitch in the radial direction,
The coil 2c is wound around each of the convex portions in between. As shown in the figure (c), alternating currents i 1 and i
When 2 and i 3 respectively flow, a magnetic flux is generated in the iron core 2b, a magnetic attraction force is generated on the upper surface of the exciter 2, and the rotor 1 and the exciter 2 are attracted to each other as shown in (d) of FIG. To be done. Figure 2 now
As shown on the (a) to (c) to (A) sides, the magnetic flux density B 1
The currents i 1 to i 3 are input with different temporal phases so that B 3 to B 3 are generated. Then, the magnetic attraction force has a shape as shown on the (B) side of (a) to (c) of FIG. 2, that is, f 1 (t) = f 1 '(1-cosωt) f 2 (t) = f 2 a distribution such as '{1-cos (ωt + 2 / 3π)} f 3 (t) = f 3' {1-cos (ωt + 4 / 3π)}. Where ω is the excitation angular frequency.

【0013】振幅f1 ’≒f2 ’≒f3 ’のとき、磁気
吸引力は、円周上をυ=ω/2πλ(λは波長、λ=π
d/2)(dは鉄芯2bの中心直径)の速さで進行す
る。
When the amplitude f 1 ′ ≈f 2 ′ ≈f 3 ′, the magnetic attraction force is υ = ω / 2πλ (λ is the wavelength, λ = π
d / 2) (d is the center diameter of the iron core 2b).

【0014】ロータ1は、図3に示す円(真円)環形状
であるため、4か所に節をもち、その間の腹の部分が面
外方向に振動する固有モードをもつ。このモードの固有
角振動数がωに近いとき、磁気吸引力に対応して、ロー
タには固有モード形状の進行波が発生する。
Since the rotor 1 has a circular (true circle) ring shape shown in FIG. 3, it has four nodes, and an antinode portion between them has an eigenmode in which it vibrates in the out-of-plane direction. When the natural angular frequency of this mode is close to ω, a traveling wave having a natural mode shape is generated in the rotor corresponding to the magnetic attraction force.

【0015】図4,図5はその様子を示す図で、ロータ
1と加振子2を周方向に展開し、長手方向に拡大して図
示されている。図4は、左から2番目と5番目の鉄芯2
b−2,2b−5における吸引力が最大となった瞬間で
あり、ロータ1のその上の部分が下向きにたわみ、弾性
部材2aが圧縮されている。吸引力が図中右側に進行し
ていくと、ロータ1内の弾性進行波も、それにつれて右
側へ移動してゆきつつ、振幅が拡大してゆく。吸引力に
よる加振力が一定のとき、ロータの振幅はある一定値に
飽和する。そのときの図が図5である。即ち、ロータ1
は加振子2の弾性部材と2か所で接し、その間の部分、
つまり、両端と中央では隙間が生じている。弾性部材2
aは、吸引力により、接触部においてのみ圧縮されてい
る。
FIGS. 4 and 5 are views showing this state, in which the rotor 1 and the exciter 2 are expanded in the circumferential direction and enlarged in the longitudinal direction. Figure 4 shows the second and fifth iron cores 2 from the left.
It is the moment when the suction force at b-2, 2b-5 becomes maximum, and the upper portion of the rotor 1 is bent downward, and the elastic member 2a is compressed. As the suction force progresses to the right side in the figure, the elastic traveling wave in the rotor 1 also moves to the right side accordingly, and the amplitude expands. When the excitation force due to the suction force is constant, the amplitude of the rotor saturates at a certain constant value. FIG. 5 is a diagram at that time. That is, the rotor 1
Is in contact with the elastic member of the exciter 2 at two places, the part between them,
That is, there is a gap between both ends and the center. Elastic member 2
a is compressed only at the contact portion due to the suction force.

【0016】このとき、ロータ1には、中立面(一点鎖
線)からの距離にほぼ比例した周方向(図中左右方向)
振幅が生じるため、ロータ1の下面には、従来の超音波
モータと同様、楕円運動が生じる。ロータ1の下面と弾
性部材2aが接触する位置では、ロータ1上の点は左向
きに動こうとするため、これが2aにより拘束された結
果、ロータ1は右方向、即ち進行波と同じ方向へ移動し
てゆく。
At this time, the rotor 1 has a circumferential direction (horizontal direction in the drawing) substantially proportional to the distance from the neutral plane (dotted line).
Since the amplitude is generated, an elliptic motion is generated on the lower surface of the rotor 1 as in the conventional ultrasonic motor. At the position where the lower surface of the rotor 1 and the elastic member 2a come into contact, the point on the rotor 1 tries to move to the left, and as a result of being constrained by 2a, the rotor 1 moves in the right direction, that is, in the same direction as the traveling wave. Do it.

【0017】図6は第2の実施例である。本実施例はロ
ータ1の下面に突起1aを設けることにより、中立面の
高さを上げ、周方向振幅を拡大している。これにより、
ロータの軸方向振幅が等しいとき、ロータの回転速度を
速くすることができる。
FIG. 6 shows a second embodiment. In this embodiment, the height of the neutral surface is increased and the circumferential amplitude is increased by providing the projection 1a on the lower surface of the rotor 1. This allows
When the axial amplitudes of the rotor are equal, the rotational speed of the rotor can be increased.

【0018】図7は第3の実施例を示す。本実施例は、
円環状のロータ1の内側に円板状の支持板1bを固定す
ると共に、この支持板1bの中心に出力軸1cを設け、
軸出力を得る構成としている。なお支持板1bと出力軸
1cはロータ1の振動により出力軸1cが励振されにく
いような剛性及び質量をもつ物体とする。
FIG. 7 shows a third embodiment. In this example,
A disk-shaped support plate 1b is fixed to the inside of the annular rotor 1, and an output shaft 1c is provided at the center of the support plate 1b.
It is configured to obtain the shaft output. The support plate 1b and the output shaft 1c are objects having rigidity and mass such that the output shaft 1c is hardly excited by the vibration of the rotor 1.

【0019】図8は第4の実施例を示す。上記した第1
の実施例では、加振子2の下部にコイル2cを軸方向を
巻中心として巻回しているが、本実施例ではコイル2c
の巻中心を径方向とすると共に、コイル2cを内周側に
配置し、これにより加振子2の厚みを減少させている。
FIG. 8 shows a fourth embodiment. First mentioned above
In the embodiment, the coil 2c is wound around the lower part of the exciter 2 with the axial direction as the winding center, but in the present embodiment, the coil 2c is wound.
The coil 2c is arranged in the radial direction and the coil 2c is arranged on the inner peripheral side, whereby the thickness of the exciter 2 is reduced.

【0020】図9は第5の実施例を示す。図8の弾性部
材2aは鉄芯2bの上面全面に設けられた、樹脂のよう
なヤング率の小さい部材だったのに対し、本実施例では
鉄芯2bの先端をフランジ状つばばね形状とすることに
よって軸方向の弾性をもたせている。
FIG. 9 shows a fifth embodiment. The elastic member 2a in FIG. 8 is a member having a small Young's modulus, such as a resin, provided on the entire upper surface of the iron core 2b, whereas in the present embodiment, the tip of the iron core 2b has a flange-shaped brim spring shape. This gives it elasticity in the axial direction.

【0021】図10は第6の実施例を示す。上記の各実
施例はロータ1の固有モードとして、リングの節直径2
のモードを用いていたが、ロータの加振子との接触面に
進行波を生じさせることができるならば、他のモードで
もよい。そこで本実施例では図10の(a)のような長
さ方向中央にくびれ部10aを有する棒状のロータ10
に図10の(c)に示すような棒の曲げ1次モードを用
いる。一方、図10の(b)の加振子2に、常に1か所
の吸引力が最大となりつつ回転する磁場を与える。吸引
力の周波数がロータの曲げモードの固有振動数と略一致
しているならば、ロータは図10の(c)のように、弾
性部材2aと接しながら回転する。
FIG. 10 shows a sixth embodiment. In each of the above-described embodiments, the nodal diameter of the ring is 2 as the eigenmode of the rotor 1.
Although the above mode was used, another mode may be used as long as a traveling wave can be generated on the contact surface of the rotor with the exciter. Therefore, in this embodiment, a rod-shaped rotor 10 having a constricted portion 10a at the center in the longitudinal direction as shown in FIG.
The bending first-order mode of the rod as shown in FIG. On the other hand, the exciter 2 shown in FIG. 10B is always given a magnetic field that rotates while the suction force at one location is maximized. If the frequency of the attraction force is substantially equal to the natural frequency of the bending mode of the rotor, the rotor rotates while contacting the elastic member 2a, as shown in (c) of FIG.

【0022】図11は第7の実施例を示す。本実施例
は、ロータ30の面内(半径方向)曲げモードを用いる
例である。図のように、楕円状に変形するモードの固有
振動数に略一致した回転する加振力を加振子40に与え
ることにより、ロータ30は回転する。40aは弾性部
材、40bは鉄芯、40cはコイル、40dは基板を示
す。
FIG. 11 shows a seventh embodiment. The present embodiment is an example of using the in-plane (radial direction) bending mode of the rotor 30. As shown in the figure, the rotor 30 is rotated by applying a rotating exciting force to the exciter 40 that substantially matches the natural frequency of the elliptical mode. 40a is an elastic member, 40b is an iron core, 40c is a coil, and 40d is a substrate.

【0023】図12は第8の実施例を示す。これまで説
明した実施例では、図2のような加振力を加振子に発生
させていたが、他の分布でもよく。図12の(a)では
正弦波状の磁束密度Bを発生させて、それを整流した形
の加振力fを得ている。
FIG. 12 shows an eighth embodiment. In the embodiment described so far, the exciting force as shown in FIG. 2 is generated in the exciter, but other distributions may be used. In (a) of FIG. 12, a sinusoidal magnetic flux density B is generated, and an exciting force f in a rectified form is obtained.

【0024】図12の(b)では、パルス状の磁界密度
Bを発生させてパルス状の加振力fを得ている。
In FIG. 12B, a pulsed magnetic field density B is generated to obtain a pulsed excitation force f.

【0025】図12の(c)では、正弦波の磁界密度B
に直流成分を加えた形の加振力fを得ている。
In FIG. 12C, the magnetic field density B of the sine wave
The excitation force f is obtained by adding the DC component to

【0026】図12の(d)では、図12の(c)と同
様に正弦波の磁界密度Bに直流成分を加えた形の加振力
fを得ているが、直流成分fDCの量を変化させることに
よって、加振力は変えずに加圧力を変える効果をもたせ
ている。
In (d) of FIG. 12, an exciting force f is obtained by adding a direct current component to the sinusoidal magnetic field density B as in (c) of FIG. 12, but the amount of the direct current component f DC is obtained. The effect of changing the applied pressure without changing the exciting force is obtained by changing the.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば以
下のような効果が得られる。
As described above, according to the present invention, the following effects can be obtained.

【0028】圧電素子を用いないためD−コストとな
る。また、環境に影響を与える部品がい。
Since the piezoelectric element is not used, there is a D-cost. Also, there are no parts that affect the environment.

【0029】加圧力が加振力とともに変化するので低
速でも安定して回転する。また、低速時の効率がよい。
Since the pressing force changes with the exciting force, it rotates stably even at low speeds. Also, the efficiency at low speed is good.

【0030】軸受が不要。No bearing is required.

【0031】加振子やロータ等は金属なので内部損失
が小さい。
Since the exciter and the rotor are made of metal, the internal loss is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示し、(a)はロー
タ、(b)は加振子、(c)は加振子の横断面図、
(d)は加振子とロータとの組み付け状態を示す斜視
図。
FIG. 1 shows a first embodiment of the present invention, in which (a) is a rotor, (b) is an exciter, and (c) is a cross-sectional view of the exciter.
FIG. 6D is a perspective view showing an assembled state of the exciter and the rotor.

【図2】図1の加振子に発生した磁束密度と磁気吸引力
との関係を示す図。
FIG. 2 is a diagram showing a relationship between a magnetic flux density generated in the exciter of FIG. 1 and a magnetic attraction force.

【図3】図1のロータ1の節直径2の状態を示す図。3 is a diagram showing a state in which a node diameter 2 of the rotor 1 of FIG. 1 is shown.

【図4】図1のモータの駆動状態を示す模式図。FIG. 4 is a schematic diagram showing a driving state of the motor shown in FIG.

【図5】図1のモータの駆動状態を示す模式図で、駆動
原理を示す。
FIG. 5 is a schematic diagram showing a driving state of the motor of FIG. 1, showing a driving principle.

【図6】第2の実施例を示す分解斜視図。FIG. 6 is an exploded perspective view showing a second embodiment.

【図7】第3の実施例を示し、(a)はロータの斜視
図、(b)はその側断面図。
FIG. 7 shows a third embodiment, (a) is a perspective view of a rotor, and (b) is a side sectional view thereof.

【図8】第4の実施例を示し、(a)は平面図、(b)
はその側断面図。
FIG. 8 shows a fourth embodiment, (a) is a plan view and (b) is a plan view.
Is a side sectional view thereof.

【図9】第5の実施例を示す側断面図。FIG. 9 is a side sectional view showing a fifth embodiment.

【図10】第6の実施例を示し、(a)はロータの斜視
図、(b)は加振子の斜視図、(c)は駆動状態を示す
側面図。
FIG. 10 shows a sixth embodiment, (a) is a perspective view of a rotor, (b) is a perspective view of an exciter, and (c) is a side view showing a driving state.

【図11】第7の実施例を示す平面図。FIG. 11 is a plan view showing a seventh embodiment.

【図12】駆動コイルへ印加する信号と吸引力との関係
を示す波形図。
FIG. 12 is a waveform diagram showing the relationship between the signal applied to the drive coil and the attraction force.

【図13】従来の振動波モータを示す斜視図。FIG. 13 is a perspective view showing a conventional vibration wave motor.

【符号の説明】[Explanation of symbols]

1…ロータ 1a…突起 1b…支持板 1c…出力軸 2…加振子 2a…弾性部材 2b…鉄芯 2c…コイル 2d…基板 DESCRIPTION OF SYMBOLS 1 ... Rotor 1a ... Protrusion 1b ... Support plate 1c ... Output shaft 2 ... Exciter 2a ... Elastic member 2b ... Iron core 2c ... Coil 2d ... Substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加振子と該加振子に接触する部材とを有
し、該加振子は該部材との接触面に1又は複数の磁界を
発生させる磁界発生手段を有し、該部材の有する固有振
動数と略一致した周波数で該磁界発生手段を駆動するこ
とにより該部材に弾性進行波を励起し、該部材の該加振
子との接触部の表面粒子に楕円運動を生じさせ、該加振
子と該部材とを相対移動させることを特徴とする振動波
モータ。
1. A vibrating element and a member in contact with the vibrating element, the vibrating element having magnetic field generating means for generating one or a plurality of magnetic fields on a contact surface with the member, and the member has The elastic traveling wave is excited in the member by driving the magnetic field generating means at a frequency substantially equal to the natural frequency, and an elliptic motion is generated in the surface particles at the contact portion of the member with the exciter. A vibration wave motor, wherein a pendulum and the member are moved relative to each other.
JP5325436A 1993-12-22 1993-12-22 Vibration wave motor Pending JPH07177769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5325436A JPH07177769A (en) 1993-12-22 1993-12-22 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5325436A JPH07177769A (en) 1993-12-22 1993-12-22 Vibration wave motor

Publications (1)

Publication Number Publication Date
JPH07177769A true JPH07177769A (en) 1995-07-14

Family

ID=18176843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5325436A Pending JPH07177769A (en) 1993-12-22 1993-12-22 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPH07177769A (en)

Similar Documents

Publication Publication Date Title
JPS59201685A (en) Vibration wave motor
JPS6096183A (en) Surface wave motor
JP2007189802A (en) Oscillatory wave drive unit and oscillatory wave drive apparatus
JP4435695B2 (en) Piezoelectric motor operation method and piezoelectric motor in the form of a hollow cylindrical oscillator having a stator
JPH0217877A (en) Oscillator and ultrasonic motor using this oscillator
JP2902712B2 (en) Ultrasonic motor
JPH07177769A (en) Vibration wave motor
JP2003111453A (en) Piezoelectric motor
JP2019015933A (en) Driving device
KR100661311B1 (en) Piezoelectric ultrasonic motor
JP4594034B2 (en) Vibration type driving device, its control device and its control method
JPH0315278A (en) Elastic vibrator in traveling bending vibration motor
JPH1175380A (en) Ultrasonic motor and piezoelectric vibrator using the motor
JPH0270277A (en) Ultrasonic motor
JPH05950B2 (en)
JP3575569B2 (en) Rotor floating ultrasonic motor
JPS63277480A (en) Ultrasonic motor
JPS63240382A (en) Ultrasonic motor
JPS62196085A (en) Ultrasonic motor
JPH0480633B2 (en)
JP3074379B2 (en) Rotary piezoelectric actuator
JP2004358443A (en) Vibration actuator and its driving method
JP2003185438A (en) Method for driving rotation-vibration gyro and vibrator structure
JPS60210173A (en) Vibration wave motor
JPH01311878A (en) Ultrasonic motor