JPS63277480A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPS63277480A
JPS63277480A JP62113030A JP11303087A JPS63277480A JP S63277480 A JPS63277480 A JP S63277480A JP 62113030 A JP62113030 A JP 62113030A JP 11303087 A JP11303087 A JP 11303087A JP S63277480 A JPS63277480 A JP S63277480A
Authority
JP
Japan
Prior art keywords
shaft
vibrating body
ultrasonic motor
oscillating body
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62113030A
Other languages
Japanese (ja)
Other versions
JP2769151B2 (en
Inventor
Osamu Kawasaki
修 川崎
Katsu Takeda
克 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62113030A priority Critical patent/JP2769151B2/en
Publication of JPS63277480A publication Critical patent/JPS63277480A/en
Application granted granted Critical
Publication of JP2769151B2 publication Critical patent/JP2769151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve efficiency, by a method wherein bending oscillations of radial secondary and circumferential tertiary or higher are employed as the oscillating mode of a motor and the position of an oscillating body is fixed through a shaft, located at the center of the oscillating body. CONSTITUTION:An ultrasonic motor is provided with a shaft 14 at the center of an oscillating body 9 and the position of the same is fixed to a base table 15 below the shaft 14. A moving body 13 is attached to the upper part of the shaft 14 through a bearing 16 and is pressed against an oscillating body 9 to contact it through a leaf spring 17 and a pressure regulator 18. Piezoelectric ceramics 8 is bonded to one of the main surfaces of an elastic body 7 to constitute said oscillating body 9. The structure of the electrodes of the ceramics 8 is provided with the groups EF of equal electrodes having circumferential lengths equivalent to 1/2 of a wave length. According to this constitution, the oscillating body 9 is excited so as to generate the traveling wave of radial secondary and circumferential quartic bending oscillations.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that generates driving force using a piezoelectric material.

従来の技術 近年圧電セラミック等の圧電体を用いた振動体に弾性摂
動を励振し、これを駆動力とした超音波モータが注目さ
れている。
2. Description of the Related Art In recent years, ultrasonic motors have attracted attention in which elastic perturbations are excited in a vibrating body using a piezoelectric material such as a piezoelectric ceramic, and this is used as a driving force.

以下、図面を参照しながら超音波モータの従来技術につ
いて説明を行う。
Hereinafter, the conventional technology of an ultrasonic motor will be explained with reference to the drawings.

第5図は従来の円環形超音波モータの斜視図であり、円
環形の弾性体lの円環面の一方に圧電体として円環形の
圧電セラミック2を貼合せて振動体3を構成している。
FIG. 5 is a perspective view of a conventional toroidal ultrasonic motor, in which a vibrating body 3 is constructed by pasting a toroidal piezoelectric ceramic 2 as a piezoelectric body to one of the toric surfaces of a toroidal elastic body l. There is.

4は耐磨耗性材料の摩擦材、5は弾性体であり、互いに
貼合せられて移動体6を構成している。移動体6は摩擦
材4を介して振動体3と接触している。圧電体2に電界
を印加すると振動体3の周方向に曲げ振動の進行波が励
起され、移動体6を駆動する。尚、同図中の矢印は移動
体6の回転方向を示す。
Reference numeral 4 indicates a friction material made of a wear-resistant material, and reference numeral 5 indicates an elastic body, which are pasted together to form a moving body 6. The moving body 6 is in contact with the vibrating body 3 via the friction material 4. When an electric field is applied to the piezoelectric body 2, a traveling wave of bending vibration is excited in the circumferential direction of the vibrating body 3, thereby driving the movable body 6. Note that the arrow in the figure indicates the rotation direction of the moving body 6.

第6図は第5図の超音波モータに使用した圧電セラミッ
ク2の電極構造の一例を示している。同図では円周方向
に9波の弾性波がのるようにしである。同図において、
AおよびBはそれぞれ2分の1波長相当の小領域から成
る電極群で、Cは4分の3波長、Dは4分の1波長の長
さの電極である。電極CおよびDは電極群AとBに位置
的に4分の1波長(=90度)の位相差を作っている。
FIG. 6 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, nine elastic waves are placed in the circumferential direction. In the same figure,
A and B are electrode groups each consisting of a small region corresponding to a half wavelength, C is an electrode group having a length of three-quarters of a wavelength, and D is an electrode having a length of a quarter of a wavelength. Electrodes C and D create a positional phase difference of 1/4 wavelength (=90 degrees) between electrode groups A and B.

電極AとB内の隣り合う小電極部は互いに反対に厚み方
向に分極されている。圧電体2の弾性体1との接着面は
、第6図に示めされた面と反対の面であり、電極はベタ
電極である。使用時には、電極群AおよびBは第6図に
斜線で示されたように、それぞれ短絡して用いられる。
Adjacent small electrode portions in electrodes A and B are polarized oppositely to each other in the thickness direction. The adhesive surface of the piezoelectric body 2 with the elastic body 1 is the opposite surface to the surface shown in FIG. 6, and the electrode is a solid electrode. When in use, electrode groups A and B are short-circuited, as indicated by diagonal lines in FIG.

以上のように構成された超音波モータの圧電体2の電極
AおよびBに V 1−V o xsin(ωt)−−−(1)V 2
−V Oxcos(ωt)        −−−(2
)ただし、vo:電圧の瞬時値 ω:角周波数 t:時間 で表される電圧v1およびv2をそれぞれ印加すれば、
振動体3には ξ−ξo x(cos(ωt)xcos(kx)+5i
n(ωt)xsin(kx)、)−vo xcos(ω
t−kx)      −−−(2)ただし ξ:曲げ
振動の振幅値 ξ0:曲げ振動の瞬時値 k :波数(2π/λ) λ:波長 X :位置 で表せる、円周方向に進行する曲げ振動の進行波が励起
される。
V 1 -V ox sin (ωt) --- (1) V 2 at electrodes A and B of the piezoelectric body 2 of the ultrasonic motor configured as above.
−V Oxcos(ωt) ---(2
) However, if we apply voltages v1 and v2, where vo: instantaneous value of voltage ω: angular frequency t: time, respectively,
The vibration body 3 has ξ−ξo x(cos(ωt)xcos(kx)+5i
n(ωt)xsin(kx), )−vo xcos(ω
t-kx) ---(2) where ξ: Amplitude value of bending vibration ξ0: Instantaneous value of bending vibration k: Wave number (2π/λ) λ: Wavelength A traveling wave of is excited.

第7図は振動体3の表面のA点が進行波の励起によって
、長軸2W、短軸2uの楕円運動をし、振動体3上に加
圧して設置された移動体6が、楕円の頂点近傍で接触す
ることにより、摩擦力により波の進行方向とは逆方向に
シーωXUの速度で運動する様子を示している。
FIG. 7 shows that point A on the surface of the vibrating body 3 moves in an ellipse with a long axis 2W and a short axis 2u due to the excitation of the traveling wave, and the movable body 6 placed under pressure on the vibrating body 3 moves in an ellipse. This figure shows how the waves move at a speed of ωXU in the direction opposite to the direction of wave movement due to frictional force due to contact near the apex.

発明が解決しようとする問題点 超音波モータの出力を大きくするためには、振動体の持
っている運動エネルギーを太き(すればよい。運動エネ
ルギーは振動体の質量と速度の2乗に比例するので、振
動体の質量または速度を増やせば出力を増加できる。超
音波モータの外形が決まれば、質量を増やすためには振
動体の穴の大きさを小さくし、速度を大きくするには振
動の振幅を大きくすればよい。しかし、圧電体の許容歪
みにより、振動の振幅には制限がある。また、従来の超
音波モータは径方向1次、周方向3次以上の円環の曲げ
振動を使用しているので、第8図に示すように、内周近
傍では急に振幅値は小さくなり、振動体の穴を小さくし
ても運動エネルギーはあまり大きくならない。従って、
従来のように径方向1次、周方向3次以上の円環の曲げ
振動を使用した超音波モータは出力を大きくできないと
いう問題点がある。
Problems to be Solved by the Invention In order to increase the output of an ultrasonic motor, the kinetic energy of the vibrating body should be increased. Kinetic energy is proportional to the square of the mass and speed of the vibrating body. Therefore, the output can be increased by increasing the mass or speed of the vibrating body.Once the external shape of the ultrasonic motor is determined, the size of the hole in the vibrating body must be made small to increase the mass, and the output can be increased by increasing the mass or speed of the vibrating body. However, there is a limit to the amplitude of vibration due to the allowable strain of the piezoelectric body.In addition, conventional ultrasonic motors can handle circular bending vibrations of first order in the radial direction, third order in the circumferential direction or higher. As shown in Figure 8, the amplitude value suddenly decreases near the inner periphery, and the kinetic energy does not increase much even if the hole in the vibrator is made smaller.
Conventional ultrasonic motors that use circular bending vibration of first order in the radial direction and third order in the circumferential direction have a problem in that the output cannot be increased.

また、円環形超音波モータの振動体は、第8図に示すよ
うに全体が振動しているので、振動体の位置固定が困難
である。また、固定によって機械的な損失は避けられな
い。
Furthermore, since the entire vibrating body of the annular ultrasonic motor vibrates as shown in FIG. 8, it is difficult to fix the position of the vibrating body. Additionally, mechanical loss is unavoidable due to fixation.

本発明はかかる点に鑑みてなされたもので、同体積で出
力を大きくでき、しかも効率の良い超音波モータを提供
することを目的としている。
The present invention has been made in view of these points, and an object of the present invention is to provide an ultrasonic motor that can increase output with the same volume and is highly efficient.

問題点を解決するための手段 振動体として円板形の振動体を用い、振動モードとして
径方向2次、周方向3次以上のの曲げ振動を用いること
により、同体積で出力を大きくでき、しかも振動体の中
心部に軸を設置し、軸を介して振動体の位置固定を行う
Means for solving the problem By using a disc-shaped vibrating body as the vibrating body and using bending vibration of 2nd order in the radial direction, 3rd order or more in the circumferential direction as the vibration mode, the output can be increased with the same volume, Moreover, a shaft is installed at the center of the vibrating body, and the position of the vibrating body is fixed via the shaft.

作用 振動体として円板形の振動体を用い、振動モードとして
径方向2次、周方向3次以上の曲げ振動を用いることに
より、振動体の内側をも有効に振動体の運動エネルギー
に寄与するようにし、出力の増大を図るこ−とができる
。また、振動体の振動の振幅が極めて小さい中心部に軸
を設置し、軸を介して振動体の位置固定を行うことによ
り、固定による損失を小さくし効率の良い超音波モータ
を実現できる。
By using a disc-shaped vibrating body as the active vibrating body and using bending vibration of radial second order, circumferential direction third order or higher as the vibration mode, the inside of the vibrating body can also effectively contribute to the kinetic energy of the vibrating body. By doing so, it is possible to increase the output. Further, by installing the shaft at the center where the amplitude of the vibration of the vibrating body is extremely small and fixing the position of the vibrating body via the shaft, it is possible to reduce loss due to fixation and realize an efficient ultrasonic motor.

実施例 以下、図面に従って本発明の一実施例について詳細な説
明を行う。
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の超音波モータの1実施例の断面図であ
る。同図において、振動体9の中心部には軸14が設置
され、軸14の下部において基台15に位置固定されて
いる。軸14の上部においてはベアリング16を介して
移動体13が取り付けられ、板バネ17と加圧調整具1
8によって移動体13が振動体9に加圧接触されている
FIG. 1 is a sectional view of one embodiment of the ultrasonic motor of the present invention. In the figure, a shaft 14 is installed at the center of the vibrating body 9, and is fixed to a base 15 at the bottom of the shaft 14. A moving body 13 is attached to the upper part of the shaft 14 via a bearing 16, and a leaf spring 17 and a pressure adjustment tool 1 are attached to the upper part of the shaft 14.
The movable body 13 is brought into pressure contact with the vibrating body 9 by the vibrator 8 .

第2図は超音波モータの構成を示す切り欠き斜視図であ
る。円板形の弾性体7の主面の一方に、圧電体として円
板形の圧電セラミック8を貼合せて振動体9を構成して
いる。また、弾性体7の他の主面には、機械出力取り出
し用の突起体10が構成されている。11は耐磨耗性材
料の摩擦材、12は弾性体であり、互いに貼合せられて
移動体13を構成している。移動体13は、摩擦材11
を介して、振動体9に設置された突起体10と加圧接触
している。圧電体8に電界を印加すると振動体9の周方
向に曲げ振動の進行波が励起され、移動体13を摩擦力
により駆動する。移動体13は軸14を中心にして回転
運動を始める。
FIG. 2 is a cutaway perspective view showing the configuration of the ultrasonic motor. A vibrating body 9 is constructed by pasting a disk-shaped piezoelectric ceramic 8 as a piezoelectric body to one of the main surfaces of the disk-shaped elastic body 7. Further, on the other main surface of the elastic body 7, a protrusion 10 for extracting mechanical output is formed. 11 is a friction material made of a wear-resistant material, and 12 is an elastic body, which are pasted together to form a moving body 13. The moving body 13 includes the friction material 11
It is in pressurized contact with a protrusion 10 installed on the vibrating body 9 via. When an electric field is applied to the piezoelectric body 8, a traveling wave of bending vibration is excited in the circumferential direction of the vibrating body 9, and the movable body 13 is driven by frictional force. The moving body 13 starts rotating around the axis 14.

第3図は円板形圧電セラミック8の電極構造を示す平面
図である。同図において、E、Fは、それぞれ周方向が
2分の1波長相当の長さを持ち、互いに隣り合う電極部
の分極方向が厚み方向に逆である小電極部から成る電極
群である。そして、電極群E、Fは、周方向に位相が4
分の1波長相当分(90度)だけずらせて構成されてい
る。
FIG. 3 is a plan view showing the electrode structure of the disc-shaped piezoelectric ceramic 8. As shown in FIG. In the figure, E and F are electrode groups each having a length equivalent to a half wavelength in the circumferential direction, and consisting of small electrode portions in which the polarization directions of adjacent electrode portions are opposite in the thickness direction. The electrode groups E and F have a phase of 4 in the circumferential direction.
They are configured to be shifted by an amount equivalent to one-tenth of a wavelength (90 degrees).

従って、電極群E、Fをそれぞれ短絡し、裏面のベタ電
極との間に時間的に90度位相の異なる電圧を印加すれ
ば、振動体9に径方向2次1周方向4次の曲げ振動の進
行波が励振される。
Therefore, if electrode groups E and F are short-circuited and a voltage with a temporal phase difference of 90 degrees is applied between them and the solid electrode on the back surface, the vibrating body 9 will undergo bending vibration of second order in the radial direction and fourth order in the circumferential direction. traveling waves are excited.

第4図は径方向2次、周方向4次の曲げ振動を励振した
時の振動体9の振動変位状態と変位分布図である。径方
向1次の振動モードを使用した時と異なり、内周部でも
変位は急に小さくなることはない。従って、超音波モー
タが同一体積を占有した時、径方向1次の振動モードを
使用した時よりも、振動体9の運動エネルギーを太き(
することができ、大きな出力を取り出せる超音波モータ
を実現できる。また、軸14を取り出す中心部では振動
の振幅が極めて小さく、この軸14を介して撮動体9を
基台15に取り付けているため、振動体の位置固定によ
り機械的損失がほとんどな(効率良く移動体13を駆動
できる。
FIG. 4 shows a vibration displacement state and a displacement distribution diagram of the vibrating body 9 when radial second order bending vibration and circumferential direction fourth order bending vibration are excited. Unlike when the first-order radial vibration mode is used, the displacement does not suddenly become smaller even at the inner circumference. Therefore, when the ultrasonic motor occupies the same volume, the kinetic energy of the vibrating body 9 is larger (
This makes it possible to realize an ultrasonic motor that can generate large output. In addition, the amplitude of vibration is extremely small at the center where the shaft 14 is taken out, and since the imaging object 9 is attached to the base 15 via this shaft 14, mechanical loss is almost eliminated by fixing the position of the vibrating body (efficiently The moving body 13 can be driven.

本発明によれば、効率の良い、しかも出力の大きな超音
波モータを提供できる。
According to the present invention, it is possible to provide an ultrasonic motor that is efficient and has a large output.

発明の効果 本発明によれば、振動モードとして径方向2次、周方向
3次以上の曲げ振動を用いることにより出力の大きな、
そして振動体の振動の振幅の小さい中心部に軸を設置し
、この軸を介して振動体の位置固定を行うことにより効
率の良い超音波モータを提供できる。
Effects of the Invention According to the present invention, by using radial secondary, circumferential tertiary or higher bending vibration as the vibration mode, a large output can be achieved.
A highly efficient ultrasonic motor can be provided by installing a shaft at the center of the vibrating body where the amplitude of vibration is small and fixing the position of the vibrating body via this shaft.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の円板形超音波モータの1実施例の断面
図、第2図は円板形超音波モータの動作説明のための切
り欠き斜視図、第3図は第1図の超音波モータで使用す
る圧電セラミックの平面図、第4図は振動モードとして
径方向2次、周方向3次の曲げ振動を用いた時の撮動体
の振動状態と径方向の変位分布図、第5図は円環形超音
波モータの切り欠き斜視図、第6図は第5図の超音波モ
ータに用いた圧電体の形状と電極構造を示す平面図、第
7図は超音波モータの動作原理の説明図、第8図は撮動
モードとして径方向1次、周方向8次の曲げ振動を用い
た時の振動体の振動状態と径方向の変位分布図ある。 7・・・・・・弾性体、8・・・・・・圧電体、9・・
・・・・振動体、10・・・・・・突起体、11・・・
・・・摩擦材、12・・・・・・弾性体、13・・・・
・・移動体、14・・・・・・軸、15・・・・・・基
台、16・・・・・・ベアリング、17・・・・・・板
バネ、18・・・・・・加圧調整具。 代理人の氏名 弁理士 中尾敏男 ほか1名M1図 第2図 第3図 第4図 第 5 図 第6図 第7図 二り 】での噛1オゴ方イi 第8図
FIG. 1 is a sectional view of one embodiment of the disc-shaped ultrasonic motor of the present invention, FIG. 2 is a cutaway perspective view for explaining the operation of the disc-shaped ultrasonic motor, and FIG. 3 is the same as that of FIG. 1. Fig. 4 is a plan view of the piezoelectric ceramic used in the ultrasonic motor, and Fig. 4 is a diagram of the vibration state and radial displacement distribution of the moving body when radial secondary and circumferential tertiary bending vibrations are used as vibration modes. Figure 5 is a cutaway perspective view of an annular ultrasonic motor, Figure 6 is a plan view showing the shape and electrode structure of the piezoelectric body used in the ultrasonic motor of Figure 5, and Figure 7 is the operating principle of the ultrasonic motor. FIG. 8 is a diagram showing the vibration state of the vibrating body and the radial displacement distribution when bending vibration of first order in the radial direction and eighth order in the circumferential direction is used as the imaging mode. 7...Elastic body, 8...Piezoelectric body, 9...
... Vibrating body, 10... Protrusion, 11...
...Friction material, 12...Elastic body, 13...
... Moving body, 14 ... Axis, 15 ... Base, 16 ... Bearing, 17 ... Leaf spring, 18 ... Pressure adjustment tool. Name of agent: Patent attorney Toshio Nakao and one other person M1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 7

Claims (1)

【特許請求の範囲】[Claims]  圧電体を交流電圧で駆動して、該圧電体と弾性体とか
ら構成される円板形振動体に径方向2次、周方向3次以
上の曲げ振動の進行波を励振することにより、該振動体
上に接触して設置された移動体を移動させる超音波モー
タにおいて、該振動体の中心部に軸を設置し、該軸を介
して該振動体を固定したことを特徴とする超音波モータ
By driving the piezoelectric body with an alternating current voltage and exciting a traveling wave of bending vibration of second order in the radial direction, third order in the circumferential direction or higher in the disc-shaped vibrating body composed of the piezoelectric body and the elastic body, An ultrasonic motor for moving a movable body placed in contact with a vibrating body, characterized in that a shaft is installed in the center of the vibrating body, and the vibrating body is fixed via the shaft. motor.
JP62113030A 1987-05-08 1987-05-08 Ultrasonic motor Expired - Fee Related JP2769151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113030A JP2769151B2 (en) 1987-05-08 1987-05-08 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113030A JP2769151B2 (en) 1987-05-08 1987-05-08 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JPS63277480A true JPS63277480A (en) 1988-11-15
JP2769151B2 JP2769151B2 (en) 1998-06-25

Family

ID=14601691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113030A Expired - Fee Related JP2769151B2 (en) 1987-05-08 1987-05-08 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2769151B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198673A (en) * 1989-12-26 1991-08-29 Seiko Instr Inc Ultrasonic motor
US5049774A (en) * 1988-10-31 1991-09-17 Aisin Seiki Kabushiki Kaisha Vibratory motor
US5463265A (en) * 1991-05-08 1995-10-31 Canon Kabushiki Kaisha Vibration driven motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183982A (en) * 1984-03-01 1985-09-19 Matsushita Electric Ind Co Ltd Piezoelectric motor
JPS6253182A (en) * 1985-08-29 1987-03-07 Marcon Electronics Co Ltd Ultrasonic motor
JPS63242185A (en) * 1987-03-27 1988-10-07 Murata Mfg Co Ltd Piezoelectric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183982A (en) * 1984-03-01 1985-09-19 Matsushita Electric Ind Co Ltd Piezoelectric motor
JPS6253182A (en) * 1985-08-29 1987-03-07 Marcon Electronics Co Ltd Ultrasonic motor
JPS63242185A (en) * 1987-03-27 1988-10-07 Murata Mfg Co Ltd Piezoelectric motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049774A (en) * 1988-10-31 1991-09-17 Aisin Seiki Kabushiki Kaisha Vibratory motor
JPH03198673A (en) * 1989-12-26 1991-08-29 Seiko Instr Inc Ultrasonic motor
US5463265A (en) * 1991-05-08 1995-10-31 Canon Kabushiki Kaisha Vibration driven motor

Also Published As

Publication number Publication date
JP2769151B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JPH01129782A (en) Ultrasonic motor
JPS63277482A (en) Ultrasonic motor
JPS63277480A (en) Ultrasonic motor
JP2574284B2 (en) Ultrasonic motor
JPH0223074A (en) Ultrasonic motor
JP2885802B2 (en) Ultrasonic motor
JP2507083B2 (en) Ultrasonic motor
JP2689425B2 (en) Ultrasonic motor
JP2523634B2 (en) Ultrasonic motor
JPH0270277A (en) Ultrasonic motor
JPH01311878A (en) Ultrasonic motor
JPH02142366A (en) Ultrasonic motor
JP2537848B2 (en) Ultrasonic motor
JP2543144B2 (en) Ultrasonic motor
JPS63283475A (en) Ultrasonic motor
EP0539969B1 (en) Ultrasonic motor
JPS63277483A (en) Ultrasonic motor
JP2864479B2 (en) Annular ultrasonic motor
JP2506859B2 (en) Ultrasonic motor
JPS62196080A (en) Ultrasonic motor
JPH0223076A (en) Ultrasonic motor
JPS6118369A (en) Piezoelectric motor
JPH0667222B2 (en) Piezoelectric motor
JPS62196081A (en) Ultrasonic motor
JPH01214271A (en) Ultrasonic motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees