JPS60210173A - Vibration wave motor - Google Patents

Vibration wave motor

Info

Publication number
JPS60210173A
JPS60210173A JP59065400A JP6540084A JPS60210173A JP S60210173 A JPS60210173 A JP S60210173A JP 59065400 A JP59065400 A JP 59065400A JP 6540084 A JP6540084 A JP 6540084A JP S60210173 A JPS60210173 A JP S60210173A
Authority
JP
Japan
Prior art keywords
vibration wave
vibrating body
ring
vibration
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59065400A
Other languages
Japanese (ja)
Inventor
Hitoshi Mukojima
仁 向島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59065400A priority Critical patent/JPS60210173A/en
Publication of JPS60210173A publication Critical patent/JPS60210173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Abstract

PURPOSE:To enhance the output and the efficiency of a vibration wave motor by using the peripheral surface of vibrator as a contacting surface of a moving elements in a motor for generating a traveling vibration wave at a ring-shaped vibrator with an electrostrictive element to drive the element, thereby utilizing the vibration of the direction perpendicular to the ring surface. CONSTITUTION:A polarized ring-shaped electrostrictive element 12 of a plurality of electrostrictive elements are bonded to the planar surface of a ring-shaped vibrator 31, a frequency voltage is applied to the element 12 to allow the vibrator 31 to generate a traveling vibration wave. A movable elememt 35 energized by a spring 20 is frictionally contacted with the peripheral surface of the inner or outer peripheral surface side of the vibrator 31, and rotatably driven by the traveling vibration wave. Thus, the element 35 is activated to be vibrated perpendicularly to the planar surface as compared with the case that the element 35 is contacted with the planner surface of the vibrator 31. Accordingly, a motor having a high output in a high efficiency can be obtained.

Description

【発明の詳細な説明】 本発明は進行性振動波により駆動する回転型の振動波モ
ータの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a rotary vibration wave motor driven by progressive vibration waves.

振動波モータは、電歪素子に周波電圧を印加したときに
生ずる振動運動を回転運動又は−次元運動に変換するも
ので、従来の電磁モータに比べて巻線を必要としないた
め、構造が簡単で小型になり、低速回転時にも高トルク
が得られるという利点があり、近年注目されている。
A vibration wave motor converts the vibration motion generated when a frequency voltage is applied to an electrostrictive element into rotational motion or -dimensional motion, and has a simpler structure than conventional electromagnetic motors because it does not require windings. It has been attracting attention in recent years because it has the advantage of being small in size and being able to obtain high torque even when rotating at low speeds.

第1図、第2図は従来の振動波モータの駆動原理を示す
もので、第1図は上記モータの振動波の発生状態を示し
ている。振動体l(通常は金属)に接着された電歪素子
2a、2bは、振動体1の片側、適度に離れた所に、空
間的に入/4の位相ずれを満足するように配置されてい
る。
1 and 2 show the driving principle of a conventional vibration wave motor, and FIG. 1 shows the state in which vibration waves are generated by the motor. The electrostrictive elements 2a and 2b bonded to the vibrating body 1 (usually metal) are arranged on one side of the vibrating body 1 at a moderate distance from each other so as to spatially satisfy a phase shift of /4. There is.

振動体lを電歪素子2a、2bの一方の電極とし、電歪
素子2aには、交流電源3aからV=Vosin (J
)t、電歪素子2bには90″移相器3bを通して入/
4位相のずれたV=Vosin(ωt±π/2)の交流
電圧を印加する前記式中の(+) (−)が移動体5を
動かす方向によって移相器3bで切換えられる。
The vibrating body l is used as one electrode of the electrostrictive elements 2a and 2b, and the electrostrictive element 2a is supplied with V=Vosin (J
)t, input to the electrostrictive element 2b through a 90″ phase shifter 3b/
The (+) and (-) in the above formula for applying an AC voltage of V=Vosin (ωt±π/2) with four phases shifted are switched by the phase shifter 3b depending on the direction in which the moving body 5 is moved.

今、(−)側に切換えてあり、電歪素子2bにはV=V
o s i n (ωt−π/2)の電圧が印加されて
いるとする。電歪素子2aだけが単独で電圧V=Vos
in ωtにより振動した場合は、同図(a)に示すよ
うな定在波による振動が起り、電歪素子2bだけが単独
で電圧V=Vosin(ωt−π/2)により振動した
場合は、同図(b)に示すような定在波による振動が起
る。上記位相のずれた2つの交流電圧を同時に各々の電
歪素子2a、22bに印加すると振動波は進行性になる
It is now switched to the (-) side, and the electrostrictive element 2b has V=V.
Assume that a voltage of o sin (ωt-π/2) is applied. Only the electrostrictive element 2a has a voltage V=Vos
When the electrostrictive element 2b vibrates due to the voltage V=Vosin(ωt-π/2), vibration occurs due to a standing wave as shown in FIG. Vibration occurs due to standing waves as shown in FIG. 2(b). When the two phase-shifted AC voltages are simultaneously applied to each electrostrictive element 2a, 22b, the vibration wave becomes progressive.

(イ)は時間t=2nπ/ω、 (ロ)は t=π/2ω+2nπ/ω、(ハ)は t=
π/ω+2nπ/ω、 (ニ)は t=3π/2ω+2nπ/ωの時のもので、
振動波の波面はX方向に進行する。
(A) is time t = 2nπ/ω, (B) is t = π/2ω + 2nπ/ω, (C) is t =
π/ω+2nπ/ω, (d) is when t=3π/2ω+2nπ/ω,
The wavefront of the vibration wave travels in the X direction.

このような進行性の振動波は縦波と横波を伴なっており
、第2図に示すように振動体lの質点Aについて着目す
ると、縦振幅Uと横振幅Wで反時計方向の回転楕円運動
をしている。振動体1の表面には移動体5が加圧接触し
ており振動面の頂点にだけ接触することになるから(実
際には、ある幅をもって面接触している)、頂点におけ
る質点A、A’、−−−−一の楕円運動の縦振幅Uの成
分に駆動され、移動体5は矢印N方向に移動する。90
″移相器により+90°位相をずらせば振動波は−X方
向に進行し、移動体5はN方向と逆向きに移動する。
Such progressive vibration waves are accompanied by longitudinal waves and transverse waves, and if we focus on the mass point A of the vibrating body l as shown in Fig. 2, we can see that it forms an ellipse of revolution in the counterclockwise direction with a longitudinal amplitude U and a transverse amplitude W. Exercising. Since the movable body 5 is in pressure contact with the surface of the vibrating body 1 and is in contact only with the apex of the vibrating surface (actually, it is in surface contact with a certain width), the mass points A and A at the apex are ', ---- Driven by the component of the longitudinal amplitude U of the one elliptical motion, the moving body 5 moves in the direction of the arrow N. 90
``If the phase is shifted by +90° using a phase shifter, the vibration wave will proceed in the -X direction, and the moving body 5 will move in the opposite direction to the N direction.

この振動波モータを使って回転運動を起こさせるような
回転型振動波モータの構造を第3図に示す。第4図はそ
の断面図である。第3図において11は主に金属により
なる弾性を有する振動体、12は振動体11に接合され
る電歪素子、15は振動体11に加圧接触する移動体、
16は回転円板(回転軸)、17は振動体11を支持す
る吸振体、18は固定体である。
FIG. 3 shows the structure of a rotary vibration wave motor that uses this vibration wave motor to generate rotational motion. FIG. 4 is a sectional view thereof. In FIG. 3, 11 is an elastic vibrating body mainly made of metal, 12 is an electrostrictive element joined to the vibrating body 11, 15 is a moving body that presses into contact with the vibrating body 11,
16 is a rotating disk (rotating shaft), 17 is a vibration absorber that supports the vibrating body 11, and 18 is a fixed body.

電歪素子2と同様の構造よりなる電歪素子12に外部電
源より周波電圧を印加し、振動体11が共振するような
駆動周波数とする。バネ20によりスラスト軸受9を介
して振動体11に加圧接触する移動体15には摩擦力が
作用し、移動体15に接合されている回転軸16は回転
する。固定カバー21はビス22により固定体18に固
定され、電歪素子12と固定体18の間に吸振体17を
挿入する事で振動体11の超音波振動を固定体18に伝
えないような構造となっている。
A frequency voltage is applied from an external power source to an electrostrictive element 12 having a structure similar to that of the electrostrictive element 2, and a driving frequency is set such that the vibrating body 11 resonates. Frictional force acts on the movable body 15 that is pressed into contact with the vibrating body 11 via the thrust bearing 9 by the spring 20, and the rotating shaft 16 joined to the movable body 15 rotates. The fixed cover 21 is fixed to the fixed body 18 with screws 22, and has a structure in which the ultrasonic vibration of the vibrating body 11 is not transmitted to the fixed body 18 by inserting a vibration absorber 17 between the electrostrictive element 12 and the fixed body 18. It becomes.

しかしながら、この振動波モータを回転させた際には振
動体11がリング状をなしているため、第2図に示す様
なモードの振動をするだけではなく、振動体11がリン
グ面に垂直な方向に曲げ振動を生じるとともにリング面
の円周方向のまわりに第5図に示すようなねじりが発生
し、リング面に垂直な曲げ振動とリング面の円周方向の
まわりのねじりがともに発生する。ここで振動波モータ
においてはリング面に垂直な方向に生じる曲げ振動によ
る進行波を利用して移動体15を駆動していたためリン
グ面の円周方向のまわりに発生する振動のねじり成分に
よる進行波を有効に利用していなかったため、円周方向
のまわりに発生する振動のねじり成分のエネルギーが損
失することになった。
However, when this vibration wave motor is rotated, since the vibrating body 11 has a ring shape, it not only vibrates in the mode shown in Fig. 2, but also vibrates in a direction perpendicular to the ring surface. Bending vibration occurs in the direction, and twisting occurs around the circumferential direction of the ring surface as shown in Figure 5, and both bending vibration perpendicular to the ring surface and twisting around the circumferential direction of the ring surface occur. . Here, in the vibration wave motor, since the moving body 15 is driven using a traveling wave caused by a bending vibration generated in a direction perpendicular to the ring surface, a traveling wave caused by a torsional component of vibration generated around the circumferential direction of the ring surface is used. Because this was not used effectively, the energy of the torsional component of vibration generated around the circumference was lost.

したがって振動波モータの効率が低下するという欠点が
あった。
Therefore, there is a drawback that the efficiency of the vibration wave motor is reduced.

更には振動体11のリング面の円周方向のまわりの振動
のねじり成分の振幅は第5図に示すようにリング面の内
径側から外径側にうつるにつれて大きくなるため振動体
11の表面上に発生する質点の楕円運動は内径側から外
径側に行くに従って大きくなる。その結果移動体15が
おもにリング面の外径側の部分に接触し、振動体11の
リング面の内径側の部分には接触しなくなる。
Furthermore, since the amplitude of the torsional component of the vibration around the circumferential direction of the ring surface of the vibrating body 11 increases from the inner diameter side to the outer diameter side of the ring surface as shown in FIG. The elliptical motion of the mass point that occurs in the curve increases from the inner diameter side to the outer diameter side. As a result, the movable body 15 mainly contacts the outer diameter side portion of the ring surface, and does not contact the inner diameter side portion of the ring surface of the vibrating body 11.

すなわち移動体15と振動体11の接触面積は実質的に
小さくなり振動体lの進行波が移動体15に伝わる効率
が低下して充分な出力が得られなくなるという欠点があ
った。
That is, the contact area between the movable body 15 and the vibrating body 11 becomes substantially small, and the efficiency with which the traveling wave of the vibrating body 1 is transmitted to the movable body 15 decreases, resulting in a disadvantage that a sufficient output cannot be obtained.

本発明は、上述の従来の欠点を解消し、接触面積が大き
くでき、高効率、高出力の新規な振動波モータを提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned conventional drawbacks and provide a novel vibration wave motor with a large contact area, high efficiency, and high output.

ここで本発明は振動波モータの振動体の内径あるいは外
径面を移動体との接触面とし、従来の振動波モータの如
く振動体の振動のうちでリング面内に垂直な曲げ振動成
分を主に利用して移動体を移動させるものではなく、振
動体の振動のうちでリング面の円周方向のまわりのねじ
り成分を利用するもしくは、振動体のうちでリング面内
の曲げ振動成分を利用することを特徴としている。
Here, the present invention uses the inner diameter or outer diameter surface of the vibrating body of the vibration wave motor as the contact surface with the moving body, and the bending vibration component perpendicular to the ring surface of the vibration of the vibrating body, as in the conventional vibration wave motor. It does not primarily utilize the torsional component of the vibration of the vibrating body around the circumferential direction of the ring surface, or the bending vibration component within the ring surface of the vibrating body. It is characterized by its use.

以下図面を用いて本発明を詳述する。The present invention will be explained in detail below using the drawings.

第゛6図は本発明の一実施例を示す断面図9で、31は
振動体、35は移動体、36は回転円板(回転軸)でそ
の他は第4図と同様な構成となっていて、同じ機能をも
つ要素については同じ符合を付し説明を省略する。
FIG. 6 is a sectional view 9 showing an embodiment of the present invention, in which 31 is a vibrating body, 35 is a moving body, 36 is a rotating disk (rotating shaft), and the other parts have the same structure as in FIG. 4. Elements with the same functions are given the same reference numerals and their explanations are omitted.

第7図はその駆動原理説明図で、第8図は移動体45a
、45b、振動体41a、41b、電歪素子12よりな
る摩擦駆動部の断面を示す断面図である。第8図(a)
が振動体の内径面を移動体との接触面とする実施例。第
8図面 (b)が振動体の外径面を移動体との接触。とする実施
例である。第7図(a)に示す様に、駆動周波数fをリ
ング面に垂直方向の曲げとリンた第7図(b)に示す様
に駆動周波数をリング面内の曲げ振動の発生する共振周
波数f2とすると、振動体11と電歪素子12は点線に
示す運動をする。
FIG. 7 is an explanatory diagram of the driving principle, and FIG. 8 is a diagram illustrating the driving principle of the moving body 45a.
, 45b, vibrating bodies 41a, 41b, and an electrostrictive element 12. FIG. Figure 8(a)
An embodiment in which the inner diameter surface of the vibrating body is the contact surface with the moving body. The eighth drawing (b) shows the contact of the outer diameter surface of the vibrating body with the moving body. This is an example. As shown in Fig. 7(a), the driving frequency f is changed by bending in the direction perpendicular to the ring surface.As shown in Fig. 7(b), the driving frequency is changed to the resonance frequency f2 at which bending vibration occurs within the ring surface. Then, the vibrating body 11 and the electrostrictive element 12 move as shown by the dotted line.

第7図(C)は振動体11と電歪素子12のリング面内
の曲げ振動を示す平面図で、振動体11の固有振動モー
ドを有限要素法で解析したう 図である。(波数力′への場合) 第7図(C)において11’は振動体で有限要素法で解
析する微小単位を格子に分割して描いである。Xl ”
は振動体11’が面内曲げ振動体11の面内曲げ振動を
わかりやすく表現するため面内曲げ振動の振幅の大きさ
を誇張しである。尚、前述のfl、f2は一般に下式で
められる。
FIG. 7(C) is a plan view showing the bending vibration within the ring plane of the vibrating body 11 and the electrostrictive element 12, and is a diagram in which the natural vibration mode of the vibrating body 11 is analyzed by the finite element method. (In the case of wave number force') In Fig. 7(C), 11' is a vibrating body, and the minute units to be analyzed by the finite element method are divided into lattices. Xl”
In order to clearly express the in-plane bending vibration of the in-plane bending vibrating body 11, the amplitude of the in-plane bending vibration of the vibrating body 11' is exaggerated. Incidentally, the aforementioned fl and f2 are generally determined by the following formula.

ここで A:振動体の断面積 E:ヤング率 n:振動の波数 r:振動体リングの半径 Ip:断面2次極モーメント υ:ポアンン比 Iy、Iz:X軸、X軸に関する断面2次モーメンI・ P:密度 である。ここで振動体の内径面(第8図(a))又は外
径面(第8図(b))を、移動体の接触面とするとリン
グ面外振動中のリング円周方向まわりのねじり成分又は
リング面内の曲げ振動を駆動に用いることができる。
Here, A: Cross-sectional area of the vibrating body E: Young's modulus n: Wave number of vibration r: Radius of the vibrating body ring Ip: Polar moment of inertia of area υ: Poinn ratio Iy, Iz: X axis, moment of inertia of area about the X axis I/P: Density. Here, if the inner diameter surface (Fig. 8 (a)) or the outer diameter surface (Fig. 8 (b)) of the vibrating body is the contact surface of the moving body, the torsional component around the ring circumferential direction during out-of-plane vibration of the ring Alternatively, bending vibration within the ring plane can be used for driving.

実際には、第6図、および第8図に示す様に以上説明し
た様に振動体の内径又は外径面を移動体との接触面とし
、リング面に垂直な曲げ及びリング円周方向まわりの速
成振動、あるいはリング面内の曲げ振動を駆動に用いる
ことで、振動体の厚さに応じて前記接触面積を拡大する
ことができるので高出力が得られ、ひいては効率アップ
になる。また、前記接触面がリング面に対して傾いてい
るので自動調心作用を有し、回転ムラの少ない安定した
出力が得られる。また、平板状の電歪素子を用いれば簡
単な構造ですむ。
In reality, as shown in Figures 6 and 8, as explained above, the inner diameter or outer diameter surface of the vibrating body is used as the contact surface with the moving body, and bending perpendicular to the ring surface and circumferential direction of the ring are performed. By using fast-forming vibration or bending vibration within the ring plane for driving, the contact area can be expanded according to the thickness of the vibrating body, resulting in high output and improved efficiency. Furthermore, since the contact surface is inclined with respect to the ring surface, it has a self-aligning effect, and stable output with little rotational unevenness can be obtained. Further, if a flat plate-shaped electrostrictive element is used, a simple structure can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は振動波モータの駆動原理説明図、第3
図、第4図はそれぞれ従来の振動波モータの斜視図、断
面図、第5図は従来の振動波モータの振動体、移動体の
振動を示す断面図、第6図は本発明の第1の実施例を示
す断面図、第7図(a)、(b)、(C)は本発明の詳
細な説明図、第8図(a)、(b)は移動体45a45
b、振動体41a、41b電歪素\ 子12からなる摩擦駆動部の断面を示す断面図である。 1.11.31.41a、41bは振動体、5.15.
35.45a、45bは移動体、2.12は電歪素子、
17は吸振体である。 第7図 ? (ニ) ズ 第r7冒 (α) (b) (C) 手続補正書(方式) %式% 1、事件の表示 昭和59年 特許願 第 65400 号2、発明の名
称 振動波モータ 3、補正をする者 事件との関係 特許出願人 任 所 東京都大田区下丸子3−30−2名称 (+0
0)キャノン株式会社 代表者賀来龍三部 4、代理人 居所 閏146東京都大田区下丸子3−30−25、補
正命令の日付 昭和59年6月26日(発送日付) 6、補正の対象 明細書 7、補正の内容
Figures 1 and 2 are explanatory diagrams of the driving principle of the vibration wave motor, and Figure 3 is
4 are respectively a perspective view and a sectional view of a conventional vibration wave motor, FIG. 5 is a sectional view showing the vibration of a vibrating body and a moving body of a conventional vibration wave motor, and FIG. 7(a), (b), and (C) are detailed explanatory views of the present invention. FIG. 8(a), (b) is a cross-sectional view showing an embodiment of the present invention.
b, vibrator 41a, 41b electrostrictive element \ FIG. 1.11.31.41a and 41b are vibrating bodies, 5.15.
35.45a and 45b are moving bodies, 2.12 is an electrostrictive element,
17 is a vibration absorber. Figure 7? (d) No. r7 (α) (b) (C) Procedural amendment (method) % formula % 1. Indication of the case 1982 Patent Application No. 65400 2. Name of the invention Vibration wave motor 3. Amendment Relationship with the patent applicant case Address: 3-30-2 Shimomaruko, Ota-ku, Tokyo Name (+0
0) Canon Co., Ltd. Representative Ryu Kaku 4, Agent residence 3-30-25 Shimomaruko, Ota-ku, Tokyo 146, date of amendment order June 26, 1980 (shipment date) 6. Specification subject to amendment 7. Contents of correction

Claims (1)

【特許請求の範囲】[Claims] (1)リング状振動体の平面部に複数の電歪素子を位相
差的に接合し、又は複数に位相差的に分極処理された電
歪素子を接合し、該電歪素子に周波電圧を印加して前記
振動体に進行性振動波を発生させ、該進行性振動波によ
り前記振動体に加圧接触させた移動体を摩擦、駆動する
モータにおいて前記振動体の内径面又は外径面を前記移
動体との接触面とする振動波モータ。 (2、特許請求の範囲第1項記載のモータにおいて、駆
動周波数を前記リング状振動体のリング面内の曲げ振動
を発生する共振周波数とする振動波モータ。
(1) A plurality of electrostrictive elements are joined to the plane part of a ring-shaped vibrating body in a phase difference manner, or a plurality of electrostrictive elements polarized in a phase difference manner are joined to the plane part, and a frequency voltage is applied to the electrostrictive element. A progressive vibration wave is generated in the vibrating body by applying an electric current to the vibrating body, and the progressive vibration wave rubs and drives a movable body that is brought into pressurized contact with the vibrating body. A vibration wave motor having a contact surface with the moving body. (2. The motor according to claim 1, wherein the vibration wave motor has a driving frequency set to a resonance frequency that generates bending vibration within the ring surface of the ring-shaped vibrating body.
JP59065400A 1984-04-02 1984-04-02 Vibration wave motor Pending JPS60210173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59065400A JPS60210173A (en) 1984-04-02 1984-04-02 Vibration wave motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59065400A JPS60210173A (en) 1984-04-02 1984-04-02 Vibration wave motor

Publications (1)

Publication Number Publication Date
JPS60210173A true JPS60210173A (en) 1985-10-22

Family

ID=13285924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59065400A Pending JPS60210173A (en) 1984-04-02 1984-04-02 Vibration wave motor

Country Status (1)

Country Link
JP (1) JPS60210173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0719938A1 (en) * 1994-12-28 1996-07-03 WILO GmbH Travelling wave piezo electric motor for canned motor pumps with magnetic coupling
CN110080992A (en) * 2019-04-24 2019-08-02 南京航空航天大学 A kind of patch type traveling wave piezoelectricity centrifugal pump and its driving method
CN110425149A (en) * 2019-07-29 2019-11-08 南京航空航天大学 A kind of two-stage sandwich traveling wave piezoelectricity centrifugal pump and its driving method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0719938A1 (en) * 1994-12-28 1996-07-03 WILO GmbH Travelling wave piezo electric motor for canned motor pumps with magnetic coupling
CN110080992A (en) * 2019-04-24 2019-08-02 南京航空航天大学 A kind of patch type traveling wave piezoelectricity centrifugal pump and its driving method
CN110425149A (en) * 2019-07-29 2019-11-08 南京航空航天大学 A kind of two-stage sandwich traveling wave piezoelectricity centrifugal pump and its driving method

Similar Documents

Publication Publication Date Title
US4484099A (en) Piezoelectric vibration wave motor with multiple traveling wave generating members
US4504760A (en) Piezoelectrically driven vibration wave motor
JPS60210172A (en) Vibration wave motor
JPH0117353B2 (en)
JPH0241673A (en) Ultrasonic driving gear
US4831305A (en) Vibration wave motor
JPS61224878A (en) Vibration wave motor
JPS6096183A (en) Surface wave motor
JPH0795777A (en) Oscillatory wave driving device
JPS59110388A (en) Vibration wave motor
JPS60210173A (en) Vibration wave motor
JPS59148581A (en) Elastic wave motor
JPS63262068A (en) Vibration wave motor
JPS60210176A (en) Vibration wave motor
JP2513241B2 (en) Ultrasonic motor
JPS60210175A (en) Vibration wave motor
JPS61142977A (en) Vibration wave motor
JP2586045B2 (en) Vibration motor
JP2725767B2 (en) Vibration wave drive
JPS60210177A (en) Vibration wave motor
JPH0474951B2 (en)
JPS60210174A (en) Vibration wave motor
JP2885802B2 (en) Ultrasonic motor
JPS59139878A (en) Vibration wave motor
JPS60207468A (en) Supersonic motor