JPS59110388A - Vibration wave motor - Google Patents
Vibration wave motorInfo
- Publication number
- JPS59110388A JPS59110388A JP57219532A JP21953282A JPS59110388A JP S59110388 A JPS59110388 A JP S59110388A JP 57219532 A JP57219532 A JP 57219532A JP 21953282 A JP21953282 A JP 21953282A JP S59110388 A JPS59110388 A JP S59110388A
- Authority
- JP
- Japan
- Prior art keywords
- unit
- vibration wave
- elements
- vibrator
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000750 progressive effect Effects 0.000 claims description 10
- 239000006096 absorbing agent Substances 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 4
- 230000010363 phase shift Effects 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 229920001875 Ebonite Polymers 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
Landscapes
- Diaphragms For Cameras (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は進行性振動波により駆動する振動波モータの構
造に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a vibration wave motor driven by progressive vibration waves.
振動波モータは例えば特開昭52−23192号公報に
も開示されているように、電歪素子に周波電圧を印加し
たときに生ずる振動運動を回転運動又は・次元連動に変
換するものである。従来の電磁モータに比べて巻゛線を
必要としないため、構造が簡単で小型になり、低速回転
時にも高トルクが得られると共に慣性モーメントが少な
いという利点があるため、最近注目されている。As disclosed in, for example, Japanese Unexamined Patent Application Publication No. 52-23192, a vibration wave motor converts vibrational motion generated when a frequency voltage is applied to an electrostrictive element into rotational motion or dimensional interlocking. Compared to conventional electromagnetic motors, electromagnetic motors do not require windings, so they have a simple and compact structure, can provide high torque even when rotating at low speeds, and have the advantage of having a small moment of inertia, so they have been attracting attention recently.
ところが、従来知られている振動波モータは振動運動を
回転運動等に変換するにあたり、振動体に生じた定在振
動波で、振動体と接触するロータ等の移動体を一方向に
摩擦駆動するもので、振動の往運動時には振動体と移動
体が摩擦接触し、復運動時には離れるようになっている
。そのため振動体と移動体は微小範囲で接触する構造、
即ち点もしくは線接触に近い構造でなければならず、い
きおい摩擦駆動効率の悪いものとなってしまう。However, conventionally known vibration wave motors use standing vibration waves generated in a vibrating body to frictionally drive a moving body such as a rotor in one direction when converting vibratory motion into rotational motion. The vibrating body and the moving body come into frictional contact during the forward motion of vibration, and separate during the backward motion. Therefore, the vibrating body and the moving body have a structure in which they contact each other within a minute range,
In other words, the structure must be close to point or line contact, which results in poor friction drive efficiency.
また駆動力は一定方向に働くものであるから移動体の移
動方向は一方向のみである。逆方向に移動させるために
は、別な振動体で振動方向を機械的に切り換える必要が
ある。従って、正逆回転が可能な振動波モータを得るに
は装置が複雑になり、□振動波モータの特徴である構造
の筒中さ、小型さが半減されてしまう。Further, since the driving force acts in a fixed direction, the moving body moves in only one direction. In order to move in the opposite direction, it is necessary to mechanically switch the vibration direction using another vibrator. Therefore, in order to obtain a vibration wave motor capable of forward and reverse rotation, the device becomes complicated, and the cylindrical size and compactness of the structure, which are the characteristics of vibration wave motors, are halved.
そこで本発明は従来の振動波モータのこれら欠点を解消
し極めて簡単な構成で駆動効率の高い正逆転可能な振動
波モータを得ることを目的とするものである。SUMMARY OF THE INVENTION It is therefore an object of the present invention to overcome these drawbacks of conventional vibration wave motors and to provide a vibration wave motor that has a very simple structure, has high drive efficiency, and is capable of forward and reverse rotation.
上記目的を達成するため本発明は、中心から放射方向に
向うに従い厚みが増加する環状振動体2に、複数の電歪
素子3を位相差的に配列して接合し、又は複数に位相差
的に分極処理された電歪素子3を接合し、該電歪素子3
に周波電圧を印加して該振動体2に進行性振動波を発生
させ、その進行性振動波により該振動体2に加圧接触さ
せた移動体lを摩擦駆動することを特徴とする振動波モ
ータである。In order to achieve the above object, the present invention has a plurality of electrostrictive elements 3 arranged and bonded in a phase difference manner to an annular vibrating body 2 whose thickness increases from the center in the radial direction. The polarized electrostrictive element 3 is bonded to the electrostrictive element 3.
A vibration wave characterized by applying a frequency voltage to generate a progressive vibration wave in the vibrating body 2, and using the progressive vibration wave to frictionally drive a moving body l brought into pressure contact with the vibrating body 2. It's a motor.
第1図は本発明を適用する振動波モータの実施例で各要
素別に分解したものを示している。FIG. 1 shows an embodiment of a vibration wave motor to which the present invention is applied, disassembled into each element.
ベースとなる固定体5の中心円筒部5aに、振動吸収体
4・吸収体4側に電歪素子3を接着したく5属の環状振
動体2・移動体lの順に嵌め込まれており、固定体5・
吸収体4・振動体2は各々相カーに回転しないように取
伺けられている。振動体2に対し移動体1は自重又は図
示しない付勢手段で圧接されモータの一体性を保ってい
る。複数の電歪素子3aは振動波の波長入の2分の1の
ピッチで配列され、複数の電歪素子3bも同じく入/2
ピツチで配列されている。なお電歪素子3は複数並べず
、第8図に示すように環状の単体の素子3にし、それを
前記ピッチに分極処理し分極処理部3aと3bにしても
良い。電歪素子3aと3bの相互ピッチは(no+1/
4)入(但しno=0、l、2.3・・・)ずれた位相
差的配列がなされる。電歪素子3aの各々には吸収体4
側にリード線11aが接続され電歪素子3bの各々には
リード線11bが接続され、その各々は電#i6 aと
80°位相器6bに接続される(第3図参照)。Five types of annular vibrating bodies 2 and movable bodies 1 are fitted into the central cylindrical part 5a of the fixed body 5, which serves as a base, in this order, with the electrostrictive elements 3 attached to the vibration absorbing body 4 and the absorbing body 4 side. Body 5・
The absorber 4 and the vibrator 2 are each arranged so that they do not rotate relative to each other. The movable body 1 is pressed against the vibrating body 2 by its own weight or a biasing means (not shown) to maintain the integrity of the motor. The plurality of electrostrictive elements 3a are arranged at a pitch of 1/2 of the wavelength of the vibration wave, and the plurality of electrostrictive elements 3b are also arranged at a pitch of 1/2 of the wavelength of the vibration wave.
Arranged in pitch. Instead of arranging a plurality of electrostrictive elements 3, a single annular element 3 may be used as shown in FIG. 8, and it may be polarized at the pitch to form the polarized parts 3a and 3b. The mutual pitch between the electrostrictive elements 3a and 3b is (no+1/
4) A shifted phase difference arrangement (no=0, l, 2.3...) is performed. An absorber 4 is provided in each of the electrostrictive elements 3a.
A lead wire 11a is connected to the side thereof, and a lead wire 11b is connected to each of the electrostrictive elements 3b, each of which is connected to the electrode #i6a and the 80° phase shifter 6b (see FIG. 3).
また金属の振動体2にはリード線11cが接続され交流
電源6aと接続される。環状振動体2は電歪素子3側で
は平面にしもう一方の面は放射方向に向うに従い板厚が
厚くなるように形成しである。この厚みの変化は第2図
に示すような二次曲線になっている。この断面曲線が形
成する環状凹曲面にはこの凹曲面と合致する凸曲面を持
った移動体1の摩擦部1aが圧接される(第2図参照)
。Further, a lead wire 11c is connected to the metal vibrating body 2 and connected to an AC power source 6a. The annular vibrating body 2 has a flat surface on the electrostrictive element 3 side, and the other surface is formed so that the plate thickness becomes thicker toward the radial direction. This change in thickness forms a quadratic curve as shown in FIG. The friction portion 1a of the movable body 1 having a convex curved surface that matches this concave curved surface is pressed against the annular concave curved surface formed by this cross-sectional curve (see Fig. 2).
.
その摩擦部1aは摩擦力を強くしがっ痒耗を少なくする
ように硬質ゴム等で形成される。また吸収体4はゴム・
フェルト等で形成し機械的振動を固定体5に伝えないよ
うになっている。The friction portion 1a is made of hard rubber or the like to increase frictional force and reduce itching and wear. In addition, the absorber 4 is made of rubber.
It is made of felt or the like so that mechanical vibrations are not transmitted to the fixed body 5.
このように構成された振動波モータの動作は次のような
ものである。The operation of the vibration wave motor configured as described above is as follows.
第3図は上記モータの振動波の発生状態を示している。FIG. 3 shows how vibration waves are generated in the motor.
金属の振動体2に接着された電歪素−f−3a及び3b
は、説明の便宜上、隣接して現わされているが、上記の
入/4の位相ずれの条件を満足しているため、第1図に
示すモータの電歪素子3a及び3bの配列と実質的に等
価なものである。Electrostrictive element-f-3a and 3b bonded to metal vibrating body 2
are shown adjacent to each other for convenience of explanation, but since they satisfy the above input/4 phase shift condition, they are substantially the same as the arrangement of the electrostrictive elements 3a and 3b of the motor shown in FIG. are equivalent.
各゛、E歪素子3a及び3b中の■は交流電圧が正側の
周期であるとき伸び、Oは同じく正側の周期でキ16む
状態になることを示している。2 in each of the E strain elements 3a and 3b indicates that the AC voltage expands when the cycle is on the positive side, and O indicates that it also decreases during the cycle on the positive side.
金属振動体2を電歪素子3a及び3bの一方の゛毛様に
し、電歪素子3aには交流電源6aからV−V。sin
ωtの交流゛電圧を印加し、電歪素子3bには交流電源
6aから900位相器6bを通して入/4位相のずれた
V=V、)sin(ωt±π/2)の交流電圧を印加す
る。式中の十又−は移動体l(本図に於て省略)を動か
す方向によって位相器6bで切り換えられるもので、+
側に切り換えると+90°位相がずれ止方向に動き、−
側に切り換えると一90°位相がずれ逆方向に動く。い
ま−側に切り換えてあり電歪素子3bにはV=Vos
i n (ωt−π/ 2)の電圧か印加されるとする
。電歪素子3aだけが単独で電圧V=V(、sinωt
により振動した場合は同図(a)に示すような安在波に
よる振動が起り、11歪素子3bだけが単独テi[圧V
=V□ s i n (ωt −π/2)により振動し
た場合は(b)に示すような定在波による振動が起る。The metal vibrating body 2 is made to resemble one of the electrostrictive elements 3a and 3b, and the electrostrictive element 3a is supplied with V-V from an AC power source 6a. sin
An AC voltage of ωt is applied, and an AC voltage of V=V, )sin(ωt±π/2) with an input/4 phase shift is applied from the AC power supply 6a through the 900 phase shifter 6b to the electrostrictive element 3b. . The ten or minus in the equation is switched by the phase shifter 6b depending on the direction in which the moving body l (omitted in this figure) is moved, and +
When switched to the side, the +90° phase moves in the direction of non-slip, and -
When switched to the side, the phase shifts by 90 degrees and moves in the opposite direction. It is now switched to the - side, and the electrostrictive element 3b has V=Vos.
Assume that a voltage of i n (ωt-π/2) is applied. Only the electrostrictive element 3a alone has a voltage V=V(, sinωt
When the vibration occurs due to the vibration caused by the Anzai wave as shown in FIG.
=V□s i n (ωt −π/2), vibrations due to standing waves as shown in (b) occur.
上記位相のずれた二つの交流を同時に各々の電歪素子3
aと3bに印加すると振動波は進行性になる。(イ)は
時間t=2nπ/ω、 (ロ)はt=π/2ω+2nπ
10ン、(ハ)はL=π/ω+2nπ/ω、(ニ)はt
=3π/2ω+2nπ/ωの時のもので、振動波の波面
はX方向に進行する。The two out-of-phase alternating currents are simultaneously transmitted to each electrostrictive element 3.
When applied to a and 3b, the vibration wave becomes progressive. (A) is time t = 2nπ/ω, (B) is t = π/2ω + 2nπ
10n, (c) is L=π/ω+2nπ/ω, (d) is t
=3π/2ω+2nπ/ω, and the wavefront of the vibration wave travels in the X direction.
このような進行性の振動波は縦波と横波を伴なっており
、第4図に示すように振動体2の質点Aについて着目す
ると、縦振幅Uと横振輻Wで反l11p計力向の回転楕
円運動をしている。振動体2の表面には移動体lが加圧
接触しており振動面の頂点にだけ接触することになるか
ら、頂点に於ける質点A−A・・・の楕円運動の縦振幅
Uの成分に駆動され、移動体lは矢示N方向に移動する
。Such progressive vibration waves are accompanied by longitudinal waves and transverse waves, and if we focus on the mass point A of the vibrating body 2 as shown in Fig. It is moving in an elliptical motion. Since the moving body 1 is in pressure contact with the surface of the vibrating body 2 and comes into contact only with the apex of the vibrating surface, the component of the longitudinal amplitude U of the elliptical motion of the mass point A-A... at the apex The moving body l moves in the direction of arrow N.
900位相器により+900位相をずらせは振動波は−
X方向に進行し、移動体1はN方向と逆向きに移動する
。By shifting the phase by +900 using a 900 phase shifter, the vibration wave becomes -
Moving in the X direction, the moving body 1 moves in the opposite direction to the N direction.
このように進行性振動波によって駆動される振動波モー
タは極めて簡単な構成で正逆転の切り換えが可能となる
。As described above, the vibration wave motor driven by progressive vibration waves can be switched between forward and reverse directions with an extremely simple configuration.
なお、質点Aの頂点に於ける速度はV=2πfu(fは
振動周波数)となり、移動体lの移動速度はこれに依存
すると共に、加圧接触による摩擦駆動がされるため、横
振輻Wにも依存する。即ち、移動体lの移動速度は質点
Aの楕円運動の大きざに比例し、その楕円運動の大きさ
は電歪素子に印加される電圧に比例する。The velocity at the apex of the mass point A is V = 2πfu (f is the vibration frequency), and the moving velocity of the moving body l depends on this, and since it is frictionally driven by pressurized contact, the lateral vibration W It also depends on. That is, the moving speed of the moving body I is proportional to the magnitude of the elliptical motion of the mass point A, and the magnitude of the elliptical motion is proportional to the voltage applied to the electrostrictive element.
移動体lの摩擦駆動は振動体2の進行性振動波の波面の
頂点でなされるものであるから、頂点方向(第4図Z軸
方向)の波面が共振していることが駆動効率を向上させ
るために必要である。入力電圧の周波数f(−2πω)
とし振動体2のヤング率E拳冨度ρ厚さhとしてこれに
よってつくられる波の波長入とすると、
f=、/Nヲ乙丁7・πh/入2....(1)なる関
係がありこの関係を満足する板厚りで共振することにな
る。Since the frictional drive of the moving body 1 is performed at the apex of the wave surface of the progressive vibration wave of the vibrating body 2, the resonance of the wave surface in the direction of the apex (Z-axis direction in Figure 4) improves the driving efficiency. It is necessary to do so. Frequency of input voltage f (-2πω)
Assuming that the Young's modulus of the vibrating body 2 is E, the hardness, ρ, and the thickness h, and the wavelength of the wave created by this is f=, /Nゲ〇〈7・πh/〈2. .. .. .. There is a relationship (1), and resonance will occur if the plate thickness satisfies this relationship.
実施例における振動体2は環状であるため (1)式は
環の径りに於ける微小環[1Jの範囲で成立するもので
、周長πDは波長入のn倍(nは自然数)のとき共振す
る。Since the vibrating body 2 in the example is annular, equation (1) is valid within the range of a micro ring [1 J] in the diameter of the ring, and the circumference πD is n times the wavelength input (n is a natural number). resonates when
即ち 入=πp/n、、、、、’(2)となる。That is, input=πp/n, ,,,'(2).
従って(1)、(2)式より
h= J3p/E ・πfD2/n2 、、、(3)と
いう関係か成り立つ。Therefore, from equations (1) and (2), the relationship h=J3p/E·πfD2/n2, . . . (3) holds true.
第2図に示す実施例では、振動体2の断面の移動体l側
で形成する二次曲線は(3)式を満足しているため該断
面方向(即ち第4図に於けるZ軸方向)で波面が共振し
極めて強力な駆動効率を得ることができる。In the embodiment shown in FIG. 2, the quadratic curve formed on the movable body l side of the cross section of the vibrating body 2 satisfies equation (3). ), the wavefront resonates and extremely powerful drive efficiency can be obtained.
第5図は環状振動体2と移動体lの別な実施例を示すも
ので、振動体2の電歪素子側は平面に形成し移動体1側
では内径D1に於ける厚さり、−6E * πf D
(2/ n 2に、外径D2に於ける厚さh2=、r丁
フフEsπfD7’/n’にしてその間を直線で結ぶ厚
さに形成したものである。この場合に於てもD2が5丁
7)*−πf/n2に比し充分大きいため、振動体2の
の表面全体が略共振し、高い駆動効率が得られる。FIG. 5 shows another embodiment of the annular vibrating body 2 and the movable body l, in which the electrostrictive element side of the vibrating body 2 is formed flat, and the thickness at the inner diameter D1 on the movable body 1 side is −6E. * πf D
(In 2/n 2, the thickness at the outer diameter D2 is h2 = r d ff EsπfD7'/n' and the thickness is connected by a straight line. In this case as well, D2 is Since it is sufficiently large compared to 7)*-πf/n2, substantially the entire surface of the vibrating body 2 resonates, and high driving efficiency can be obtained.
この他、振動体2の移動体l側で環状の円弧面に形成し
たものを上記実施例と同じような高効率の駆動が可能で
ある。In addition, it is possible to drive the vibrating body 2 formed into an annular arc surface on the movable body l side with high efficiency similar to the above embodiment.
前記実施例では振動体2の電歪素子3側は平面にしたも
のを例示したが、前記の曲面、傾斜面を振動体2の電歪
素子3側に設けたもの、或は両側に設けたものであって
も良い。In the above embodiment, the electrostrictive element 3 side of the vibrating body 2 is made flat, but the above-mentioned curved or inclined surface may be provided on the electrostrictive element 3 side of the vibrating body 2, or on both sides. It may be something.
第6図はその一例として振動体2の傾斜面に電歪素子3
を接着したものを示している。As an example, FIG. 6 shows an electrostrictive element 3 on the inclined surface of the vibrating body 2.
It shows what is glued together.
このように本発明の振動波モータは進行性振動波により
駆動するため簡単に正逆転の切替が可能で、しかもその
振動波の共振状態が良いため高い駆動効率を得られるも
のである。As described above, since the vibration wave motor of the present invention is driven by progressive vibration waves, it can easily be switched between forward and reverse directions, and furthermore, the vibration wave has a good resonance state, so that high driving efficiency can be obtained.
第7図は本発明の振動波モータをスチルカメラ・ムービ
カメラeテレビカメラeビデオカメラ等各種カメラ類・
映写機・引伸機・スライドプロジェクタ等の各種投影機
類及び光ffl /1lll定a′i7;=の各種Jl
l定機類のような光学機器のレンズの絞り駆動源として
適用したものを例示している。Figure 7 shows how the vibration wave motor of the present invention can be applied to various cameras such as still cameras, movie cameras, television cameras, and video cameras.
Various projectors such as movie projectors, enlargers, slide projectors, etc. and various Jl of light ffl /1lll constant a'i7;=
This example is applied as an aperture drive source for a lens in an optical device such as a fixed-frame machine.
基台7の中心円筒部7aに吸収体4・電歪素子3・振動
体2・移動体である回転体9の中心孔部が順に嵌め込ま
れ、基台7に対し吸収体4・’ilj:歪素子3・振動
体2は回転しないようになっている。絞り羽根12の円
孔12b・円弧孔12aと基台7の突起7b・回転体9
の突起9aが各々係合し、その上をスラストベアリング
13かスペーサ14で位置決めされて抑え筒15によっ
て抑えられる。基台7と抑え筒15はへネ17によって
伺勢加圧され、ビス16によって連結され絞りュニント
の一体性を保つ。この絞りユニットはレンス鏡簡の一部
を形成するものである。The absorber 4, the electrostrictive element 3, the vibrating body 2, and the center hole of the rotating body 9, which is a moving body, are fitted in order into the central cylindrical portion 7a of the base 7, and the absorber 4, 'ilj: The strain element 3 and the vibrating body 2 are designed not to rotate. Circular hole 12b and arcuate hole 12a of aperture blade 12, protrusion 7b of base 7, and rotating body 9
The protrusions 9a are engaged with each other, and the thrust bearings 13 or spacers 14 are positioned above the protrusions 9a, and the retainer cylinders 15 are used to suppress the protrusions 9a. The base 7 and the restraining cylinder 15 are pressed by a screw 17 and connected by a screw 16 to maintain the integrity of the aperture unit. This aperture unit forms part of the lens frame.
電歪素子3にリード線11aellcとllb・llc
から各々−90°位相のずれた交流を印加すると、回転
体9が回転しその突起9aに係合する絞り羽根12はそ
の円弧穴12aに沿って軸7b’−12bを中心として
回動進出する。絞り羽根12は複数の突起9aに各々設
けられているため前記回動進出したときは中心空孔部を
絞り込む。交流の位相を前記と逆に+90°ずらすと回
転体9が逆回転して絞りを聞く。なお同図におけるSW
は回転体9の突起9bと絞りに開放時に当接してオン・
オフするスイ・ンチ、8aはくし歯電極で回転体9に取
付けられた電極8bに摺接し絞り羽根の絞り込み位置に
応じた信号を出すもので、共に絞り制御のために必要な
ものである。Lead wires 11aellc and llb/llc to the electrostrictive element 3
When an alternating current with a phase shift of -90° is applied to each of the rotating body 9, the rotating body 9 rotates, and the aperture blade 12 engaged with the protrusion 9a rotates forward along the arcuate hole 12a about the axis 7b'-12b. . Since the aperture blades 12 are provided on each of the plurality of protrusions 9a, when the aperture blades 12 are rotated forward, they narrow down the central cavity. When the phase of the alternating current is shifted by +90° in the opposite direction to the above, the rotating body 9 rotates in the opposite direction and the aperture is heard. In addition, SW in the same figure
is in contact with the protrusion 9b of the rotating body 9 and the aperture when it is opened, and is turned on.
The off switch 8a is a comb-shaped electrode that slides into contact with an electrode 8b attached to the rotating body 9 and outputs a signal corresponding to the aperture blade aperture position, both of which are necessary for aperture control.
第1図は本発明を適用する振動波モータの分解斜視図、
第2図は振動波モータの一部切欠き側面図、第3図・第
4図は振動波モータの駆動原理説明図、第5図・第6図
は別な実施例の一部切欠き側面図、第7図は本発明の振
動波モータを絞り駆動源に適用した実施例の斜視図、第
8図は電歪素子の別な実施例の平面図である。FIG. 1 is an exploded perspective view of a vibration wave motor to which the present invention is applied;
Fig. 2 is a partially cutaway side view of the vibration wave motor, Figs. 3 and 4 are diagrams explaining the driving principle of the vibration wave motor, and Figs. 5 and 6 are partially cutaway side views of another embodiment. 7 is a perspective view of an embodiment in which the vibration wave motor of the present invention is applied to an aperture drive source, and FIG. 8 is a plan view of another embodiment of an electrostrictive element.
lは移動体、2は振動体、3は電歪素子、4は振動吸収
体、5は固定体である。1 is a moving body, 2 is a vibrating body, 3 is an electrostrictive element, 4 is a vibration absorber, and 5 is a fixed body.
第3図
(二〇 □
尤第1図
第7図
第2図
第6図Figure 3 (20 □
Figure 1 Figure 7 Figure 2 Figure 6
Claims (1)
状振動体シこ、複数の電歪素子を位相差的に配列して接
合し、′又は複数に位相差的に分極処理された電歪素子
を接合し、 ゛ 該電歪素子に周波電圧を印加して該振動体に進行性振動
波を発生させ、 その進行性振動波により該振動体に加圧接触させた移動
体を摩擦駆動することを特徴とする振動波モータ。(1) An annular vibrating body whose thickness increases in the radial direction from the center, a plurality of electrostrictive elements arranged and bonded with a phase difference, and an electrostrictive element polarized with a phase difference of 1 or more. The elements are joined, and a frequency voltage is applied to the electrostrictive element to generate a progressive vibration wave in the vibrating body, and the progressive vibration wave frictionally drives a moving body that is brought into pressure contact with the vibrating body. A vibration wave motor characterized by:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57219532A JPS59110388A (en) | 1982-12-15 | 1982-12-15 | Vibration wave motor |
US06/558,004 US4495432A (en) | 1982-12-15 | 1983-12-05 | Piezoelectric vibration wave motor with sloped drive surface |
DE19833345274 DE3345274A1 (en) | 1982-12-15 | 1983-12-14 | VIBRATION SHAFT MOTOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57219532A JPS59110388A (en) | 1982-12-15 | 1982-12-15 | Vibration wave motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59110388A true JPS59110388A (en) | 1984-06-26 |
JPH0474952B2 JPH0474952B2 (en) | 1992-11-27 |
Family
ID=16736953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57219532A Granted JPS59110388A (en) | 1982-12-15 | 1982-12-15 | Vibration wave motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59110388A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59156169A (en) * | 1983-02-23 | 1984-09-05 | Canon Inc | Controller for vibration wave motor |
JPS61277382A (en) * | 1985-05-30 | 1986-12-08 | Marcon Electronics Co Ltd | Ultrasonic wave motor |
JPS6253184A (en) * | 1985-08-30 | 1987-03-07 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPS6253182A (en) * | 1985-08-29 | 1987-03-07 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPS62100180A (en) * | 1985-10-25 | 1987-05-09 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPS62107687A (en) * | 1985-11-05 | 1987-05-19 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPS62155781A (en) * | 1985-12-20 | 1987-07-10 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPS63315836A (en) * | 1987-06-17 | 1988-12-23 | Matsushita Electric Ind Co Ltd | Cooking appliance |
JPS63315837A (en) * | 1987-06-17 | 1988-12-23 | Matsushita Electric Ind Co Ltd | Cooking appliance |
JPH01114626A (en) * | 1987-10-29 | 1989-05-08 | Matsushita Electric Ind Co Ltd | Heating device |
JPH09103084A (en) * | 1985-11-20 | 1997-04-15 | Nikon Corp | Ultrasonic motor utilizing ultrasonic vibration |
JPH09172790A (en) * | 1996-12-24 | 1997-06-30 | Nikon Corp | Ultrasonic motor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5326911A (en) * | 1976-08-25 | 1978-03-13 | Yokogawa Hokushin Electric Corp | Pulse motor |
-
1982
- 1982-12-15 JP JP57219532A patent/JPS59110388A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5326911A (en) * | 1976-08-25 | 1978-03-13 | Yokogawa Hokushin Electric Corp | Pulse motor |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0514511B2 (en) * | 1983-02-23 | 1993-02-25 | Canon Kk | |
JPS59156169A (en) * | 1983-02-23 | 1984-09-05 | Canon Inc | Controller for vibration wave motor |
JPS61277382A (en) * | 1985-05-30 | 1986-12-08 | Marcon Electronics Co Ltd | Ultrasonic wave motor |
JPS6253182A (en) * | 1985-08-29 | 1987-03-07 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPS6253184A (en) * | 1985-08-30 | 1987-03-07 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPS62100180A (en) * | 1985-10-25 | 1987-05-09 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPS62107687A (en) * | 1985-11-05 | 1987-05-19 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPH09103084A (en) * | 1985-11-20 | 1997-04-15 | Nikon Corp | Ultrasonic motor utilizing ultrasonic vibration |
JPS62155781A (en) * | 1985-12-20 | 1987-07-10 | Marcon Electronics Co Ltd | Ultrasonic motor |
JPS63315837A (en) * | 1987-06-17 | 1988-12-23 | Matsushita Electric Ind Co Ltd | Cooking appliance |
JPS63315836A (en) * | 1987-06-17 | 1988-12-23 | Matsushita Electric Ind Co Ltd | Cooking appliance |
JPH01114626A (en) * | 1987-10-29 | 1989-05-08 | Matsushita Electric Ind Co Ltd | Heating device |
JPH09172790A (en) * | 1996-12-24 | 1997-06-30 | Nikon Corp | Ultrasonic motor |
Also Published As
Publication number | Publication date |
---|---|
JPH0474952B2 (en) | 1992-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4495432A (en) | Piezoelectric vibration wave motor with sloped drive surface | |
JPS59117473A (en) | Vibration wave motor | |
JPH0117353B2 (en) | ||
JPH0477553B2 (en) | ||
JP3107933B2 (en) | Vibration wave driving device and device provided with vibration wave driving device | |
JP3059031B2 (en) | Vibration wave drive device and device provided with vibration wave drive device | |
JPS60210172A (en) | Vibration wave motor | |
JPS59110388A (en) | Vibration wave motor | |
JPH0284079A (en) | Supporting device of oscillatory wave motor | |
US4764702A (en) | Ultrasonic motor device | |
JP2998978B2 (en) | Vibration wave device and drive device | |
JPS59139878A (en) | Vibration wave motor | |
JPS59122387A (en) | Vibration wave motor | |
JPS59110387A (en) | Vibration wave motor | |
JPH02311184A (en) | Ultrasonic motor | |
JP2975072B2 (en) | Actuator driving method and ultrasonic actuator realizing this driving method | |
JP2663164B2 (en) | Ultrasonic motor | |
JPH0993962A (en) | Oscillatory actuator | |
JP2769151B2 (en) | Ultrasonic motor | |
JP2586045B2 (en) | Vibration motor | |
JPS60183981A (en) | Supersonic wave motor | |
JPH01177878A (en) | Oscillatory wave motor | |
JPS60210173A (en) | Vibration wave motor | |
JPH0965673A (en) | Vibration actuator | |
JP2625691B2 (en) | Ultrasonic motor |