JPH07166240A - Production of ultrahigh magnetic flux density grain-oriented silicon steel sheet - Google Patents

Production of ultrahigh magnetic flux density grain-oriented silicon steel sheet

Info

Publication number
JPH07166240A
JPH07166240A JP5309500A JP30950093A JPH07166240A JP H07166240 A JPH07166240 A JP H07166240A JP 5309500 A JP5309500 A JP 5309500A JP 30950093 A JP30950093 A JP 30950093A JP H07166240 A JPH07166240 A JP H07166240A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
steel sheet
annealing
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5309500A
Other languages
Japanese (ja)
Other versions
JP3621712B2 (en
Inventor
Kunihide Takashima
邦秀 高嶋
Fumio Kurosawa
文夫 黒澤
Norito Abe
憲人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30950093A priority Critical patent/JP3621712B2/en
Publication of JPH07166240A publication Critical patent/JPH07166240A/en
Application granted granted Critical
Publication of JP3621712B2 publication Critical patent/JP3621712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Abstract

PURPOSE:To stably obtain a product high in magnetic flux density, at the time of producing a grain oriented silicon steel sheet from molten steel having a specified componental compsn., by regulating the cooling rate after the completion of hot rolling to a one slower than that in the conventional method. CONSTITUTION:Molten steel having a compsn. contg., as fundamental components, by weight, 0.03 to 0.15% C, 2.5 to 4.0% Si, 0.02 to 0.30% Mn, 0.05 to 0.040% S, 0.010 to 0.065% acid soluble Al, 0.0030 to 0.0150% N and 0.0005 to 0.05% Bi, and the balance Fe with inevitable impurities is prepd. This molten steel is cast and is successively subjected to hot rolling, annealing, cold rolling, decarburizing annealing, application of a separation agent and secondary recrystallization finish annealing to produce a grain-oriented silicon steel sheet. At that time, in the hot rolling stage, the cooling rate after the completion of the hot rolling is regulated to a one slower by 70 deg.C than that in water cooling and is subjected to cooling treatment milder than the conventional one. Thus, the grain-oriented silicon steel sheet extremely high in magnetic flux density even if the range of the hot rolled sheet annealing temp. is widely taken can stably be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はトランス等の鉄心に用い
られる、{110}〈001〉方位すなわちゴス方位を
高度に発達させた超高磁束密度一方向性電磁鋼板に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrahigh magnetic flux density unidirectional electrical steel sheet having a highly developed {110} <001> orientation, that is, Goss orientation, which is used for an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、軟磁性材料として
主にトランスその他の電気機器の鉄心材料に使用されて
いるもので、磁気特性としては、励磁特性と鉄損特性が
良好でなくてはならない。この励磁特性を表す指標とし
て、通常磁束密度B8 (磁場の強さ800A/mにおけ
る磁束密度)が用いられ、鉄損特性を表す指標として、
17/50 (50Hzで1.7Tまで磁化させたときの単位
重量あたりの鉄損)が用いられている。一方向性電磁鋼
板は、製造工程の最終段階の900℃以上の温度での仕
上げ焼鈍工程で2次再結晶を起こさせ、鋼板面に{11
0}面、圧延方向に〈001〉軸を持ったいわゆるGo
ss組織を発達させることによって得られている。その
なかでも、磁束密度B8 が1.88T以上の優れた励磁
特性を持つものは高磁束密度一方向性電磁鋼板と呼ばれ
ている。
2. Description of the Related Art Unidirectional magnetic steel sheets are mainly used as a soft magnetic material for iron core materials of transformers and other electric equipment. The magnetic characteristics are not good in excitation characteristics and iron loss characteristics. Don't The magnetic flux density B 8 (the magnetic flux density at a magnetic field strength of 800 A / m) is usually used as an index showing this excitation characteristic, and as an index showing the iron loss characteristic,
W 17/50 (iron loss per unit weight when magnetized to 1.7 T at 50 Hz) is used. The unidirectional electrical steel sheet undergoes secondary recrystallization in the final annealing step at a temperature of 900 ° C. or higher in the final stage of the manufacturing process, and the steel sheet surface has {11
0} plane, so-called Go having a <001> axis in the rolling direction
It has been obtained by developing ss tissue. Among them, a magnetic flux density B 8 having an excellent excitation characteristic of 1.88 T or more is called a high magnetic flux density unidirectional electrical steel sheet.

【0003】高磁束密度一方向性電磁鋼板の代表的製造
方法としては、特公昭40−15644号公報、特公昭
51−13469号公報等があげられる。現在世界的規
模で生産されている高磁束密度一方向性電磁鋼板は、上
記2特許を基本として生産されているといえる。然るに
上記特許に基づく製品の磁束密度B8 は1.88T乃至
高々1.95T程度であり、3%Si鋼の飽和磁束密度
2.03Tの95%程度の値を示しているに過ぎない。
然るに近年省エネルギー、省資源への社会的要求は益々
厳しくなり、一方向性電磁鋼板の鉄損低減、磁化特性改
善への要求も熾烈になってきている。
As a typical method for producing a high magnetic flux density grain-oriented electrical steel sheet, Japanese Patent Publication No. 40-15644 and Japanese Patent Publication No. 51-13469 can be cited. It can be said that the high magnetic flux density unidirectional electrical steel sheets currently produced on a global scale are produced based on the above two patents. However, the magnetic flux density B 8 of the product based on the above-mentioned patent is about 1.88T to at most 1.95T, which is only about 95% of the saturation magnetic flux density 2.03T of 3% Si steel.
However, in recent years, social demands for energy saving and resource saving have become more and more severe, and demands for reducing iron loss and improving magnetization characteristics of unidirectional electrical steel sheets have also become fierce.

【0004】一方、技術的には鉄損低減化の手法として
レーザー照射等の磁区制御技術が特公昭58−5968
号公報、特公昭57−2252号公報等により確立さ
れ、この方法では、素材に対し更なる高磁束密度化の要
求が鉄損低減への条件として強くなっている。すなわ
ち、従来の高磁束密度一方向性電磁鋼板の磁束密度B8
を更に理想方位に近付ける手段の出現が待たれているの
が現状である。
On the other hand, technically, as a technique for reducing iron loss, a magnetic domain control technique such as laser irradiation is disclosed in JP-B-58-5968.
This method is established by Japanese Patent Publication No. 57-2252 and Japanese Patent Publication No. 57-2252. In this method, the requirement for further higher magnetic flux density is becoming stronger as a condition for reducing iron loss. That is, the magnetic flux density B 8 of the conventional high magnetic flux density unidirectional electrical steel sheet
It is the current situation that the appearance of a means to bring the object closer to the ideal azimuth is awaited.

【0005】この目標達成のための手段として、本発明
者らは特公昭57−1565号公報で、従来のAl入り
高磁束密度一方向性電磁鋼板の溶鋼に炭酸塩含有物を添
加する方法を提案した。しかしこの方法は実験室的には
実現性があるが、工業規模では実施されていないのが実
情である。更に本出願人は特公昭58−50295号公
報で温度勾配焼鈍法を提案した。この方法で、初めて安
定して磁束密度B8 が1.95T以上の製品が得られる
ようになった。しかし、この方法は工場サイズのコイル
フォームで実施する場合、コイル一端から加熱し、反対
端部は温度勾配をつけるため冷却するという、非常に熱
エネルギー的損失を伴うため工業生産としては大きな問
題点をはらんでいた。
As a means for achieving this goal, the present inventors have disclosed a method of adding a carbonate-containing material to the molten steel of a conventional Al-containing high magnetic flux density unidirectional electrical steel sheet in Japanese Patent Publication No. 57-1565. Proposed. However, although this method is feasible in the laboratory, it is not practiced on an industrial scale. Further, the present applicant has proposed a temperature gradient annealing method in Japanese Patent Publication No. 58-50295. With this method, a product having a magnetic flux density B 8 of 1.95 T or more can be stably obtained for the first time. However, when this method is carried out with a factory-sized coil foam, heating from one end of the coil and cooling at the other end to create a temperature gradient entails a very high thermal energy loss, which is a major problem for industrial production. It was full of.

【0006】そこで本発明者らは工業的手段で磁束密度
を極めて高く、従来の高磁束密度一方向性電磁鋼板レベ
ルから超高磁束密度一方向性電磁鋼板レベルまでに高め
る方法を特願平4−240702号公報、特願平4−2
40701号公報等で提案した。この方法により初めて
超高磁束密度一方向性電磁鋼板が比較的安定に得られる
ようになったが、その後本発明者らが製造条件を精査し
たところ、場合によっては問題点があることが判明し
た。例えば熱延板焼鈍温度を厳密に制御しないと2次再
結晶不良が発生することがあることが判明した。そこで
この超高磁束密度一方向性電磁鋼板を極めて安定に製造
する方法の確立が求められていた。
Therefore, the inventors of the present invention have proposed a method of increasing the magnetic flux density by industrial means to a very high level from the conventional high magnetic flux density unidirectional electrical steel sheet level to the ultrahigh magnetic flux density unidirectional electrical steel sheet level. -240702, Japanese Patent Application No. 4-2
No. 40701, etc. By this method, the super high magnetic flux density unidirectional electrical steel sheet became relatively stable for the first time, but when the present inventors examined the manufacturing conditions thereafter, it was found that there was a problem in some cases. . For example, it has been found that secondary recrystallization failure may occur unless the hot-rolled sheet annealing temperature is strictly controlled. Therefore, there has been a demand for establishment of a method for extremely stably manufacturing this ultra-high magnetic flux density grain-oriented electrical steel sheet.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる問題
点を回避し、極めて磁束密度の高い超高磁束密度一方向
性電磁鋼板を極めて安定に製造することを可能にするこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to avoid such problems and to manufacture an ultrahigh magnetic flux density grain-oriented electrical steel sheet having an extremely high magnetic flux density in an extremely stable manner. .

【0008】[0008]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、次の通りである。 1)重量で、C:0.03〜0.15%、Si:2.5
〜4.0%、Mn:0.02〜0.30%、S:0.0
05〜0.040%、酸可溶性Al:0.010〜0.
065%、N:0.0030〜0.0150%、Bi:
0.0005〜0.05%を基本成分とし、不可避不純
物を含み残部は実質的にFeからなる溶鋼を鋳造する工
程、熱延する工程、最終の冷間圧延前に高温の焼鈍をす
る工程、圧下率65〜95%の最終強冷延を含む1回あ
るいは中間焼鈍を介挿する2回以上の冷間圧延を行う工
程、次いで脱炭焼鈍、焼鈍分離剤を塗布する工程、更に
2次再結晶仕上げ焼鈍を行う工程からなる一方向性電磁
鋼板を製造する方法において、上記熱延工程において熱
延終了後の鋼板の冷却速度を70℃の水冷よりも遅くす
ることを特徴とする超高磁束密度一方向性電磁鋼板の製
造方法。 2)Sn:0.05〜0.50%を含有せしめることを
特徴とする1)記載の超高磁束密度一方向性電磁鋼板の
製造方法。 3)Cu:0.01〜0.10%を含有せしめることを
特徴とする2)記載の超高磁束密度一方向性電磁鋼板の
製造方法。
The features of the present invention are as follows. 1) By weight, C: 0.03 to 0.15%, Si: 2.5
~ 4.0%, Mn: 0.02-0.30%, S: 0.0
05-0.040%, acid-soluble Al: 0.010-0.
065%, N: 0.0030 to 0.0150%, Bi:
A step of casting a molten steel containing 0.0005 to 0.05% as a basic component and containing unavoidable impurities and the balance being substantially Fe, a step of hot rolling, a step of high temperature annealing before the final cold rolling, A step of performing cold rolling once or more including a final strong cold rolling with a rolling reduction of 65 to 95%, or two or more times of intermediate rolling, followed by decarburization annealing, a step of applying an annealing separator, and further secondary re-rolling. In the method for producing a unidirectional electrical steel sheet comprising a step of performing crystal finish annealing, the cooling rate of the steel sheet after hot rolling in the hot rolling step is slower than that of water cooling at 70 ° C. Manufacturing method of density unidirectional electrical steel sheet. 2) The method for producing an ultrahigh magnetic flux density grain-oriented electrical steel sheet according to 1), characterized in that Sn: 0.05 to 0.50% is contained. 3) Cu: 0.01-0.10% is contained, The manufacturing method of the ultra high magnetic flux density grain-oriented electrical steel sheet of 2) characterized by the above-mentioned.

【0009】以下本発明の詳細について説明する。本発
明者は、鋼板の磁束密度B8 が1.95T以上のいわゆ
る超高磁束密度一方向性電磁鋼板を安定に製造すべく種
々の研究を重ねているが、窒化アルミニウムを主インヒ
ビターとする一方向性電磁鋼板用の素材に、Biを添加
含有せしめることにより、現在市販されている高磁束密
度一方向性電磁鋼板の磁束密度B8=1.93T程度を
はるかに超える1.95T以上、2Tにもおよぶ超高磁
束密度一方向性電磁鋼板を得、且つ、通常の高磁束密度
一方向性電磁鋼板の製造において実施されている熱延終
了後の鋼板巻取温度550〜650℃を500℃以下に
制御することにより、より安定して超高磁束密度一方向
性電磁鋼板を得ることに成功した。
The details of the present invention will be described below. The present inventor has conducted various studies to stably produce a so-called ultra-high magnetic flux density unidirectional electrical steel sheet having a magnetic flux density B 8 of 1.95 T or more, but aluminum nitride is the main inhibitor. By adding Bi to the material for the grain-oriented electrical steel sheet, the magnetic flux density B8 of the currently marketed high-oriented grain-oriented electrical steel sheet is significantly higher than B 8 = 1.93T or more than 1.95T or 2T. To obtain an ultra-high magnetic flux density unidirectional electrical steel sheet having a high magnetic flux density and to carry out a steel sheet coiling temperature of 550 to 650 ° C at 500 ° C after completion of hot rolling, which is carried out in the production of ordinary high magnetic flux density unidirectional electrical steel sheet. By controlling the following, we succeeded in obtaining a more stable ultrahigh magnetic flux density grain-oriented electrical steel sheet.

【0010】本発明の成分組成の限定理由を説明する。
Cは、0.03%未満では熱延に先立つスラブ再加熱時
に異常粒成長し、成品において線状細粒と呼ばれる2次
再結晶不良を起こすので好ましくない。一方0.15%
超では脱炭焼鈍工程での脱炭が不完全になりやすく、成
品での磁気時効を引き起こすので好ましくない。Si
は、2.5%未満では成品の渦電流損が増大し、また
4.0%超では常温での冷延が困難になり、いずれも好
ましくない。Mn,Sは、硫化マンガン形成により補助
的インヒビターとして作用させるためには上記範囲が必
要である。
The reasons for limiting the component composition of the present invention will be described.
If C is less than 0.03%, abnormal grain growth occurs during slab reheating prior to hot rolling, and secondary recrystallization defects called linear fine grains occur in the product, which is not preferable. On the other hand, 0.15%
If it exceeds the above range, decarburization in the decarburization annealing process is likely to be incomplete, which causes magnetic aging in the product, which is not preferable. Si
If less than 2.5%, the eddy current loss of the product increases, and if it exceeds 4.0%, cold rolling at room temperature becomes difficult, and both are not preferable. The above range is required for Mn and S to act as auxiliary inhibitors by forming manganese sulfide.

【0011】酸可溶性Alは、高磁束密度一方向性電磁
鋼板製造のための主要インヒビター構成元素であり、
0.010%未満では量的に不足し、インヒビター強度
が不足する。一方0.065%超では析出窒化アルミニ
ウムが粗大化し、結果としてインヒビター強度を低下さ
せるので好ましくない。Nも、酸可溶性Al同様に主イ
ンヒビター構成元素であり、上記範囲を逸脱するとイン
ヒビターの最適状態を壊すので好ましくない。Biは、
超高磁束密度一方向性電磁鋼板製造のための必須元素で
あり、添加含有量は、0.0005〜0.05%の範囲
が有効である。0.0005%未満では磁束密度の向上
がわずかであり、また0.05%超では磁束密度向上の
効果が飽和するとともに熱延板の端部に割れが発生する
ので上限を0.05%に限定する。
Acid-soluble Al is a main inhibitor constituent element for the production of high magnetic flux density unidirectional electrical steel sheet,
If it is less than 0.010%, the amount is insufficient and the inhibitor strength is insufficient. On the other hand, if it exceeds 0.065%, the precipitated aluminum nitride becomes coarse and, as a result, the inhibitor strength is lowered, which is not preferable. N, like the acid-soluble Al, is a main inhibitor constituent element, and if it deviates from the above range, it destroys the optimum state of the inhibitor, which is not preferable. Bi is
It is an essential element for the production of ultra-high magnetic flux density unidirectional electrical steel sheet, and the addition content is effectively in the range of 0.0005 to 0.05%. If it is less than 0.0005%, the improvement of the magnetic flux density is slight, and if it exceeds 0.05%, the effect of improving the magnetic flux density saturates and cracks occur at the edges of the hot-rolled sheet. limit.

【0012】更に、Snについては薄手成品の2次再結
晶を安定化させる元素として、また2次再結晶粒径を小
さくする作用もあり、0.05%以上の添加が必要であ
り、添加することができる。その場合、0.50%を超
えてもその作用効果が飽和するのでコストアップの点か
ら0.50%以下に限定する。Cuは、Sn添加材の被
膜向上元素として有効であり、0.01%未満では効果
が薄く、0.10%を超えると成品の磁束密度が低下す
るので0.01〜0.10%の範囲で添加することがで
きる。
Further, Sn is an element that stabilizes the secondary recrystallization of a thin product, and also has an effect of reducing the secondary recrystallization grain size. Therefore, it is necessary to add 0.05% or more. be able to. In that case, even if it exceeds 0.50%, its action and effect are saturated, so from the viewpoint of cost increase, it is limited to 0.50% or less. Cu is effective as a film-improving element of the Sn-added material, and if it is less than 0.01%, the effect is small, and if it exceeds 0.10%, the magnetic flux density of the product decreases, so the range of 0.01 to 0.10% Can be added at.

【0013】次に製造プロセス条件について説明する。
上記の如く成分を調整した超高磁束密度一方向性電磁鋼
板用素材は通常の如何なる溶解法、鋳造法を用いた場合
でも本願発明の素材とすることができる。
Next, the manufacturing process conditions will be described.
The raw material for ultra-high magnetic flux density unidirectional electrical steel sheet having the components adjusted as described above can be used as the raw material of the present invention even when any ordinary melting method or casting method is used.

【0014】次いでこの電磁鋼板用素材は通常の熱間圧
延により熱延コイルに圧延される。この熱延工程に本発
明の特徴がある。通常の既に公知のインヒビターである
AlNやMnSを主インヒビターとして用いる高磁束密
度一方向性電磁鋼板製造法では主にAlNの析出抑制の
ため熱延終了後の冷却はできるだけ速くするのが一般的
で特公昭51−2290号公報では実施例に熱延終了後
直ちに水中に急冷する処理が記載されている。
Next, this raw material for electromagnetic steel sheets is rolled into a hot rolled coil by ordinary hot rolling. This hot rolling step is a feature of the present invention. In a high magnetic flux density unidirectional electrical steel sheet manufacturing method using AlN or MnS, which is a commonly known inhibitor, as a main inhibitor, it is general to cool the steel sheet after hot rolling as fast as possible mainly to suppress precipitation of AlN. Japanese Patent Publication No. 51-2290 discloses a process of quenching in water immediately after the hot rolling is completed.

【0015】然るに本発明のインヒビターとしてBiを
含有する場合には、このような急冷を行った熱延板を後
工程処理を施した場合に、条件によっては2次再結晶不
良が生じることがあることが判明した。そこで熱延板に
おける最適熱延条件を検討した結果、熱延終了後の冷却
速度を70℃水冷よりも遅い速度で行うことで、上記熱
延板焼鈍条件による不具合が完全に緩和されることを発
明した。
However, when Bi is contained as the inhibitor of the present invention, a secondary recrystallization defect may occur depending on the conditions when the hot-rolled sheet subjected to such quenching is subjected to a post-process. It has been found. Therefore, as a result of studying the optimum hot rolling conditions in the hot rolled sheet, it was found that the defects due to the hot rolled sheet annealing conditions are completely alleviated by performing the cooling rate after the hot rolling at a rate slower than 70 ° C water cooling. Invented

【0016】本発明の熱延終了後の冷却速度を70℃水
冷よりも遅くすると熱延板焼鈍条件による不具合が解決
できたメカニズムは必ずしも明確ではないが、本発明者
は次のように推察している。1つはBiは1200℃以
下のような温度ではほんの僅かしか溶解度を持たないた
めその分散状態は熱延板焼鈍では制御できず、既知のイ
ンヒビターであるAlNやMnSの分散状態制御のため
の熱延板焼鈍条件が必ずしもとれないためと考えられ
る。1つはBiを含有する場合BiがAlNやMnSの
析出にも影響を及ぼし、熱延終了後の急冷処理では引き
続く熱延板焼鈍でインヒビターの最適状態が維持できな
いためではないかと考えている。
Although the mechanism by which the problem due to the annealing conditions of the hot rolled sheet could be solved by making the cooling rate after the hot rolling of the present invention slower than that of water cooling at 70 ° C. is not necessarily clear, the present inventors presume as follows. ing. One is that Bi has a very low solubility at temperatures such as 1200 ° C or lower, so its dispersion state cannot be controlled by hot-rolled sheet annealing, and the heat for controlling the dispersion state of known inhibitors such as AlN and MnS cannot be controlled. It is considered that this is because the rolled sheet annealing conditions cannot always be taken. One reason is that when Bi is contained, Bi also affects the precipitation of AlN and MnS, and it is thought that the quenching treatment after the hot rolling cannot maintain the optimum state of the inhibitor in the subsequent hot rolled sheet annealing.

【0017】引き続いて1ステージの冷間圧延または中
間焼鈍を含む複数ステージの冷間圧延によって最終板厚
とするが、高磁束密度一方向性電磁鋼板を得ることから
最終冷延の圧延率(1ステージの冷間圧延の場合はその
圧延率)は65〜95%の強圧下が必要である。最終圧
延以外のステージの圧延率は特に規定しなくてもよい。
Subsequently, final sheet thickness is obtained by one-stage cold rolling or multiple-stage cold rolling including intermediate annealing. However, since a high magnetic flux density unidirectional electrical steel sheet is obtained, the final cold rolling reduction rate (1 In the case of cold rolling of the stage, the rolling reduction) requires a strong reduction of 65 to 95%. The rolling ratio of the stages other than the final rolling need not be specified.

【0018】最終冷延前に粒成長抑止のためのインヒビ
ター制御のために焼鈍を行う。最終成品板厚に圧延した
冷延板を、続いて通常の方法で脱炭焼鈍を行う。脱炭焼
鈍の条件は特に規定しないが、好ましくは700〜90
0℃の温度範囲で、30秒〜30分間湿潤な水素または
水素、窒素の混合雰囲気で行うのがよい。
Before the final cold rolling, annealing is performed to control the inhibitor for suppressing grain growth. The cold-rolled sheet rolled to the final product sheet thickness is subsequently decarburized and annealed by a usual method. The conditions of decarburization annealing are not particularly specified, but preferably 700 to 90.
It is advisable to carry out in the temperature range of 0 ° C. for 30 seconds to 30 minutes in wet hydrogen or a mixed atmosphere of hydrogen and nitrogen.

【0019】脱炭焼鈍後の鋼板表面には、2次再結晶焼
鈍における焼き付き防止およびグラス被膜生成のため、
通常の方法で通常の組成の焼鈍分離剤を塗布する。2次
再結晶焼鈍は、1000℃以上の温度で5時間以上、水
素または窒素またはそれらの混合雰囲気で行う。引き続
き余分の焼鈍分離剤を除去後、コイル巻ぐせを矯正する
ための連続焼鈍を行い、同時に絶縁被膜を塗布、焼き付
けする。更に、必要に応じてレーザー照射等の磁区細分
化処理を施す。磁区細分化の方法は特に限定する必要は
ない。
On the surface of the steel sheet after decarburization annealing, in order to prevent seizure and glass film formation in the secondary recrystallization annealing,
An annealing separator having a usual composition is applied by a usual method. The secondary recrystallization annealing is performed at a temperature of 1000 ° C. or higher for 5 hours or longer in hydrogen or nitrogen or a mixed atmosphere thereof. Subsequently, after removing the excess annealing separator, continuous annealing for straightening the coil winding is performed, and at the same time, an insulating coating is applied and baked. Further, magnetic domain subdivision processing such as laser irradiation is performed if necessary. The method of subdividing the magnetic domains is not particularly limited.

【0020】[0020]

【実施例】【Example】

(実施例1)C:0.09%、Si:3.05%、M
n:0.07%、S:0.023%、酸可溶性Al:
0.026%、N:0.008%、Bi:0.007%
を含有する珪素鋼を溶製した。鋼片に鋳造後、1350
℃に加熱し、抽出後直ちに2.3mm板厚まで熱延し、熱
延後冷却条件を20℃水冷、100℃水冷、空気中放冷
の3水準に変化させた。熱延板を1050℃,1150
℃の2水準の温度で焼鈍し、直ちに100℃の水中に急
冷した。次いで酸洗後0.30mmまで途中で250℃で
の時効処理を5回はさんで冷却した。引き続き850℃
で脱炭焼鈍を行い、MgOを主成分とする焼鈍分離剤を
塗布後1200℃の2次再結晶仕上げ焼鈍を行った。2
次再結晶状況および得られた製品の磁気測定結果を表1
に示す。
(Example 1) C: 0.09%, Si: 3.05%, M
n: 0.07%, S: 0.023%, acid-soluble Al:
0.026%, N: 0.008%, Bi: 0.007%
The silicon steel containing was melted. After casting into billet 1350
Immediately after extraction, the product was hot-rolled to a plate thickness of 2.3 mm and the cooling conditions after hot-rolling were changed to three levels of 20 ° C. water cooling, 100 ° C. water cooling, and air cooling. Hot rolled sheet at 1050 ℃, 1150
It was annealed at two temperature levels of 0 ° C and immediately quenched in water at 100 ° C. Then, after pickling, the aging treatment at 250 ° C. was repeated 5 times to cool it to 0.30 mm. 850 ℃ continuously
Then, decarburization annealing was performed, and an annealing separator having MgO as a main component was applied, and then secondary recrystallization finish annealing at 1200 ° C. was performed. Two
Table 1 shows the next recrystallization state and the magnetic measurement results of the obtained products.
Shown in.

【0021】[0021]

【表1】 [Table 1]

【0022】表1より明らかなように比較例の20℃水
冷では熱延板焼鈍温度1150℃の処理条件では2次再
結晶率が30%と低く、磁束密度B8 も1.67Tと極
めて低いのに対して、冷却速度が100℃水冷のように
緩冷却の場合では熱延板焼鈍温度が1050℃はもとよ
り1150℃の高温処理でも2次再結晶率は100%
で、得られた製品の磁束密度B8 も1.98〜2.01
Tと極めて高いものである。
As is clear from Table 1, in the water cooling of 20 ° C. of the comparative example, the secondary recrystallization rate is as low as 30% and the magnetic flux density B 8 is also extremely low as 1.67 T under the hot rolled sheet annealing temperature of 1150 ° C. On the other hand, in the case of slow cooling such as water cooling with a cooling rate of 100 ° C., the secondary recrystallization rate is 100% even when the hot-rolled sheet annealing temperature is 1050 ° C. or even at a high temperature of 1150 ° C.
Then, the magnetic flux density B 8 of the obtained product is 1.98 to 2.01.
T is extremely high.

【0023】(実施例2)C:0.09%、Si:3.
25%、Mn:0.07%、S:0.025%、酸可溶
性Al:0.026%、N:0.008%、Bi:0.
007%、Sn:0.12%を含有する珪素鋼を溶製し
た。鋼片に鋳造後、1350℃に加熱し、抽出後直ちに
2.3mm板厚まで熱延し、熱延後冷却条件を20℃水
冷、100℃水冷、空気中放冷の3水準に変化させた。
熱延板を1050℃,1150℃の2水準の温度で焼鈍
し、直ちに100℃の水中に急冷した。次いで酸洗後
0.23mmまで途中で250℃での時効処理を5回はさ
んで冷却した。引き続き850℃で脱炭焼鈍を行い、M
gOを主成分とする焼鈍分離剤を塗布後1200℃の2
次再結晶仕上げ焼鈍を行った。2次再結晶状況および得
られた製品の磁気測定結果を表2に示す。
(Example 2) C: 0.09%, Si: 3.
25%, Mn: 0.07%, S: 0.025%, acid-soluble Al: 0.026%, N: 0.008%, Bi: 0.
Silicon steel containing 007% and Sn: 0.12% was melted. After casting into a steel slab, it was heated to 1350 ° C, hot rolled to a thickness of 2.3mm immediately after extraction, and the cooling conditions after hot rolling were changed to three levels: 20 ° C water cooling, 100 ° C water cooling, and air cooling. .
The hot-rolled sheet was annealed at two levels of temperature of 1050 ° C and 1150 ° C and immediately quenched in water of 100 ° C. Next, after pickling, the aging treatment at 250 ° C. was repeated 5 times while cooling to 0.23 mm. Then, decarburization annealing is performed at 850 ° C, and M
After applying the annealing separating agent containing gO as a main component, the temperature is kept at 1200 ° C for 2
Next, recrystallization finish annealing was performed. Table 2 shows the secondary recrystallization state and the magnetic measurement result of the obtained product.

【0024】[0024]

【表2】 [Table 2]

【0025】表2より明らかなように比較例の20℃水
冷では熱延板焼鈍温度1150℃の処理条件では2次再
結晶率が20%と低く、磁束密度B8 も1.58Tと極
めて低いのに対して、冷却速度が100℃水冷のように
緩冷却の場合では熱延板焼鈍温度が1050℃はもとよ
り1150℃の高温処理でも2次再結晶率は100%
で、得られた製品の磁束密度B8 も1.98〜2.00
Tと極めて高いものである。
As is clear from Table 2, the secondary recrystallization rate is as low as 20% and the magnetic flux density B 8 is also extremely low as 1.58 T under the processing conditions of the hot-rolled sheet annealing temperature of 1150 ° C. in the comparative example of 20 ° C. water cooling. On the other hand, in the case of slow cooling such as water cooling with a cooling rate of 100 ° C., the secondary recrystallization rate is 100% even when the hot-rolled sheet annealing temperature is 1050 ° C. or even at a high temperature of 1150 ° C.
Then, the magnetic flux density B 8 of the obtained product is also 1.98 to 2.00.
T is extremely high.

【0026】(実施例3)C:0.08%、Si:3.
30%、Mn:0.08%、S:0.026%、酸可溶
性Al:0.026%、N:0.008%、Bi:0.
010%、Sn:0.12%、Cu:0.05%を含有
する珪素鋼を溶製した。鋼片に鋳造後、1350℃に加
熱し、抽出後直ちに2.0mm板厚まで熱延し、熱延後冷
却条件を20℃水冷、100℃水冷、空気中放冷の3水
準に変化させた。熱延板を1050℃,1150℃の2
水準の温度で焼鈍し、直ちに100℃の水中に急冷し
た。次いで酸洗後0.23mmまで途中で250℃での時
効処理を5回はさんで冷却した。引き続き850℃で脱
炭焼鈍を行い、MgOを主成分とする焼鈍分離剤を塗布
後1200℃の2次再結晶仕上げ焼鈍を行った。2次再
結晶状況および得られた製品の磁気測定結果を表3に示
す。
(Example 3) C: 0.08%, Si: 3.
30%, Mn: 0.08%, S: 0.026%, acid-soluble Al: 0.026%, N: 0.008%, Bi: 0.
Silicon steel containing 010%, Sn: 0.12%, Cu: 0.05% was melted. After casting into a steel slab, it was heated to 1350 ° C., hot rolled immediately after extraction to a thickness of 2.0 mm, and the cooling conditions after hot rolling were changed to 3 levels: 20 ° C. water cooling, 100 ° C. water cooling, and air cooling. . Hot-rolled sheet at 1050 ℃ and 1150 ℃ 2
It was annealed at a standard temperature and immediately quenched in water at 100 ° C. Next, after pickling, the aging treatment at 250 ° C. was repeated 5 times while cooling to 0.23 mm. Subsequently, decarburization annealing was performed at 850 ° C., an annealing separator containing MgO as a main component was applied, and then secondary recrystallization finish annealing was performed at 1200 ° C. Table 3 shows the secondary recrystallization state and the magnetic measurement result of the obtained product.

【0027】[0027]

【表3】 [Table 3]

【0028】表3より明らかなように比較例の20℃水
冷では熱延板焼鈍温度1150℃の処理条件では2次再
結晶率が30%と低く、磁束密度B8 も1.63Tと極
めて低いのに対して、冷却速度が100℃水冷のように
緩冷却の場合では熱延板焼鈍温度が1050℃はもとよ
り1150℃の高温処理でも2次再結晶率は100%
で、得られた製品の磁束密度B8 も1.98〜2.01
Tと極めて高いものである。
As is clear from Table 3, in the comparative example of 20 ° C. water cooling, the secondary recrystallization rate was as low as 30% and the magnetic flux density B 8 was also extremely low as 1.63 T under the treatment conditions of the hot rolled sheet annealing temperature of 1150 ° C. On the other hand, in the case of slow cooling such as water cooling with a cooling rate of 100 ° C., the secondary recrystallization rate is 100% even when the hot-rolled sheet annealing temperature is 1050 ° C. or even at a high temperature of 1150 ° C.
Then, the magnetic flux density B 8 of the obtained product is 1.98 to 2.01.
T is extremely high.

【0029】[0029]

【発明の効果】本発明による熱延冷却速度を従来法より
も緩冷却する方法は、熱延板焼鈍温度を広くとっても極
めて磁束密度の高い製品が安定して得られ、工業的に非
常に価値の高い有益なものといえる。
The method of slow cooling the hot rolling cooling rate according to the present invention as compared with the conventional method can stably obtain a product having extremely high magnetic flux density even if the hot rolling sheet annealing temperature is wide, and is industrially very valuable. Highly beneficial.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/06 38/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 38/06 38/16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量で、 C :0.03〜0.15%、 Si:2.5〜4.0%、 Mn:0.02〜0.30%、 S :0.005〜0.040%、 酸可溶性Al:0.010〜0.065%、 N :0.0030〜0.0150%、 Bi:0.0005〜0.05% を基本成分とし、不可避不純物を含み残部は実質的にF
eからなる溶鋼を鋳造する工程、熱延する工程、最終の
冷間圧延前に高温の焼鈍をする工程、圧下率65〜95
%の最終強冷延を含む1回あるいは中間焼鈍を介挿する
2回以上の冷間圧延を行う工程、次いで脱炭焼鈍、焼鈍
分離剤を塗布する工程、更に2次再結晶仕上げ焼鈍を行
う工程からなる一方向性電磁鋼板を製造する方法におい
て、上記熱延工程において熱延終了後の鋼板の冷却速度
を70℃の水冷よりも遅くすることを特徴とする超高磁
束密度一方向性電磁鋼板の製造方法。
1. By weight, C: 0.03 to 0.15%, Si: 2.5 to 4.0%, Mn: 0.02 to 0.30%, S: 0.005 to 0.040. %, Acid-soluble Al: 0.010 to 0.065%, N: 0.0030 to 0.0150%, Bi: 0.0005 to 0.05% as a basic component, including unavoidable impurities, and the balance being substantially F
Step of casting molten steel consisting of e, step of hot rolling, step of high temperature annealing before final cold rolling, reduction ratio 65 to 95
% Cold-rolling at least once including the final strong cold rolling or at least two times through intermediate annealing, followed by decarburizing annealing, applying an annealing separator, and further performing secondary recrystallization finishing annealing. In the method for producing a unidirectional electrical steel sheet comprising the steps, an ultrahigh magnetic flux density unidirectional electromagnetic field is characterized in that in the hot rolling step, the cooling rate of the steel sheet after the hot rolling is slower than that of water cooling at 70 ° C. Steel plate manufacturing method.
【請求項2】 Sn:0.05〜0.50%を含有せし
めることを特徴とする請求項1記載の超高磁束密度一方
向性電磁鋼板の製造方法。
2. The method for producing an ultrahigh magnetic flux density grain-oriented electrical steel sheet according to claim 1, wherein Sn: 0.05 to 0.50% is contained.
【請求項3】 Cu:0.01〜0.10%を含有せし
めることを特徴とする請求項2記載の超高磁束密度一方
向性電磁鋼板の製造方法。
3. The method for producing an ultra-high magnetic flux density grain-oriented electrical steel sheet according to claim 2, wherein Cu: 0.01 to 0.10% is contained.
JP30950093A 1993-12-09 1993-12-09 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet Expired - Fee Related JP3621712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30950093A JP3621712B2 (en) 1993-12-09 1993-12-09 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30950093A JP3621712B2 (en) 1993-12-09 1993-12-09 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH07166240A true JPH07166240A (en) 1995-06-27
JP3621712B2 JP3621712B2 (en) 2005-02-16

Family

ID=17993746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30950093A Expired - Fee Related JP3621712B2 (en) 1993-12-09 1993-12-09 Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3621712B2 (en)

Also Published As

Publication number Publication date
JP3621712B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JP3212376B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH03294427A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269552A (en) Production of grain oriented silicon steel sheet having ultrahigh magnetic flux density
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JPH08269571A (en) Production of grain-oriented silicon steel strip
US4371405A (en) Process for producing grain-oriented silicon steel strip
JP2002348613A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3621712B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH07166241A (en) Production of ultrahigh magnetic flux density grain-oriented silicon steel sheet
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH07113120A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3527276B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP3215240B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JP3215178B2 (en) Material for ultra high magnetic flux density unidirectional electrical steel sheet
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees