JPH0716563B2 - 凝集装置および凝集方法 - Google Patents

凝集装置および凝集方法

Info

Publication number
JPH0716563B2
JPH0716563B2 JP63155624A JP15562488A JPH0716563B2 JP H0716563 B2 JPH0716563 B2 JP H0716563B2 JP 63155624 A JP63155624 A JP 63155624A JP 15562488 A JP15562488 A JP 15562488A JP H0716563 B2 JPH0716563 B2 JP H0716563B2
Authority
JP
Japan
Prior art keywords
water
injection
treated
liquid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63155624A
Other languages
English (en)
Other versions
JPH0252010A (ja
Inventor
和二 福永
Original Assignee
和二 福永
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和二 福永 filed Critical 和二 福永
Priority to JP63155624A priority Critical patent/JPH0716563B2/ja
Publication of JPH0252010A publication Critical patent/JPH0252010A/ja
Publication of JPH0716563B2 publication Critical patent/JPH0716563B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は醸造廃液、培養増殖液、浚渫汚泥などの微細
粒子を含む被処理水より微細粒子[微生物(活性汚
泥)、藻類、プランクトン等]を凝集分離する凝集装置
および凝集方法に関する。
[従来の技術] 被処理水中の微細粒子を被処理水から分離する装置とし
ては沈澱槽が用いられている。沈澱槽は、生物処理水が
供給される給液筒を経て、固液分離室の溢流堰に至る間
に重力の作用下に微細粒子を沈降させ、該微細粒子の凝
集作用は汚泥表面がもつ局所的荷電分布による結合に委
ねられている。
汚染廃水の生物処理において、バルキングの発生によ
り、活性汚泥が処理水と共に系外に流出することが多
い。その結果曝気槽内の活性汚泥濃度が低下し、処理水
質が悪くなることが多い。
処理水質の向上、余剰汚泥の低減、処理能力の向上が図
れる活性汚泥の高濃度処理法は、汚泥にバルキングをも
たらしやすく、その結果、活性汚泥の固液分離性能が低
下するから、対策として、生物処理水量を減らし、沈澱
槽から引き抜く汚泥量を増やし、活性汚泥濃度を下げる
ことになる。従って、高濃度処理法を継続運転すること
が不可能であった。
凝集剤の添加を好まない培養液、発酵液にあっては、微
生物を分離するにあたり、膨大な設備費を要する高級分
離機が採用されている。また、広大な地域の浚渫汚泥、
湖沼および海水中の微細粒子、植物プランクトンを除去
するには従来の沈澱槽は性能が低すぎその対策が立たな
かった。
[発明が解決しょうとする課題] この発明はバルキング現象が発生した時でも、凝集剤を
添加することなしに、曝気槽の活性汚泥濃度をMLSS10,0
00mg/l以上の高濃度処理法が、可能な凝集装置及び凝集
方法を提供することにある。また、本発明は固液分離性
能を現在の1,000倍以上に向上させ、小型軽量化を図
り、新設の沈澱槽として使用できるのみならず、性能の
低い既設の沈澱槽への適用を図ることができ、従来除去
が困難であった湖沼および海水の微細粒子、例えば、植
物プランクトン等を、凝集除去する性能の良い装置を安
価で提供することを目的としている。
[課題を解決するための手段] 請求項第1項の凝集装置は、被処理水を供給する給液室
に、被処理水を分散する分散室と分散室内に開口する混
合管を設け、混合管内に注入管を挿入し、注入管吐出口
より注入液を混合管内に注入する流れと、混合管内に流
入してくる被処理水の流れとが接触して、その界面の微
細粒子間に電解質濃度差を生じさせ、それに基づく、反
発電位の低下が、(1〜5)×10-3mmの衝突困難な微細
粒子間にも、激しい衝突を繰り返させ、混合管吐出口ま
でに、0.5〜1mmの巨大フロックを形成した混合液は、固
液分離室に送られ微細粒子のフロックは分離する。
請求項第13項の凝集方法は、上記請求項第1項の凝集装
置を使用して、被処理水を微細粒子と上澄液とに分離す
る方法の発明であって、混合管内の混合液(被処理水と
注入液)の流速を10<Re<105に、注入液の注入管内の
流速を5<Re<104に維持して、混合管内で両液を接触
させて凝集作用をほぼ完了させるものである。
本発明の凝集装置により処理される被処理水とは培養増
殖液、醸造廃液、浚渫汚泥[藻類(珪藻、藍藻、緑藻、
鞭毛藻)微生物およびそれらの死骸、その他有機物、無
機物を含む]、富栄養化にともない発生する植物プラン
クトンの多い湖沼水、および海水、かび臭発生源の放線
菌、赤潮鞭毛藻をむくむ湖沼水、および海水、栽培養魚
場の沈澱堆積汚泥、産業排水(畜舎汚物を含む)とその
生物処理水、生活排水とその生物処理水、し尿とその生
物処理水、および/または下水とその生物処理水をさ
す。
注入液は生物処理上澄液、物理化学処理上澄液、低濃度
汚染産業廃水、海水、水道水、蒸留水、灌がい用水およ
び/または工業用水(湖沼水、河川水、地下水等)がも
ちいられる。さらに、注入液としては凝集剤を含む水溶
液、例えば金属凝集剤(アルミニゥム塩、鉄塩、活性ケ
イ酸、マグネシゥム塩、カルシゥム塩)水溶液、アルカ
リ金属塩水溶液、高分子凝集剤水溶液を用いることもで
きる。
本発明の固液分離室とは、凝集したフロックを、沈降濃
縮する沈降分離濃縮する部屋と、浮上濃縮する浮上分離
濃縮する部屋をさす。
以下この発明を添付図に基づいて説明する。
第1図は本発明の凝集装置(縦型)である。該凝集装置
において、被処理水2)が供給される部屋を給液室1)
と呼ぶ、給液室に分散室3)を設ける。分散室内に1な
いし複数の混合管5)(第1図では2本図示)を設け、
分散室に両端が開口した混合管5)の一端を設けて被処
理水の供給口とし、他端は固液分離室4)に直接凝集物
を吐出する混合管吐出口15)とし、複数の混合管に注入
管6)を、それぞれ中心軸を合一して1本づつ設けた装
置の図である。注入管吐出口14)は混合管下流に向けて
開口している。分散室と固液分離室の間に隔壁8)を設
けて、注入管吐出口から供給される注入液10)の流れ
と、環状部17)から単管部18)(第4図参照)に流入す
る被処理水の流れとが接して流れ界面を形成し、その界
面で、被処理水の微細粒子間に激しい衝突が繰り返さ
れ、混合管を通過する間に巨大フロックを形成する。複
数の混合管の被処理水供給口を同じ水位に維持して、各
混合管の流入水量を均等化する。混合管の本数は被処理
水量と注入液量との混合液7)の総量が、各混合管内を
通過する流速が10<Re<105に保つように決める。注入
液の注入管内の流速も5<Re<104に保持する。
第2図は本発明の凝集装置(横型)である。縦型と同様
給液室1)に分散室3)を設け、分散室と固液分離室
4)との間に混合管5)を設け、肉厚の隔壁8)を混合
管が貫通している。混合管(被処理水)と注入管(注入
液)との配置と、混合管内の流速、注入管内の流速は縦
型と同じ範囲とする。
第3図に示す凝集装置は1つの給液室1)に複数の注入
管6)を均等に配置し、被処理水2)が流入する分散室
3)は仕切り線(注入管吐出口から混合管径×0.3m以上
上流側)を想定し、仕切り線の上流側とする。仕切り線
より下流側を混合管5)とし、仕切り線から注入管吐出
口14)までを環状部、注入管吐出口から混合管吐出口1
5)までを単管部とする。環状部、単管部に関する混合
管と注入管との配置と、混合管内の流速、注入管内の流
速は上記と同じ範囲とする。
第4図に注入液供給管中心軸11)と注入管中心軸12)と
混合管中心軸13)の中心軸が完全に合一にし、注入管に
多孔質材16)を装填した図を示す。中心軸が完全に合一
にすると注入管長を短く出来、固液分離性能を上げるこ
とができる。
第5図は大量の被処理水を処理したいときに採用され
る。混合管内に2本の注入管それぞれに多孔質材16)を
装填し、混合管と2本の注入管の中心軸を合一した図で
ある。注入管を並列に混合管に挿入したときに比べ、凝
集効果は大きい。
固液分離性能が向上するのは、被処理水中の微細粒子
が、注入液と接して、(0.1〜50)×10-3mmの微細粒子
間に電解質濃度差が生じ、それに基づく、反発電位の低
下が、微細粒子間に激しい凝集作用をもたらし、混合凝
集作用が繰り返され混合管下流に向かって巨大フロック
を形成する。従ってバルキング汚泥でも、巨大フロック
を形成することになる。一般的に両液の電解質(イオ
ン)濃度差の大きい時に、凝集微細粒子間、フロック粒
子間の結合力は強いようである。望ましくは、注入液と
被処理水の電解質濃度差が0.1mg/l以上であるとフロッ
クを形成しやすくなり、10mg/l以上あるとフロック形成
能力は強い。2×105mg/l以上でもフロックを形成する
が、薬剤費が大きくなり経済的でない。被処理水が海水
の場合に、注入液に多価金属塩を使用すると多価金属塩
濃度はアルカリ金属塩の10〜1/200でおなじ凝集効果を
上げることができるから、2×105mg/l以下に収めるこ
とができる。混合管内の流速がRe>105になれば、フロ
ックは形成しない。Re<105になれば、フロックは形成
する。10>Reになれば、1本あたりの混合管処理量が少
なく、処理コストが大になる。形成したフロックは混合
管内の流速が104<Re<105になって一旦破壊されること
があっても、Re<105に保持すればフロックは形成す
る。注入液の注入管内、またはそれからの吐出速度がRe
<104になれば、フロックを形成しない。Re<104に維持
すれば、フロックの成長は促進される。Re<5なれば、
1本あたりの注入管処理量が少なく、処理コストが大に
なる。
注入液量は被処理水にたいし、200%以下、望ましくは3
0〜1%である。1%以下では凝集効果は低い、200%以
上でもフロック形成能力は変わらない。200%をこえる
と、固液分離室への負荷が大きすぎ、注入液が増加した
だけの効果は認められない。
分散室と固液分離室の間に隔壁を設ける場合は、混合管
は隔壁を貫通して配置し、混合管の両端は両室に開口
し、総ての被処理水の微細粒子は、混合管を通過するこ
とになり、混合管内で1ないし複数の注入管から吐出す
る注入液に必ず接するようにすると、被処理水中の微細
粒子間の衝突が容易となり、混合管内でフロックを形成
する。隔壁を設けない場合は、混合管内を流れる被処理
水の微細粒子と、複数の注入管から吐出される注入液
は、必ずしも接するとは限らない。また隣接する注入管
から吐出する注入液が、形成した電解質濃度差に打ち消
すように干渉しあい、微細粒子間の衝突は低減し、隔壁
を設けた場合に較べ、フロック形成能力は低い。しかし
隔壁が無くても、注入液を供給している場合は、注入液
を止めた場合より固液分離性能は遥かに高い。
本発明の混合管内に、1ないし複数の注入管吐出口を開
口させる場合、1本の混合管内に第3図のように複数の
注入管を並列に設ける場合と、第5図のように混合管内
に多段に設けられた注入管の吐出口が開口する場合があ
げられる。1本の混合管に1本の注入管を設ける場合に
くらべ、複数の注入管を多段に設ける場合は、例えば、
注入管の最外側上段吐出口から金属塩凝集剤を含む注入
液を、中心部最下段の注入管吐出口から金属塩凝集剤ま
たは高分子凝集剤を含む注入液を注入する場合のよう
に、異種の注入液を別の注入管吐出口から注入するのに
適している。また複数の注入管を並列に設ける場合、隣
接する注入管から吐出する注入液が、干渉して一旦形成
した微細粒子上の電解質濃度差を打ち消すことがおこ
り、フロック形成能が低くなる。
注入液供給管中心軸11)と注入管中心軸12)とを合一す
る場合とは、注入管中心軸に注入管入口と注入管吐出口
の2点で、中心軸に垂直な2平面と、注入液供給管中心
軸の延長線との2つの交点が、注入管中心軸と2平面と
の2交点をそれぞれ中心とし、注入管内径の0.2倍で描
く2つの円内にあることをさす。注入液供給管中心軸と
注入管中心軸とが、上述の注入管中心軸に垂直な2平面
との交点とが一致すると(以後完全に合一すると呼称す
る)、注入管の長さを短くできる。注入管中心軸と混合
管中心軸13)とが合一する場合とは、注入管の入口と吐
出口の2点で中心軸に垂直な2平面と注入管の中心軸と
の2交点を中心とし、注入管内径の0.2倍で描く2つの
円内に、混合管中心軸と上記の2平面との交点があるこ
とをさす。注入管中心軸と混合管中心軸とが、注入管中
心軸に垂直な2平面との交点とが一致する(以後完全に
合一すると呼称する)場合は凝集効果が大きく、混合管
の長さを短く出来る。
混合管の長さは被処理水が注入管と接する環状部17)の
長さと、注入管吐出口から混合管吐出口までの長さ、す
なわち単管部18)の長さの和とする。環状部の長さは、
混合管内径の0.3〜80倍の長さを要し、単管部の長さは
混合管内径の0.1〜65倍の長さを要する。注入管吐出口
から混合管内径の65倍の点(混合管吐出口)から固液分
離室までの長さの管は、混合管吐出口と固液分離室とを
接続する連結管と呼称し、混合管長さに含めない。環状
部の長さが混合管内径の0.3倍以下であると、また単管
部の長さが0.1倍以下である場合には、フロック形成能
は認められない。環状部長さが混合管内径の80倍以上に
なると、また単管部の長さが混合管内径の65倍以上であ
れば、混合管入口の形状、被処理水の粘度、管の摩擦係
数による影響は少なく、フロック形成能は発揮される
が、混合管が長くなり過ぎ経済的でない。
混合管の長さは長ければ長いほど、混合管の管径、入口
の形状、活性汚泥の凝集力と、注入液の水質と注入方法
に影響されにくい。望ましくは0.1〜10mがよい。0.1m以
下で凝集しうるには混合管内径は0.01m以下が必要であ
る。混合管内径がこれ以下になれば、1本当たりの処理
量が少なく、コスト高となる。また10m以上でも凝集す
るには何等差し支えないが、100m以上になれば、注入管
長を含めた凝集装置が巨大化し、経済的でない。この混
合管の長さは直管であることが望ましい。
混合管内径が0.01〜5mとする。0.01m以下は被処理水量
が多いと圧力損失が大きくコスト高となる。5m以上にな
ると、混合管長が長くなりすぎて装置が大きくなり経済
的でない。
分散室と固液分離室の間に設ける混合管は、第2図)の
水平方向、斜め方向、第1図)の上下方向に接続して
も、本発明の凝集作用は混合管内の流速に大きい影響を
受けるが、混合管の方向が異なっても、固液分離性能に
差は認められない。
分散室に開口する複数の混合管の被処理水の流入口を、
同じ水位(縦型)に設けると、混合管内に流入する液量
が均等化し、混合管許容流量を維持しやすく、固液分離
性能が低下する混合管を無くすることができる。
注入管径はdm(外径)、混合管径をDm(内径)でしめ
す。環状部17)の幅(D−d)mが狭いと、被処理水の
環状部への流入液量が不均一となり、フロック形成能を
低下させ、固液分離性能を低下させる。均一に流入し得
る注入管外径は混合管内径の0.97倍以下でなければなら
ない。注入管外径が混合管内径の0.01倍以下になれば、
被処理水量にたいする注入液量を3%としても、注入管
吐出口14)の速度は300倍となり、そのReは>104とな
り、フロック形成能を低下させ、固液分離性能は低くな
る。
分散室と固液分離室が、独立して2室が距離をおいて存
在しても、混合管と連結管とで接続出来る。
注入管6)内に多孔質材16)を装填するにあたり、その
装填位置は注入管吐出口より上流側に、注入管径の1倍
以上の距離に設ける方が、整流効果が大きく、凝集性能
の向上に影響するところが大きい。適切な位置に適切な
多孔質材を設ければ、注入液供給管中心軸と、注入管中
心軸の合一を必ずしも必要としないし、注入液量を減ら
し、注入管長と混合管長を短く出来る。また、混合管内
の流速は、多孔質材を使用すると、多孔質材を使用しな
いときのReの10倍、すなわち、Re=105まで大きくして
も巨大フロックは形成する。
多孔質材は抗菌性の高分子繊維、無機質繊維を素材と
し、厚み10mmとしたとき100〜10,000g/m2の不織布、抗
菌性の0.01〜3mm気泡径(連続微細気泡)よりなる高分
子樹脂スポンジ、0.01〜5mm径の粉粒体、0.01〜3mm穴径
の金属製、無機製、高分子樹脂製の多孔板、織物、編み
物、網、膜、これら素材をそれぞれ単独または層状に組
み合わせたものがあげられる。多孔質材の装填高さを0.
1〜500mm、水道水の管内平均速度5×10-3m/secにおけ
る圧力損失を10〜10,000mmに収めるのが望ましい。圧力
損失が10mm以下は整流効果がなく、10,000mm以上は所要
動力が大きく不経済である。
実施例−1 本発明の第3図に示した凝集装置を使用して、うどん加
工廃水80m3/日の被処理水(NaCl含有量78mg/l)を分離
した。沈澱槽の水面積負荷12m3/m2日、給液室(=分散
室管径0.7m、管長0.3m混合管径0.7m、管長1.5m)に直径
0.075m、長さ1.05mの注入管30本を挿入した。注入液を
注入しない時の被処理水(曝気槽の活性汚泥)のMLSS48
80mg/l、SV120=98であった。そのときの固液分離室の
活性汚泥の界面は、水面下0.35m、溢流水汚泥濃度は4
〜18mg/lであった。一方、注入液14.5m3/日を24時間継
続注入した後の活性汚泥の界面は、水面下1.7mに下が
り、溢流水汚泥濃度は2〜5mg/lであった。その間の混
合液の混合管内の流れはRe=1580〜1780に維持した。注
入液は河川水(COD2mg/l、NaCl含有量1.2mg/l)100%を
用いた。
実施例−2 第1図と同じ形式の凝集装置(混合管直径9cm、長さ180
cmに、注入管直径7.5cm、長さ160cmを挿入し、完全に合
一させ、環状部長さ120cmとする)を使用してうどん加
工廃水を生物処理して得た活性汚泥には、僅かにバルキ
ング現象が認められる。塩化ナトリゥム36mg/lの被処理
水(曝気槽の活性汚泥)のMLSS4130mg/l、SV120=97で
あった。固液分離室に対し水面積負荷12m3/m2日で処理
し、注入液を注入しないときの固液分離室の活性汚泥の
界面は、水面下0.77m、溢流水のSS濃度14mg/lであっ
た。注入液として河川水(COD2mg/l)に塩化ナトリゥム
を加え、その含有量70mg/lの液を被処理水量の10%を24
時間継続注入した、混合管内の流速Re=1750〜1840、固
液分離室の水面積負荷25m3/m2日で処理すると、溢流水
の汚泥濃度は2mg/l以下を示し、活性汚泥の界面を水面
下1.7mに維持したときの返送汚泥濃度は19850mg/lを得
た。上記条件を同じにしたまま、注入液の混合管内への
注入を中止し、2時間後溢流水の汚泥濃度は238mg/l
に、活性汚泥の界面は水面下0.5mに浮上し、継続運転は
不可能となったが、注入液を再び注入して2時間後溢流
水の汚泥濃度は4mg/lに回復していた。このようにバル
キング現象のみとめられる汚泥でも、完全に固液分離が
出来た。
実施例−3 チップ加熱抽出液を中和処理後生物処理(NaCl287mg/
l)している活性汚泥に、糸状性細菌の発生によるバル
キング現象(SV120=99)が顕著に認められる。この時
の被処理水の汚泥濃度(曝気槽汚泥濃度)は2.49Kg/m3
を示している。固液分離室(沈澱槽)にたいし水面積負
荷6m3/m2日で処理した時に、深さ3.5mの固液分離室(沈
澱槽)の汚泥界面は水面下0.65mにあり、溢流水のSS濃
度は28mg/lであった。この同じ被処理水を第1図と同じ
型式の凝集装置(混合管直径12cm、長さ180cmに注入管
直径9cm、長さ180cmを挿入し、完全に合一させ、環状部
の長さ120cmとする)に注入液(海水)を被処理水の6
%供給し、混合管内の流速Re=2340とし、水面積負荷35
m3/m2日で処理すると、溢流水の汚泥濃度は2mg/l以下を
示し、活性汚泥の界面を水面下1.7mに維持したときの返
送汚泥濃度は9570mg/lを得た。このように糸状性細菌に
よるバルキング汚泥でも、完全に固液分離が出来た。こ
の水面積負荷35m3/m2日のままで注入液6%の供給を中
止し、1時間後の溢流水のSS濃度は580〜640mg/lを示し
た。再び水面積負荷35m3/m2日のままで注入液を被処理
水の6%供給すると、4時間後の溢流水のSS濃度は2mg/
l以下に回復した。
実施例−4 図−1と同じ型式の凝集装置を利用して、沼の浚渫汚泥
を処理した。1本の混合管(径7.5cm)に、1本の注入
管径(6cm)を挿入し、混合管中心軸と注入管中心軸と
を完全に合一にした。A)注入管に多孔質材[プロピレ
ン不織布(厚み10mmで1080g/m2)を厚み15mm3枚を層状
に重ね計45mmとする]を注入管吐出口より上流側50cmに
充填して整流層を設けた。B)注入管に整流層無しとし
た。注入管全長160cmとし、混合管に挿入した。混合管
は単管部長さ80cm環状部長さ120cm全長200cmとし、分散
室と固液分離室との間に設けた。浚渫汚泥[水分(乾量
基準)610%、強熱減量31%、TOC130mg/g乾泥、ろ過液C
l-1.6mg/l]と注入液との混合液を混合管1本あたり56m
3/日(Re=1.1×104)を分散室に供給し、注入管1本あ
たり8m3/日を注入水として河川水(COD2mg/l)にFe(3
価)5mg/lを加えて供給した。C)Fe(3価)25mg/lの
注入液0.11を浚渫汚泥0.61に加え、凝結槽で90G/secの
力を4分間加え、フロックはろ過によって除去した。ろ
過は粒子径0.8mmの砂粒を厚さ12cmに充填したろ床に18m
/時のろ過速度で処理した。ろ過液中のSS濃度と固液分
離室に濃縮した浚渫汚泥濃度と溢流上澄液中のSS濃度を
表−3に示す。
実施例−5 し尿脱離液(COD2060mg/l、BOD3250mg/l、Cl-2300mg/
l、)をCl-1500mg/lの希釈水(海水含む河川水)で6倍
希釈し、生物処理した被処理水(MLSS5600mg/l、COD180
mg/l、BOD150mg/l)を第1図に示した凝集装置(混合管
内径9cm、180cmに注入管6cm、150cmを挿入し、注入管、
混合管の中心軸を合一にし、環状部長さ120cmとする)
を使用した。注入管に多孔質材(平均径0.2mmの砂粒を
層高6cmに充填)を吐出口上流側0.6mに装填した。注入
液は水道水、希釈水Cl-1500mg/lをそれぞれ被処理水の
7%注入した。混合液の流速はRe=4510〜4600、固液分
離室に対する平均水面積負荷35m3/m2日で処理したとき
の溢流水のSS濃度、返送汚泥濃度を表−4に示す。
表−4注入液 返送汚泥濃度 溢流水SS濃度 水道水 12600mg/l 1mg/l 希釈水 1230mg/l 1〜2mg/l 実施例−6 この実施例は実施例−1の方法において注入液として河
川水の代わりに水道水を用いた例である。
本発明の第3図に示した凝集装置(沈澱槽)を使用し
て、うどん加工廃水80m3/日の生物処理水を分離した。
固液分離室(沈澱槽)の水面積負荷12m3/m2.日、給液室
[分散室管径0.7m、管長0.3m、混合管径(=分散室管
径)0.7m管長1.5mの混合管内]に直径0.075m、長さ0.7m
の注入管30本を設けた。注入液を注入しない時の曝気槽
の活性汚泥のMLSS5560mg/l、汚泥返送率280%、SV120
98であった。そのとき、固液分離室の活性汚泥の界面は
水面下0.35m、溢流液のSS濃度4〜14mg/l、一方水道水
を注入液とし、12m3/日を24時間継続注入後の汚泥返送
率41%、活性汚泥の界面は水面下2.1mに下がり、溢流液
のSS濃度は1mg/lに下がっていた。その間の混合液の混
合管内の流れはRe=1900〜2200に維持した。
実施例−7 この実施例は実施例−3の方法において、注入液として
海水の代わりに海水60%と水道水40%の混合液を使用し
た例である。
チップ加熱抽出液をアルカリ中和処理後生物処理してい
る活性汚泥に、糸状性細菌の発生によるバルキング現象
(SV120=99)が顕著に認められる。この時の曝気槽汚
泥濃度は2.5Kg/m3を示している。固液分離室(沈澱槽)
にたいし水面積負荷6m3/m2日で処理した時に、深さ3.5m
の固液分離室(沈澱槽)の汚泥界面は水面下0.65mにあ
り、溢流水のSS濃度は23mg/lであった。この同じ活性汚
泥を第1図と同じ形式の凝集装置(混合管直径12cm、長
さ180cmに注入管直径9cm、長さ180cmを挿入し、完全に
合一させ、環状部の長さ120cmとする)に注入液を生物
処理水の6%供給し、水面積負荷20m3/m2日で処理する
と、溢流水の汚泥濃度は1mg/l以下を示し、長時間継続
運転しても、汚泥界面が上昇しない時の返送率37%、返
送汚泥濃度は9.35Kg/m3を得た。糸状性細菌によるバル
キング汚泥でも完全に沈降分離が出来た。この水面積負
荷20m3/m2日のままで注入液6%の供給を中止し、2.5〜
3時間(滞留時間3時間)後の溢流水のSS濃度は360〜5
10mg/lを示した。再び水面積負荷20m3/m2日のままで注
入液を生物処理水の6%供給すると、2.5時間後の溢流
水のSS濃度は1.5mg/l以下に回復した。この結果を表に
示す。
表−5 注入液/生物処理水 水面積負荷 溢流水濃度 なし 6m3/m2日 23 mg/l 0.06 20 〃 1 mg/l以下 なし 20 〃 360〜510mg/l 0.06 20 〃 1.5mg/l [発明の効果] この発明は、上記のように構成したものである。混合管
内で被処理水が注入管吐出口から流出する注入液と接す
ると、その界面で、粒子径が(1〜5)×10-3mmの衝突
が困難な微細粒子間に衝突凝集がおこり、更に衝突して
数秒で0.5〜1mmの巨大フロックを混合管内で形成する。
その固液分離能力が大きく、水面積負荷で比較すると、
従来の沈澱槽で5m3/m2日で処理しているバルキング汚泥
を25m3/m2日以上で固液分離処理出来る。また本発明の
凝集装置は小形軽量であるから、据え付けは簡単で、既
設の沈澱槽に設置して固液分離能力を数倍に向上さすこ
とが出来る。
多発するバルキング汚泥の処理に対応しえない既設の沈
澱槽の給液筒、または給液筒の外側から堰までの間に、
本発明の凝集装置を設け、バルキング汚泥を経常時と同
じ水面積負荷で処理(20〜30m3/m2日)しても、処理放
流水中のSS濃度は2mg/l以下、返送汚泥濃度10,000mg/l
で処理することが出来るから、高濃度活性汚泥法を採用
出来る事になった。
本発明の凝集装置は被処理水中の電解質を、被処理水中
の微細粒子の凝集液として利用出来るから、薬剤費は軽
減出来る。
本発明の凝集装置にはアルカリ金属塩を凝集剤として含
む注入液を使用できるから、多価金属塩を忌み嫌う微生
物、沈降分離の困難な微生物の凝集分離が可能である。
さらに多価金属塩を凝集剤として含む注入液を使用する
にあたり、混合管内に注入する注入液濃度は、従来の凝
集装置の凝集液添加方法で添加する凝集液濃度の約数分
の1と同じ固液分離性能をしめし、凝集剤費が少なくて
済む。
従来の凝集装置は微細粒子間の衝突のために高速攪はん
室を要したが、本発明の凝凝集装置は注入液と被処理水
とを混合管内で接するだけで、微細粒子の衝突がおこ
り、巨大フロックを形成するから、衝突のための動力、
高速攪はん室、フロック成長室は不要である。
分散室と固液分離室の間を混合管で横方向、斜め方向、
垂直方向に接続しても、また独立して離れた分散室と固
液分離室を混合管と連結管とで接続しても、混合管内で
巨大フロックの形成が完了してしまうから、混合管内、
連結管内の流速をRe<105であれば、フロックを破壊し
ないから接続方向、接続方法に関係なく、固液分離性能
に差は認められない。
固液分離室の汚泥と上澄液との界面が画然としているか
ら、流入汚泥を、その沈降堆積速度に見合った速度で自
動的に引き抜くことが出来るので、運転管理が容易であ
る。
【図面の簡単な説明】
第1図は本発明の凝集装置(縦型)の断面図である。 第2図は本発明の凝集装置(横型)の断面図である。 第3図は本発明の注入管を混合管内に多数設けた凝集装
置の断面図である。 第4図は本発明の注入液供給管中心軸と注入管中心軸と
混合管中心軸が完全に合一した断面図である。 第5図は混合管に多孔質材を装填した注入管の吐出口が
多段に開口した断面図である。 1:給液室、2:被処理水、3:分散室、4:固液分離室、5:混
合管、6:注入管、7:混合液、8:隔壁、9:注入液供給管、
10:注入液、11:注入液供給管中心軸、12:注入管中心
軸、13:混合管中心軸、14:注入管吐出口、15:混合管吐
出口、16:多孔質材、17:環状部、18:単管部

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】給液室1)と固液分離室4)とからなり、
    該給液室に微細粒子を含む被処理水を分散させる分散室
    3)と一端が分散室に他端が固液分離室に開口した1な
    いし複数本の混合管5)を設け、さらに該混合管内に1
    ないし複数本の注入液を注入する注入管6)をその注入
    液の吐出口が混合管内を流れる被処理水の下流方向に向
    けて開口させた構造を有し、該混合管内を流れる被処理
    水の流れと注入管より吐出される注入液の流れが互いに
    接して流れ界面を形成し、その界面において微細粒子を
    凝集させてフロックを形成し、被処理水を微細粒子と上
    澄液とを分離する凝集装置。
  2. 【請求項2】分散室3)と固液分離室4)との間に混合
    管5)を設けて両者を接続した構造を有する凝集装置に
    おいて、その混合管5)が水平方向、斜め方向あるいは
    上下方向のいずれかの方向に配設されていることを特徴
    とする請求項第1項記載の凝集装置。
  3. 【請求項3】分散室3)と固液分離室4)との間を混合
    管5)と連結管を用いて接続した構造を有する請求項第
    1項または第2項記載の凝集装置。
  4. 【請求項4】分散室3)と固液分離室4)との間に隔壁
    8)を設け、この隔壁を貫通させて混合管5)を設けた
    構造を有する請求項第1項ない第3項記載の凝集装置。
  5. 【請求項5】注入管6)と混合管5)の中心軸を合一に
    した構造を有する請求項第1項の凝集装置。
  6. 【請求項6】注入管6)に多孔質材16)を装填した構造
    を有する請求項第1項記載の凝集装置。
  7. 【請求項7】複数の上下方向の混合管に流入する被処理
    水の流入口を同じ水位にして各混合管中を流れる被処理
    水の流速を同じにすることを特徴とする請求項第1項記
    載の凝集装置。
  8. 【請求項8】請求項第1項に記載の凝集装置を用いて、
    微細粒子を含む被処理水から微細粒子と上澄液とに分離
    するにあたり、混合管内の被処理水の流れは10〈Re〈10
    5,注入管から吐出される注入液の流れは5〈Re〈104
    範囲に保持して混合管内の被処理水の流れと注入液の流
    れとを接して流し、界面を形成させ、その界面でフロッ
    クを形成させることを特徴とする被処理水から微細粒子
    を分離する凝集方法。
  9. 【請求項9】注入液の量は被処理水量の1〜200%とす
    る請求項第8項記載の凝集方法。
  10. 【請求項10】請求項第1項に記載の凝集装置を用い
    て、微細粒子を含む被処理水から微細粒子と上澄液とに
    分離するにあたり、注入液中の電解質濃度が被処理水中
    の電解質濃度よりも小さい注入液を用いて混合管内の被
    処理水の流れと注入液の流れとが界面を形成し、その界
    面で微細粒子を含むフロックを形成させ、次いで被処理
    水中のフロックと上澄液とを分離することを特徴とする
    被処理水中の微細粒子を分離する凝集方法。
  11. 【請求項11】注入液中の電解質濃度が被処理水中の電
    解質濃度よりも0.1mg/l以上差のある薄い注入液を用い
    ることを特徴とする請求項第10項記載の凝集方法。
JP63155624A 1987-06-25 1988-06-22 凝集装置および凝集方法 Expired - Lifetime JPH0716563B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155624A JPH0716563B2 (ja) 1987-06-25 1988-06-22 凝集装置および凝集方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP62-158519 1987-06-25
JP15851987 1987-06-25
JP62-172471 1987-07-09
JP62-278095 1987-11-02
JP63-110926 1988-05-06
JP63155624A JPH0716563B2 (ja) 1987-06-25 1988-06-22 凝集装置および凝集方法

Publications (2)

Publication Number Publication Date
JPH0252010A JPH0252010A (ja) 1990-02-21
JPH0716563B2 true JPH0716563B2 (ja) 1995-03-01

Family

ID=26483573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155624A Expired - Lifetime JPH0716563B2 (ja) 1987-06-25 1988-06-22 凝集装置および凝集方法

Country Status (1)

Country Link
JP (1) JPH0716563B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126503A (ja) * 1990-05-25 1992-04-27 Kazuji Fukunaga 凝集方法および凝集装置
JP2558547B2 (ja) * 1990-08-27 1996-11-27 和二 福永 凝集法および凝集装置
JP3320851B2 (ja) * 1993-06-28 2002-09-03 和二 福永 凝集濃縮装置と凝集濃縮方法
KR20010034104A (ko) * 1998-01-26 2001-04-25 후쿠나가 카즈지 응집농축장치와 응집농축법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52142856A (en) * 1976-04-28 1977-11-29 Souichi Nagahara Silter
IL58255A (en) * 1978-10-10 1982-09-30 Dorr Oliver Inc Sedimentation apparatus

Also Published As

Publication number Publication date
JPH0252010A (ja) 1990-02-21

Similar Documents

Publication Publication Date Title
US4173532A (en) Method for treating plant effluent
US5840195A (en) Method and installation for treating an untreated flow by simple sedimentation after ballasting with fine sand
CN204824453U (zh) 一种脱硫废水预处理装置
US4293416A (en) Apparatus for treating plant effluent
CN212246585U (zh) 反冲洗废水回流絮凝过滤装置
AU675406B2 (en) Apparatus for treatment of effluent
CN107522327B (zh) 电絮凝-沉淀-高级氧化一体化造纸废水处理装置
CN216946616U (zh) 一种磁混凝-絮凝反应装置及高浊度废水超滤处理系统
CN207713466U (zh) 一种电絮凝高密度澄清池
EP0588820B1 (en) Liquid treatment
JP3210350B2 (ja) 凝集濃縮装置と凝集濃縮法
CN210855500U (zh) 一种排污水处理回用系统
CN111547898A (zh) 反冲洗废水回流絮凝过滤装置
CN211111397U (zh) 一种适用于矿井水处理的改进型高密度澄清池
JPH0716563B2 (ja) 凝集装置および凝集方法
CN111196652A (zh) 一种油田采出水的控油降泥处理方法及系统
JPH0729119B2 (ja) 浚渫汚泥の固液分離方法および固液分離装置
CN214088061U (zh) 含锌废水回用处理系统
CN207031138U (zh) 一种钻井废液化学与膜耦合处理系统
JP2552542B2 (ja) 固液分離方法
CN110436658A (zh) 一种排污水处理回用系统
JPH03143509A (ja) 凝集装置および凝集方法
CN217709090U (zh) 一种磁混凝高品质饮用水处理集约化装置
CN214528459U (zh) 一种煤化工浓盐水的软化除硬装置
CN217202311U (zh) 一种低温低浊度原水处理装置