JPH07153683A - Aligner - Google Patents

Aligner

Info

Publication number
JPH07153683A
JPH07153683A JP6112000A JP11200094A JPH07153683A JP H07153683 A JPH07153683 A JP H07153683A JP 6112000 A JP6112000 A JP 6112000A JP 11200094 A JP11200094 A JP 11200094A JP H07153683 A JPH07153683 A JP H07153683A
Authority
JP
Japan
Prior art keywords
light intensity
optical systems
light
illumination optical
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6112000A
Other languages
Japanese (ja)
Other versions
JP3376688B2 (en
Inventor
Hiroshi Shirasu
廣 白数
Masamitsu Yanagihara
政光 柳原
Tomohide Hamada
智秀 浜田
Tetsuo Kikuchi
哲男 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11200094A priority Critical patent/JP3376688B2/en
Priority to KR1019940025408A priority patent/KR100280764B1/en
Priority to US08/446,509 priority patent/US5581075A/en
Publication of JPH07153683A publication Critical patent/JPH07153683A/en
Application granted granted Critical
Publication of JP3376688B2 publication Critical patent/JP3376688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To execute projection with a uniform light intensity onto a photosensitive base in an aligner wherein luminous fluxes from discrete illuminating optical systems in a plurality are applied to a plurality of areas to be illuminated on a mask and images of these areas are projected onto the photosensitive base through a plurality of projecting optical systems. CONSTITUTION:The intensities of luminous fluxes (L) from illuminating optical systems (LO1 to LO5) disposed for a plurality of projecting optical systems (PL1 to PL5) respectively are detected and a control is made so that the intensities of other illuminating optical systems be in accord with the intensity of the illuminating optical system from which the lowest intensity is obtained. Since the light intensity of the whole projecting area can be detected two- dimensionally by a second light intensity detecting means, besides, the control is executed by taking the nonuniformity of the light intensity remaining in the discrete projecting area into account.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は露光装置に関し、例えば
半導体素子や液晶表示基板製造用で、特に照明光学系を
複数有するものに適用し得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus, for example, for manufacturing a semiconductor element or a liquid crystal display substrate, and particularly applicable to an apparatus having a plurality of illumination optical systems.

【0002】[0002]

【従来の技術】近年、パソコン、テレビ等の表示素子と
して、液晶表示基板が多用されるようになつた。この液
晶表示基板は、ガラス基板上に透明薄膜電極をフオトリ
ソグラフイの手法で所望の形状にパターニングして作ら
れる。このリソグラフイのための装置として、マスク上
に形成された原画パターンを投影光学系を介してガラス
基板上のフオトレジスト層に露光する投影露光装置が用
いられている。
2. Description of the Related Art In recent years, liquid crystal display substrates have been widely used as display elements for personal computers, televisions and the like. This liquid crystal display substrate is formed by patterning a transparent thin film electrode on a glass substrate into a desired shape by a photolithographic method. As an apparatus for this lithography, a projection exposure apparatus is used which exposes an original pattern formed on a mask onto a photoresist layer on a glass substrate via a projection optical system.

【0003】また、最近では液晶表示基板の大面積化が
要求されており、それに伴つて上記の投影露光装置にお
いても露光領域の拡大が望まれている。この露光領域の
拡大の手段として、複数の投影光学系を備えた走査型露
光装置が考えられる。即ち、複数の照明光学系を設け、
各照明光学系から射出した光束でマスクを照明し、照明
されたマスクの像を複数の投影光学系のそれぞれを介し
てガラス基板上の投影領域に投影する。
Recently, there is a demand for a larger area of the liquid crystal display substrate, and accordingly, the projection exposure apparatus is also required to expand the exposure area. As a means for enlarging this exposure area, a scanning type exposure apparatus provided with a plurality of projection optical systems can be considered. That is, a plurality of illumination optical systems are provided,
The mask is illuminated with the light flux emitted from each illumination optical system, and the image of the illuminated mask is projected onto the projection area on the glass substrate through each of the plurality of projection optical systems.

【0004】さらに言えば、光源から射出した光束をフ
ライアイレンズ等を含む光学系を介して光量を均一化し
た後、視野絞りによつて所望の形状に整形してマスクの
パターン面上を照明する。このような構成の光学系(照
明光学系)を複数配置し、複数の照明光学系のそれぞれ
から射出された光束でマスク上の異なる小領域(照明領
域)をそれぞれ照明する。マスクを透過した光束は、そ
れぞれ異なる投影光学系を介してガラス基板上の異なる
投影領域にマスクのパターン像を結像する。そして、マ
スクとガラス基板とを同期して投影光学系に対して走査
することによつて、マスク上のパターン領域の全面をガ
ラス基板上に転写する。
Further, after the light flux emitted from the light source is made uniform in the amount of light through an optical system including a fly-eye lens and the like, it is shaped into a desired shape by a field stop and illuminated on the pattern surface of the mask. To do. A plurality of optical systems (illumination optical systems) having such a configuration are arranged, and different small areas (illumination areas) on the mask are illuminated by the light beams emitted from the plurality of illumination optical systems, respectively. The light flux transmitted through the mask forms a pattern image of the mask on different projection regions on the glass substrate via different projection optical systems. Then, by synchronously scanning the mask and the glass substrate with respect to the projection optical system, the entire surface of the pattern area on the mask is transferred onto the glass substrate.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記の走査
型露光装置は照明光学系を複数有しているため、各照明
光学系から射出される光束の強度を一定にする必要があ
る。このため、装置の製造段階でNDフイルタ等を用い
て各照明光学系からの光束の強度を一定にするよう調整
している。しかしながら、装置の使用時間の経過による
光源(ランプ)の輝度劣化の状態は各ランプ毎に異なる
ため、装置の使用中に光束の強度が一定でなくなる。
By the way, since the scanning type exposure apparatus described above has a plurality of illumination optical systems, it is necessary to make the intensity of the luminous flux emitted from each illumination optical system constant. Therefore, in the manufacturing stage of the device, the intensity of the light flux from each illumination optical system is adjusted to be constant by using an ND filter or the like. However, the state of deterioration of the brightness of the light source (lamp) due to the passage of time of use of the device differs from lamp to lamp, so that the intensity of the light flux is not constant during use of the device.

【0006】また、ランプを交換した場合にはランプ毎
に初期の輝度が異なるため、改めて光束の強度を調整す
る必要が生じる。この強度調整を容易にするため、各照
明光学系内にデイテクタを配置し、デイテクタで得られ
た信号に基づいて光束の強度が任意の基準値になるよう
に、各ランプに対する印加電圧をフイードバツク制御す
ることが考えられる。
Further, when the lamps are replaced, the initial brightness differs from lamp to lamp, so that it becomes necessary to adjust the intensity of the luminous flux again. In order to facilitate this intensity adjustment, a detector is placed in each illumination optical system, and the applied voltage to each lamp is feedback-controlled so that the intensity of the luminous flux becomes an arbitrary reference value based on the signal obtained by the detector. It is possible to do it.

【0007】しかしながら、一般的にランプの輝度には
製造上のばらつきが有り、また使用時間に応じて輝度低
下を起こすため、この方法においてはばらつきの最低値
で且つ寿命時間における輝度の最低値を上記の基準値と
する必要がある。従つて、各照明光学系の光束の強度は
常に低いレベルでしか安定せず、露光時間が増加して装
置のスループツトが低下するという問題があつた。
However, in general, there are variations in the luminance of the lamp due to manufacturing, and the luminance decreases depending on the usage time. Therefore, in this method, the minimum value of the variation and the minimum value of the luminance during the life time are set. It is necessary to use the above standard value. Therefore, there is a problem that the intensity of the luminous flux of each illumination optical system is always stable only at a low level, the exposure time increases, and the throughput of the apparatus decreases.

【0008】また上記の走査型露光装置はマスクとガラ
ス基板を保持して、一軸方向に移動して露光する装置が
一般的であり、露光光束の全域にわたりガラス基板上の
光強度を検出することは困難であつた。
Further, the above-mentioned scanning type exposure apparatus is generally an apparatus that holds a mask and a glass substrate and moves in a uniaxial direction to perform exposure, and it is necessary to detect the light intensity on the glass substrate over the entire exposure light flux. Was difficult.

【0009】本発明は以上の点を考慮してなされたもの
で、複数の照明光学系のそれぞれからの光束をマスク上
の複数の被照射領域に照射し、その複数の被照射領域の
像を複数の投影光学系を介して感光基板上に投影する際
に、感光基板上に均一な光強度で投射し得る露光装置を
提案しようするものである。
The present invention has been made in consideration of the above points, and irradiates a plurality of illuminated regions on a mask with light fluxes from a plurality of illumination optical systems, and images the plurality of illuminated regions. It is an object of the present invention to propose an exposure apparatus capable of projecting onto a photosensitive substrate with a uniform light intensity when projecting onto the photosensitive substrate via a plurality of projection optical systems.

【0010】[0010]

【課題を解決するための手段】かかる課題を解決するた
め第1の発明においては、複数の照明光学系(LO1〜
LO5)と、その複数の照明光学系(LO1〜LO5)
のそれぞれに対応して配置された複数の投影光学系(P
L1〜PL5)とを有し、複数の照明光学系(LO1〜
LO5)のそれぞれからの光束(L)をマスク(9)上
の複数の被照射領域に照射し、その複数の被照射領域の
像を複数の投影光学系(PL1〜PL5)を介して感光
基板(10)上に投影する露光装置において、複数の照
明光学系(LO1〜LO5)のそれぞれに設けられて光
束(L)の強度を検出する複数の光強度検出手段(1
1)と、複数の照明光学系(LO1〜LO5)それぞれ
の光束(L)の強度を変更する光強度変更手段(13、
14、15)と、複数の光強度検出手段(11)のそれ
ぞれで検出された光束(L)の強度(P1〜P5)に応
じて、光束(L)の強度が一定となるように光強度変更
手段(13、14、15)を制御する制御手段(12)
とを設けるようにした。
In order to solve such a problem, in the first invention, a plurality of illumination optical systems (LO1 to LO1
LO5) and its plurality of illumination optical systems (LO1 to LO5)
A plurality of projection optical systems (P
L1-PL5) and a plurality of illumination optical systems (LO1-LO5)
Luminous flux (L) from each of the LO5) is applied to a plurality of irradiated regions on the mask (9), and images of the plurality of irradiated regions are transmitted through a plurality of projection optical systems (PL1 to PL5) to a photosensitive substrate. (10) In an exposure apparatus for projecting light onto a plurality of illumination optical systems (LO1 to LO5), a plurality of light intensity detecting means (1) for detecting the intensity of the light flux (L) are provided.
1) and light intensity changing means (13, 13) for changing the intensity of the light flux (L) of each of the plurality of illumination optical systems (LO1 to LO5).
14 and 15) and the light intensity (P1 to P5) of the light flux (L) detected by each of the plurality of light intensity detecting means (11) so that the light intensity of the light flux (L) becomes constant. Control means (12) for controlling the changing means (13, 14, 15)
I decided to set and.

【0011】また第2の発明において、制御手段(1
2)は、複数の光強度検出手段(11)のそれぞれで検
出された光束(L)の強度(P1〜P5)のうち最低値
のものを基準として、複数の光強度検出手段(11)の
全てが最低値を示すように光強度変更手段(13、1
4、15)を制御するようにした。
In the second invention, the control means (1
2) refers to the lowest value of the intensities (P1 to P5) of the light flux (L) detected by each of the plurality of light intensity detecting means (11) as a reference. Light intensity changing means (13, 1, 1)
4, 15) was controlled.

【0012】また第3の発明においては、複数の照明光
学系(LO1〜LO5)から射出された光束(L)それ
ぞれの強度を検出する第2の光強度検出手段(16、2
2)を設けるようにした。
Further, in the third invention, second light intensity detecting means (16, 2) for detecting the intensity of each of the light fluxes (L) emitted from the plurality of illumination optical systems (LO1 to LO5).
2) is provided.

【0013】また第4の発明において、制御手段(1
2)は、第2の光強度検出手段(16)の検出結果(P
O)と複数の光強度検出手段(11)のそれぞれの検出
結果(P1〜P5)とに基づいて、光強度検出手段(1
1)の検出結果(P1〜P5)を補正するようにした。
In the fourth invention, the control means (1
2) is the detection result of the second light intensity detecting means (16) (P
O) and the respective detection results (P1 to P5) of the plurality of light intensity detecting means (11) based on the light intensity detecting means (1).
The detection result (P1 to P5) of 1) was corrected.

【0014】また第5の発明において、光強度変更手段
(13、14、15)は、照明光学系(LO1〜LO
5)を構成する光学素子より透過率の低い部材(14)
を含むようにした。
In the fifth aspect of the invention, the light intensity changing means (13, 14, 15) includes illumination optical systems (LO1 to LO).
A member (14) having a transmittance lower than that of the optical element constituting (5)
Included.

【0015】また第6の発明において、第2の光強度検
出手段(22)は、所定方向に移動するステージ(2
0)上に載置されてそのステージ(20)の移動方向と
直交する方向に移動する移動手段(21)に配置され、
感光基板(10)表面と同一平面内を移動して、複数の
投影光学系(PL1〜PL5)を通過した光束それぞれ
の光強度を検出するようにした。
In the sixth invention, the second light intensity detecting means (22) is a stage (2) which moves in a predetermined direction.
0) is placed on a moving means (21) which is placed on and moves in a direction orthogonal to the moving direction of the stage (20),
The light intensity of each light flux that has moved through the same plane as the surface of the photosensitive substrate (10) and passed through the plurality of projection optical systems (PL1 to PL5) is detected.

【0016】また第7の発明において、制御手段(2
5)は、露光に先立つて、第2の光強度検出手段(2
2)による検出データ(P10)を基に、各照明光学系
(LO1〜LO5)の光強度変更手段(26)を制御し
て、感光基板面(10)上の各光束の光強度を均一に揃
え、露光時には、光強度変更手段(26)を制御して各
照明光学系(LO1〜LO5)の光強度検出手段(1
1)で均一に揃えられた各光束(L)の光強度を保持す
るようにした。
In the seventh invention, the control means (2
5) is a second light intensity detecting means (2) prior to exposure.
Based on the detection data (P10) by 2), the light intensity changing means (26) of each illumination optical system (LO1 to LO5) is controlled to make the light intensity of each light flux on the photosensitive substrate surface (10) uniform. During alignment and exposure, the light intensity changing means (26) is controlled to control the light intensity detecting means (1) of the respective illumination optical systems (LO1 to LO5).
The light intensity of each light flux (L) uniformly aligned in 1) is maintained.

【0017】[0017]

【作用】複数の投影光学系(PL1〜PL5)のそれぞ
れに配置された照明光学系(LO1〜LO5)からの光
束(L)の強度を検出し、最低の強度が得られる照明光
学系の強度に他の照明光学系の強度を合わせるように制
御することにより、光源の初期輝度のばらつきや使用に
よる輝度劣化に係わらず、常に全ての照明光学系(LO
1〜LO5)で均一な強度を得ることができる。
Function: The intensity of the illumination optical system that detects the intensity of the luminous flux (L) from the illumination optical systems (LO1 to LO5) arranged in each of the plurality of projection optical systems (PL1 to PL5) and obtains the lowest intensity. By controlling so that the intensities of the other illumination optical systems are adjusted to all the illumination optical systems (LO) regardless of variations in the initial luminance of the light source and luminance deterioration due to use.
1 to LO5) can provide uniform strength.

【0018】また第2の光強度検出手段(22)によつ
て、全投影領域(PA1〜PA5)の光強度を2次元的
に検出し得るので、それぞれの投影領域内に残存する光
強度不均一性を計算に入れて制御することで、より均一
な露光面照度を得ることができ、さらに照明光学系(L
O1〜LO5)の光源の劣化等によらず、露光面照度が
一定に保たれるので露光量制御を容易かつ正確にでき
る。
Since the second light intensity detecting means (22) can two-dimensionally detect the light intensity of all projection areas (PA1 to PA5), the light intensity remaining in each projection area is not detected. By controlling the uniformity by taking it into account, a more uniform exposure surface illuminance can be obtained, and the illumination optical system (L
The exposure surface illuminance is kept constant irrespective of the deterioration of the light source of O1 to LO5) and the exposure amount control can be performed easily and accurately.

【0019】[0019]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0020】(1)第1実施例 図1は本発明による露光装置の第1実施例の構成を示
し、超高圧水銀ランプ等の光源1から射出した光束L
は、楕円鏡2、レンズ系3を介してフライアイレンズ4
によつて強度を均一化される。そして、ハーフミラー
5、レンズ系6を介して視野絞り7によつて所望の形状
に整形され、レンズ系8を介してマスク9のパターン面
上に視野絞り7の像を形成する。
(1) First Embodiment FIG. 1 shows the configuration of a first embodiment of an exposure apparatus according to the present invention, in which a light beam L emitted from a light source 1 such as an ultrahigh pressure mercury lamp.
Is a fly-eye lens 4 via an elliptic mirror 2 and a lens system 3.
Therefore, the strength is made uniform. Then, it is shaped into a desired shape by the field stop 7 via the half mirror 5 and the lens system 6, and an image of the field stop 7 is formed on the pattern surface of the mask 9 via the lens system 8.

【0021】この照明光学系(光源1からレンズ系8ま
での光学素子であり、LO1とする)は複数配置されて
おり(但し、図中では便宜上レンズ系8に対応するもの
のみ示し、それぞれLO2〜LO5で表す)、複数の照
明光学系LO1〜LO5のそれぞれから射出された光束
はマスク9上の異なる小領域(照明領域)をそれぞれ照
明する。マスク9を透過した複数の光束は、それぞれ異
なる投影光学系PL1〜PL5を介して感光基板10上
の異なる投影領域(図2にPA1〜PA5で示す)にマ
スク9の照明領域に対応したパターン像を結像する。
A plurality of this illumination optical system (optical element from the light source 1 to the lens system 8 and referred to as LO1) are arranged (however, in the figure, only the one corresponding to the lens system 8 is shown and LO2 is shown respectively. Light beams emitted from each of the plurality of illumination optical systems LO1 to LO5 illuminate different small areas (illumination areas) on the mask 9, respectively. The plurality of light fluxes that have passed through the mask 9 are transmitted through different projection optical systems PL1 to PL5, respectively, and different pattern images corresponding to the illumination areas of the mask 9 are formed in different projection areas (indicated by PA1 to PA5 in FIG. 2) on the photosensitive substrate 10. Image.

【0022】この場合、投影光学系PL1〜PL5は、
いずれも等倍正立系とする。感光基板10上の投影領域
は、図2に示すように、隣合う領域どうし(例えば、P
A1とPA2、PA2とPA3)が図のX方向に所定量
変位するように、且つ隣合う領域の端部どうし(図中、
破線で示す部分)が図のY方向に重複するように配置さ
れる。よつて、上記複数の投影光学系PL1〜PL5も
各投影領域PA1〜PA5の配置に応じてX方向に所定
量変位するとともにY方向に重複して配置されている。
In this case, the projection optical systems PL1 to PL5 are
Both are assumed to be an equal size erect system. As shown in FIG. 2, the projection area on the photosensitive substrate 10 is such that adjacent areas (for example, P
A1 and PA2, PA2 and PA3) are displaced by a predetermined amount in the X direction of the drawing, and the end portions of adjacent areas (in the drawing,
The portion indicated by the broken line) is arranged so as to overlap in the Y direction in the figure. Therefore, the plurality of projection optical systems PL1 to PL5 are also displaced by a predetermined amount in the X direction according to the arrangement of the projection areas PA1 to PA5, and are also arranged overlapping in the Y direction.

【0023】また、複数の照明光学系LO1〜LO5の
配置は、マスク9上の照明領域が上記の投影領域PA1
〜PA5と同様の配置となるように配置される。そし
て、マスク9と感光基板10とを同期して、X方向(図
1において、紙面に垂直な方向)に投影光学系PL1〜
PL5に対して走査することによつて、マスク9上のパ
ターン領域の全面を感光基板10上の露光領域EAに転
写する。
The arrangement of the plurality of illumination optical systems LO1 to LO5 is such that the illumination area on the mask 9 is the projection area PA1 described above.
~ PA5 are arranged so as to be the same arrangement. Then, the mask 9 and the photosensitive substrate 10 are synchronized with each other, and the projection optical systems PL1 to PL1 are arranged in the X direction (direction perpendicular to the paper surface in FIG. 1).
By scanning PL5, the entire surface of the pattern area on the mask 9 is transferred to the exposure area EA on the photosensitive substrate 10.

【0024】また、各照明光学系LO1〜LO5の光路
中にはハーフミラー5が設けられ、光束Lの一部をデイ
テクタ11に入射する。デイテクタ11は、常時この光
束Lの強度を検出し、得られた信号P1〜P5を信号処
理装置12に入力する。信号処理装置12は、信号P1
〜P5に基づいて、各照明光学系LO1〜LO5の光束
Lの強度を求め、これら強度のうち最低値を示すものを
基準値として設定する。そして、他の光束の強度がこの
基準値に等しくなるべく電源13に対する印加電圧(も
しくは、電源電流)をフイードバツク制御する。尚、信
号処理装置12が信号P1〜P5を処理する間隔は、必
要に応じて任意に設定できるものである。
A half mirror 5 is provided in the optical path of each of the illumination optical systems LO1 to LO5, and a part of the light flux L is incident on the detector 11. The detector 11 constantly detects the intensity of the light flux L and inputs the obtained signals P1 to P5 to the signal processing device 12. The signal processing device 12 receives the signal P1.
To P5, the intensities of the luminous fluxes L of the illumination optical systems LO1 to LO5 are obtained, and the one showing the lowest value among these intensities is set as a reference value. Then, the voltage applied to the power supply 13 (or the power supply current) is feedback-controlled so that the intensity of the other light flux becomes equal to this reference value. The interval at which the signal processing device 12 processes the signals P1 to P5 can be arbitrarily set as needed.

【0025】ところで、複数設けられた光源1の一部を
新しいものに交換した場合などは、この新しい光源は他
の光源に比べて輝度が大きくなる。この場合、上述のよ
うに印加電圧を制御するだけでは各光束の強度を一定に
制御することは不可能になる。よつて、照明光学系LO
1〜LO5それぞれの光路中にNDフイルタ14を光束
Lに対して進退可能に配置し、信号処理装置12からの
信号によつてフイルタ駆動部15を制御する構成にす
る。このNDフイルタ14は、異なる透過率のものを複
数用意し、それぞれ切り換えて、もしくは組み合わせて
使用するようにしても良い。
By the way, when a part of the plurality of light sources 1 is replaced with a new one, the new light source has higher brightness than other light sources. In this case, it is impossible to control the intensity of each light flux to be constant only by controlling the applied voltage as described above. Yottte, the illumination optical system LO
The ND filters 14 are arranged in the respective optical paths of 1 to LO5 so as to be able to move forward and backward with respect to the light flux L, and the filter driving unit 15 is controlled by the signal from the signal processing device 12. A plurality of ND filters 14 having different transmittances may be prepared, and each ND filter 14 may be switched or used in combination.

【0026】この実施例において、デイテクタ11は、
照明光学系LO1〜LO5や投影光学系PL1〜PL5
を構成する光学素子の透過率を含めて各照明光学系LO
1〜LO5毎にデイテクタ11そのものの検出値のばら
つきをキヤリブレーシヨンしておく必要がある。このた
め、感光基板10と同一の面内に受光面が配置されるよ
うにデイテクタ16を設ける。そして、このデイテクタ
16を各投影光学系PL1〜PL5の投影領域PA1〜
PA5内に配置して光束の強度を検出する。
In this embodiment, the detector 11 is
Illumination optical systems LO1 to LO5 and projection optical systems PL1 to PL5
Each illumination optical system LO including the transmittance of the optical elements that compose the
It is necessary to calibrate variations in the detection value of the detector 11 itself for each 1 to LO5. Therefore, the detector 16 is provided so that the light receiving surface is arranged in the same plane as the photosensitive substrate 10. Then, the detector 16 is connected to the projection areas PA1 to PL5 of the projection optical systems PL1 to PL5.
It is arranged in the PA 5 to detect the intensity of the luminous flux.

【0027】得られた強度信号POは信号処理装置12
に入力され、信号POと各照明光学系LO1〜LO5の
デイテクタ11の検出信号P1〜P5との差を各デイテ
クタ11のオフセツトとする。これにより、より正確な
光束の強度の制御が可能となる。また、NDフイルタ1
4を切り換えることによつてデイテクタ11の検出信号
P1〜P5のリニアリテイをチエツクすることも可能で
ある。
The obtained intensity signal PO is applied to the signal processor 12
The difference between the signal PO and the detection signals P1 to P5 of the detector 11 of each of the illumination optical systems LO1 to LO5 is used as the offset of each detector 11. This enables more accurate control of the intensity of the light flux. Also, ND filter 1
It is also possible to check the linearity of the detection signals P1 to P5 of the detector 11 by switching between 4 and 4.

【0028】(2)第2実施例 図1との対応部分に同一符号を付した図3は本発明によ
る露光装置の第2実施例の構造を示す。この露光装置の
場合、マスク9が載置されたマスクステージと感光基板
10が載置された基板ステージを一体に保持する露光ス
テージ20が形成されている。これによりそれぞれ図示
しない固定支持部により固定された照明光学系LO1〜
LO5、投影光学系PL1〜PL5に対し、図示しない
アライメント系によりマスク9、感光基板10のアライ
メントを行つた後、露光ステージ20をマスク9、感光
基板10を保持した状態で一体に走査露光してマスク像
を感光基板10に転写する。このとき露光量は感光基板
10上の照明光強度と露光ステージ20の走査速度で決
まる。
(2) Second Embodiment FIG. 3 in which parts corresponding to those in FIG. 1 are assigned the same reference numerals shows the structure of a second embodiment of the exposure apparatus according to the present invention. In the case of this exposure apparatus, an exposure stage 20 that integrally holds the mask stage on which the mask 9 is placed and the substrate stage on which the photosensitive substrate 10 is placed is formed. As a result, the illumination optical systems LO1 to LO1 fixed by the fixing support portions (not shown), respectively.
After the mask 9 and the photosensitive substrate 10 are aligned with the LO5 and the projection optical systems PL1 to PL5 by an alignment system (not shown), the exposure stage 20 is integrally scanned and exposed while the mask 9 and the photosensitive substrate 10 are held. The mask image is transferred to the photosensitive substrate 10. At this time, the exposure amount is determined by the illumination light intensity on the photosensitive substrate 10 and the scanning speed of the exposure stage 20.

【0029】またこの実施例の露光装置では、露光ステ
ージ20の基板ステージ上に、当該露光ステージの移動
軸(X軸)と直交する駆動軸(Y軸)を有する検出セン
サ駆動部21が配され、その検出センサ駆動部21上に
感光基板10と同一面の高さになるようにデイテクタ2
2が載置されている。そして、1回又は複数回の露光に
先立つて、露光ステージ20の移動軸(X軸)と検出セ
ンサ駆動部21の駆動軸(Y軸)を駆動して、デイテク
タ22を投影光学系PL1〜PL5の投影領域PA1〜
PA5の下で走査し、露光面上の照明光強度を2次元的
に計測して、光強度データとして送出する。
Further, in the exposure apparatus of this embodiment, the detection sensor drive section 21 having the drive axis (Y axis) orthogonal to the movement axis (X axis) of the exposure stage is arranged on the substrate stage of the exposure stage 20. , The detector 2 is mounted on the detection sensor driving unit 21 so as to be flush with the photosensitive substrate 10.
2 is placed. Then, prior to one or more exposures, the movement axis (X axis) of the exposure stage 20 and the drive axis (Y axis) of the detection sensor driving unit 21 are driven to move the detector 22 to the projection optical systems PL1 to PL5. Projection area PA1
Scanning under PA5, the illumination light intensity on the exposed surface is two-dimensionally measured and sent as light intensity data.

【0030】図4はこの第2実施例による照明光強度の
制御系を表わし、前記計測された露光面における光強度
データP10に基づき、各々投影光学系PL1〜P5に
対応する照明光学系LO1〜LO5の光強度を、照明光
学系LO1〜LO5に付設されたデイテクタ11で検出
(P1〜P5)しながら照明光強度制御部26を制御し
て、各投影光学系PL1〜PL5の投影領域PA1〜P
A5を合せた全露光領域において照明光強度が均一にな
るように設定する。
FIG. 4 shows an illumination light intensity control system according to the second embodiment, and based on the measured light intensity data P10 on the exposure surface, illumination optical systems LO1 to LO1 corresponding to the projection optical systems PL1 to P5, respectively. The light intensity of LO5 is detected by the detector 11 attached to the illumination optical systems LO1 to LO5 (P1 to P5), and the illumination light intensity control unit 26 is controlled to project the projection areas PA1 to PL5 of the projection optical systems PL1 to PL5. P
The illumination light intensity is set to be uniform in the entire exposure area including A5.

【0031】設定後、再び上述したと同じ手順でデイテ
クタ22にて露光面の照明光強度を計測し確認する。こ
の手順を繰り返して照明光強度の均一性が規格内に入つ
たら、このときの露光面のデイテクタ22の計測値P1
0を露光面照度として記憶回路27に記憶する。他方こ
のときの各照明光学系LO1〜LO5のデイテクタ11
の検出値P1〜P5を同時に記憶回路28に記憶する。
実際の露光時には、記憶回路27に記憶された露光面の
照度に対し、感光基板10の露光量が最適になるように
露光ステージ制御回路29により露光ステージ20の移
動速度を制御する。
After the setting, the illumination light intensity of the exposure surface is measured and confirmed by the detector 22 again by the same procedure as described above. When the uniformity of the illumination light intensity falls within the standard by repeating this procedure, the measured value P1 of the detector 22 on the exposure surface at this time is obtained.
0 is stored in the storage circuit 27 as the exposure surface illuminance. On the other hand, at this time, the detector 11 of each of the illumination optical systems LO1 to LO5
The detected values P1 to P5 are stored in the storage circuit 28 at the same time.
At the time of actual exposure, the movement speed of the exposure stage 20 is controlled by the exposure stage control circuit 29 so that the exposure amount of the photosensitive substrate 10 becomes optimum with respect to the illuminance of the exposure surface stored in the storage circuit 27.

【0032】これと平行して各照明光学系LO1〜LO
5の照明光強度を各々デイテクタ11の検出値P1〜P
5が記憶回路28に記憶された値PM1〜PM5に保た
れるよう各々照明光強度制御部26により制御する。照
明光強度部26の具体例としては、ズーム光学系、光源
の電流制御、場所により傾斜的に透過率の変わるNDフ
イルタの位置制御等が行われる。このようにして全投影
領域PA1〜PA5の光強度(照度)を、均一かつ一定
に保つことができる。
In parallel with this, the respective illumination optical systems LO1 to LO
The illumination light intensities of 5 are detected values P1 to P of the detector 11, respectively.
5 is controlled by the illumination light intensity control unit 26 so that the value 5 is maintained at the values PM1 to PM5 stored in the storage circuit 28. As a specific example of the illumination light intensity section 26, a zoom optical system, current control of a light source, position control of an ND filter whose transmittance changes in a tilted manner depending on the location, and the like are performed. In this way, the light intensity (illuminance) of the entire projection areas PA1 to PA5 can be kept uniform and constant.

【0033】以上の構成によれば、全投影領域PA1〜
PA5の光強度を2次元的に検出し得るので、それぞれ
投影領域内に残存する光強度の不均一性を計算に入れて
制御することで、より均一な露光面照度を得ることがで
きる。また照明光学系LO1〜LO5の光源の劣化等に
よらず、露光面照度が一定に保たれるので露光量制御が
容易かつ正確になる。なお露光面照度の再設定は決めら
れた露光回数又は時間あるいは照明光学系LO1〜LO
5の光源の劣化等により、照明強度制御部26の制御が
不能になつた場合に行えば良い。
According to the above construction, the entire projection area PA1.
Since the light intensity of the PA 5 can be detected two-dimensionally, a more uniform exposure surface illuminance can be obtained by calculating and controlling the non-uniformity of the light intensity remaining in each projection region. Further, the exposure surface illuminance is kept constant regardless of the deterioration of the light sources of the illumination optical systems LO1 to LO5, so that the exposure amount control becomes easy and accurate. Note that the exposure surface illuminance is reset by a predetermined number of times of exposure or time or illumination optical systems LO1 to LO.
This may be performed when the control of the illumination intensity control unit 26 becomes impossible due to deterioration of the light source of No. 5 or the like.

【0034】(3)他の実施例 なお上述の実施例においては、投影領域PA1〜PA5
が図2に示すような配置となるように照明光学系LO1
〜LO5及び投影光学系PL1〜PL5を配置する構成
としたが、図2に示す投影領域PA2、PA4を形成す
る照明光学系LO2、LO4及び投影光学系PL2、P
L4を設けない構成としても良い。この場合マスク9と
感光基板10をX方向に走査した後、Y方向に所定量ス
テツプして再度X方向とは逆の方向に走査することによ
り、マスクのパターン領域の全面を感光基板上に転写す
ることができる。
(3) Other Embodiments In the above embodiment, the projection areas PA1 to PA5 are provided.
So that the illumination optical system LO1 is arranged as shown in FIG.
-LO5 and projection optical systems PL1-PL5 are arranged, the illumination optical systems LO2, LO4 and the projection optical systems PL2, P4 that form the projection areas PA2, PA4 shown in FIG.
The configuration may be such that L4 is not provided. In this case, after the mask 9 and the photosensitive substrate 10 are scanned in the X direction, a predetermined amount of step is performed in the Y direction and scanning is performed again in the opposite direction to the X direction, so that the entire pattern area of the mask is transferred onto the photosensitive substrate. can do.

【0035】また上述の実施例においては、等倍の投影
光学系PL1〜PL5を用いているが、所定の倍率をも
つた投影光学系を用いてもよく、屈折系に代えて反射系
の光学系を用いても構わない。さらに視野絞りの開口形
状を台形としたが、これに限定されず、例えば六角形の
開口を有する視野絞りを用いても構わない。
Further, although the projection optical systems PL1 to PL5 having the same magnification are used in the above-mentioned embodiments, a projection optical system having a predetermined magnification may be used, and a reflection system optics may be used instead of the refraction system. A system may be used. Further, although the aperture shape of the field stop is trapezoidal, the invention is not limited to this, and a field stop having a hexagonal aperture may be used, for example.

【0036】[0036]

【発明の効果】以上のように本発明では、複数の投影光
学系のそれぞれに配置された照明光学系からの光束の強
度を検出し、最低の強度が得られる照明光学系の強度に
他の照明光学系の強度を合わせるように制御することに
より、ランプの初期輝度のばらつきや使用による輝度劣
化に係わらず、常に全ての照明光学系で均一な強度を得
ることができる。
As described above, according to the present invention, the intensity of the luminous flux from the illumination optical system disposed in each of the plurality of projection optical systems is detected, and the intensity of the illumination optical system that obtains the lowest intensity may be different from the intensity of the illumination optical system. By controlling so that the intensity of the illumination optical system is matched, it is possible to always obtain a uniform intensity in all the illumination optical systems regardless of variations in the initial luminance of the lamp and luminance deterioration due to use.

【0037】また従来の装置のように、ランプの寿命時
間での最低輝度を予め基準値として設定するのと異な
り、最低輝度より高いレベルの輝度に基準値を設定する
ため、常にランプの輝度を有効に利用でき、装置のスル
ープツトを低下を避けることができる。
Further, unlike the conventional device, in which the minimum brightness during the life of the lamp is set as a reference value in advance, the reference value is set to a level higher than the minimum brightness, so that the brightness of the lamp is always set. It can be used effectively and avoids lowering the device throughput.

【0038】さらに全露光領域の光強度を2次元的に検
出し得るので、単一の露光領域内に残存する光強度不均
一性を計算に入れて制御することで、より均一な露光面
照度を得ることができる。また照明光学系の光源の劣化
等によらず、露光面照度が一定に保たれるので露光量制
御を容易かつ正確にできる。
Further, since the light intensity of the entire exposure area can be detected two-dimensionally, the light intensity nonuniformity remaining in a single exposure area can be calculated and controlled to obtain a more uniform exposure surface illuminance. Can be obtained. Further, since the illuminance on the exposure surface is kept constant regardless of the deterioration of the light source of the illumination optical system, the exposure amount can be controlled easily and accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による露光装置の第1実施例の構成を示
す略線図である。
FIG. 1 is a schematic diagram showing the configuration of a first embodiment of an exposure apparatus according to the present invention.

【図2】図1の露光装置における感光基板上の投影領域
を示す略線図である。
2 is a schematic diagram showing a projection area on a photosensitive substrate in the exposure apparatus of FIG.

【図3】本発明による露光装置の第2実施例の構成を示
す略線的斜視図である。
FIG. 3 is a schematic perspective view showing a configuration of a second embodiment of the exposure apparatus according to the present invention.

【図4】図3の露光装置における光量の制御系の説明に
供する略線図である。
4 is a schematic diagram for explaining a light amount control system in the exposure apparatus of FIG.

【符号の説明】[Explanation of symbols]

1……光源、2……楕円鏡、3、6、8……レンズ系、
4……フライアイレンズ、5……ハーフミラー、7……
視野絞り、9……マスク、10……感光基板、11……
デイテクタ、12……信号処理装置、13……電源、1
4……NDフイルタ、15……フイルタ駆動部、16…
…デイテクタ、20……露光ステージ、21……検出セ
ンサ駆動部、22……光強度検出センサ、25……信号
処理回路、26……照明強度制御部、27、28……記
憶回路、29……露光ステージ制御回路、LO1〜LO
5……照明光学系、PL1〜PL5……投影光学系。
1 ... Light source, 2 ... Elliptical mirror, 3, 6, 8 ... Lens system,
4 ... Fly-eye lens, 5 ... Half mirror, 7 ...
Field stop, 9 ... Mask, 10 ... Photosensitive substrate, 11 ...
Detector, 12 ... Signal processing device, 13 ... Power supply, 1
4 ... ND filter, 15 ... Filter drive unit, 16 ...
... detector, 20 ... exposure stage, 21 ... detection sensor drive section, 22 ... light intensity detection sensor, 25 ... signal processing circuit, 26 ... illumination intensity control section, 27, 28 ... storage circuit, 29 ... ... Exposure stage control circuit, LO1 to LO
5 ... Illumination optical system, PL1 to PL5 ... Projection optical system.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/20 521 9122−2H 7352−4M H01L 21/30 518 (72)発明者 菊池 哲男 東京都千代田区丸の内3丁目2番3号株式 会社ニコン内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G03F 7/20 521 9122-2H 7352-4M H01L 21/30 518 (72) Inventor Tetsuo Kikuchi Tokyo 3 2-3 Marunouchi, Chiyoda-ku Nikon Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】複数の照明光学系と、該複数の照明光学系
のそれぞれに対応して配置された複数の投影光学系とを
有し、前記複数の照明光学系のそれぞれからの光束をマ
スク上の複数の被照射領域に照射し、該複数の被照射領
域の像を前記複数の投影光学系を介して感光基板上に投
影する露光装置において、 前記複数の照明光学系のそれぞれに設けられて前記光束
の強度を検出する複数の光強度検出手段と、 前記複数の照明光学系それぞれの前記光束の強度を変更
する光強度変更手段と、 前記複数の光強度検出手段のそれぞれで検出された前記
光束の強度に応じて、前記光束の強度が一定となるよう
に前記光強度変更手段を制御する制御手段とを具えるこ
とを特徴とする露光装置。
1. A mask having a plurality of illumination optical systems and a plurality of projection optical systems arranged corresponding to each of the plurality of illumination optical systems, and masking a light flux from each of the plurality of illumination optical systems. An exposure apparatus which irradiates a plurality of upper irradiation areas and projects images of the plurality of irradiation areas onto a photosensitive substrate through the plurality of projection optical systems, wherein each of the plurality of illumination optical systems is provided. Detected by the plurality of light intensity detecting means for detecting the intensity of the light flux, the light intensity changing means for changing the intensity of the light flux of each of the plurality of illumination optical systems, and the plurality of light intensity detecting means. An exposure apparatus comprising: a control unit that controls the light intensity changing unit so that the intensity of the light flux becomes constant according to the intensity of the light flux.
【請求項2】前記制御手段は、前記複数の光強度検出手
段のそれぞれで検出された前記光束の強度のうち最低値
のものを基準として、前記複数の光強度検出手段の全て
が前記最低値を示すように前記光強度変更手段を制御す
ることを特徴とする請求項1に記載の露光装置。
2. The control means is configured such that all of the plurality of light intensity detecting means have the lowest value with reference to the lowest value of the intensities of the luminous flux detected by each of the plurality of light intensity detecting means. The exposure apparatus according to claim 1, wherein the light intensity changing unit is controlled so that
【請求項3】複数の前記照明光学系から射出された光束
それぞれの強度を検出する第2の光強度検出手段を具え
ることを特徴とする請求項1又は請求項2に記載の露光
装置。
3. The exposure apparatus according to claim 1, further comprising a second light intensity detecting means for detecting the intensity of each of the light beams emitted from the plurality of illumination optical systems.
【請求項4】前記制御手段は、前記第2の光強度検出手
段の検出結果と前記複数の光強度検出手段のそれぞれの
検出結果とに基づいて、前記光強度検出手段の検出結果
を補正することを特徴とする請求項3に記載の露光装
置。
4. The control means corrects the detection result of the light intensity detecting means based on the detection result of the second light intensity detecting means and the detection result of each of the plurality of light intensity detecting means. The exposure apparatus according to claim 3, wherein:
【請求項5】前記照度変更手段は、前記照明光学系を構
成する光学素子より透過率の低い部材を含むことを特徴
とする請求項1に記載の露光装置。
5. The exposure apparatus according to claim 1, wherein the illuminance changing unit includes a member having a lower transmittance than an optical element forming the illumination optical system.
【請求項6】前記第2の光強度検出手段は、所定方向に
移動するステージ上に載置されて該ステージの移動方向
と直交する方向に移動する移動手段に配置され、前記感
光基板表面と同一平面内を移動して、前記複数の投影光
学系を通過した光束それぞれの光強度を検出することを
特徴とする請求項3に記載の露光装置。
6. The second light intensity detecting means is mounted on a stage that moves in a predetermined direction and is arranged in the moving means that moves in a direction orthogonal to the moving direction of the stage, The exposure apparatus according to claim 3, wherein the light intensity of each of the light fluxes that have moved through the same plane and passed through the plurality of projection optical systems is detected.
【請求項7】前記制御手段は、露光に先立つて、前記第
2の光強度検出手段による検出データを基に、前記各照
明光学系の前記光強度変更手段を制御して、前記感光基
板面上の各光束の光強度を均一に揃え、露光時には、前
記光強度変更手段を制御して前記各照明光学系の前記光
強度検出手段で均一に揃えられた前記各光束の光強度を
保持することを特徴とする請求項6に記載の露光装置。
7. The control means controls the light intensity changing means of each of the illumination optical systems based on the detection data by the second light intensity detecting means prior to the exposure, and the photosensitive substrate surface. The light intensities of the respective light fluxes above are uniformly aligned, and at the time of exposure, the light intensity changing means is controlled to hold the light intensity of each light flux uniformly aligned by the light intensity detecting means of each illumination optical system. The exposure apparatus according to claim 6, wherein:
JP11200094A 1993-10-06 1994-04-27 Exposure apparatus and exposure method using the same Expired - Lifetime JP3376688B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11200094A JP3376688B2 (en) 1993-10-06 1994-04-27 Exposure apparatus and exposure method using the same
KR1019940025408A KR100280764B1 (en) 1993-10-06 1994-10-05 Exposure equipment
US08/446,509 US5581075A (en) 1993-10-06 1995-05-22 Multi-beam scanning projection exposure apparatus and method with beam monitoring and control for uniform exposure of large area

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24965393 1993-10-06
JP5-249653 1993-10-06
JP11200094A JP3376688B2 (en) 1993-10-06 1994-04-27 Exposure apparatus and exposure method using the same

Publications (2)

Publication Number Publication Date
JPH07153683A true JPH07153683A (en) 1995-06-16
JP3376688B2 JP3376688B2 (en) 2003-02-10

Family

ID=26451268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11200094A Expired - Lifetime JP3376688B2 (en) 1993-10-06 1994-04-27 Exposure apparatus and exposure method using the same

Country Status (2)

Country Link
JP (1) JP3376688B2 (en)
KR (1) KR100280764B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051842A (en) * 1997-01-09 2000-04-18 Nikon Corporation Illumination optical apparatus with optical integrator
JP2001166497A (en) * 1999-10-01 2001-06-22 Nikon Corp Method and aligning and aligner
JP2001267198A (en) * 2000-03-14 2001-09-28 Canon Inc Projection aligner and method for controlling plural light sources
KR100472929B1 (en) * 1996-04-12 2005-08-29 가부시키가이샤 니콘 Exposure device
JP2007534176A (en) * 2004-04-20 2007-11-22 ライテル・インストルメンツ Apparatus and method for measuring a high resolution in-situ illumination source in a projection imaging system
JP2010251409A (en) * 2009-04-13 2010-11-04 Nikon Corp Exposure method, exposure apparatus, and device manufacturing method
JP2015064525A (en) * 2013-09-26 2015-04-09 株式会社Screenホールディングス Drawing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320945A (en) * 1996-05-24 1997-12-12 Nikon Corp Exposure condition measuring method and aligner
KR19990030953A (en) * 1997-10-07 1999-05-06 윤종용 Wafer Exposure Method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472929B1 (en) * 1996-04-12 2005-08-29 가부시키가이샤 니콘 Exposure device
US6051842A (en) * 1997-01-09 2000-04-18 Nikon Corporation Illumination optical apparatus with optical integrator
JP2001166497A (en) * 1999-10-01 2001-06-22 Nikon Corp Method and aligning and aligner
JP4649717B2 (en) * 1999-10-01 2011-03-16 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP2001267198A (en) * 2000-03-14 2001-09-28 Canon Inc Projection aligner and method for controlling plural light sources
JP4532654B2 (en) * 2000-03-14 2010-08-25 キヤノン株式会社 Control apparatus, control method, and exposure apparatus
JP2007534176A (en) * 2004-04-20 2007-11-22 ライテル・インストルメンツ Apparatus and method for measuring a high resolution in-situ illumination source in a projection imaging system
JP2010251409A (en) * 2009-04-13 2010-11-04 Nikon Corp Exposure method, exposure apparatus, and device manufacturing method
JP2015064525A (en) * 2013-09-26 2015-04-09 株式会社Screenホールディングス Drawing apparatus

Also Published As

Publication number Publication date
KR950012568A (en) 1995-05-16
KR100280764B1 (en) 2001-03-02
JP3376688B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
US5581075A (en) Multi-beam scanning projection exposure apparatus and method with beam monitoring and control for uniform exposure of large area
JP3376690B2 (en) Exposure apparatus and exposure method using the same
US5659383A (en) Exposure apparatus and exposure quantity control method
KR960042227A (en) Projection exposure apparatus
JP2004304135A (en) Exposure device, exposing method and manufacturing method of micro-device
JPWO2006085626A1 (en) Exposure method and apparatus, and device manufacturing method
JP2004335864A (en) Aligner and exposure method
KR100485314B1 (en) Projection exposure apparatus and device manufacturing method using the same
JP3262039B2 (en) Exposure apparatus and device manufacturing method using the same
JP2002075824A (en) Lighting apparatus using plurality of light sources, lighting control device and method and exposure system
JP3376688B2 (en) Exposure apparatus and exposure method using the same
US5668624A (en) Scan type exposure apparatus
JPH0737774A (en) Scanning aligner
JP2000003874A (en) Exposure method and aligner
JP3476098B2 (en) Exposure equipment
JP2000114164A (en) Scanning projection aligner and manufacture of device using the same
JP3620612B2 (en) Exposure amount control device
JPH06349710A (en) Lighting optical device
JP3550597B2 (en) Exposure equipment
US20240111215A1 (en) Exposure apparatus, exposure method, and manufacturing method for electronic device
WO2023282210A1 (en) Exposure device, exposure method, method for manufacturing flat panel display, and method for creating exposure data
JP3473767B2 (en) Scanning projection exposure apparatus and element manufacturing method using the apparatus
JPH11121355A (en) Projection aligner and exposure method
JPH10270303A (en) Scanning aligner and method of scanning exposure
JP2000155377A (en) Photograph printing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141206

Year of fee payment: 12

EXPY Cancellation because of completion of term