JP2015064525A - Drawing apparatus - Google Patents

Drawing apparatus Download PDF

Info

Publication number
JP2015064525A
JP2015064525A JP2013199333A JP2013199333A JP2015064525A JP 2015064525 A JP2015064525 A JP 2015064525A JP 2013199333 A JP2013199333 A JP 2013199333A JP 2013199333 A JP2013199333 A JP 2013199333A JP 2015064525 A JP2015064525 A JP 2015064525A
Authority
JP
Japan
Prior art keywords
light
head
optical system
sensor
drawing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013199333A
Other languages
Japanese (ja)
Other versions
JP6116457B2 (en
Inventor
大介 岸脇
Daisuke Kishiwaki
大介 岸脇
城田 浩行
Hiroyuki Shirota
浩行 城田
憲 重本
Ken Shigemoto
憲 重本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2013199333A priority Critical patent/JP6116457B2/en
Priority to TW103128406A priority patent/TWI539246B/en
Priority to KR1020140112213A priority patent/KR101600187B1/en
Priority to CN201410482524.9A priority patent/CN104991421B/en
Publication of JP2015064525A publication Critical patent/JP2015064525A/en
Application granted granted Critical
Publication of JP6116457B2 publication Critical patent/JP6116457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drawing apparatus capable of detecting a cause of degradation of a drawing head with a high precision.SOLUTION: A testing part 4 of a drawing apparatus includes: a light quantity sensor 44 for receiving light from a projection optical system 35 of a drawing head 31 when the testing part 4 is positioned at a drawing light quantity measuring position; a lighting head 42 interposed on a light path of a drawing head 31, the lighting head 42 for taking in at least a part of light irradiated from a light source 32 to a spatial light modulation device 34; a bundle fiber 43 for leading light taken in by the lighting head 42 to the light quantity sensor 44 positioned at an intermediate light quantity measuring position; and a testing head 41. Thus, by the drawing apparatus, a light quantity of light from the projection optical system 35 of the drawing head 31 and a light quantity of light taken out of between the light source 32 of the drawing head 31 and the spatial light modulation device 34 are measured by the same light quantity sensor 44 and are compared with each other. Accordingly, even when the optical characteristics of the light quantity sensor 44 is changed, a cause of a degradation of the drawing head 31 can be detected with a high precision.

Description

本発明は、対象物に光を照射してパターンの描画を行う描画装置に関する。   The present invention relates to a drawing apparatus that draws a pattern by irradiating an object with light.

従来より、空間変調された光をステージ上の対象物に照射し、当該光の照射領域を対象物上にて走査することによりパターンを描画する描画装置が知られている。このような描画装置では、光源の劣化、空間光変調デバイスの特性劣化、光学系の透過率低下、異物の付着等に起因して、対象物上における光量が低下することがある。そこで、このような描画装置では、描画ヘッドからの光量を、ステージ近傍に設けられた光量センサにて検出することが行われている。   2. Description of the Related Art Conventionally, there is known a drawing apparatus that draws a pattern by irradiating an object on a stage with spatially modulated light and scanning the irradiation area of the light on the object. In such a drawing apparatus, the amount of light on the object may decrease due to deterioration of the light source, characteristic deterioration of the spatial light modulation device, reduction in the transmittance of the optical system, adhesion of foreign matter, and the like. Therefore, in such a drawing apparatus, the light amount from the drawing head is detected by a light amount sensor provided in the vicinity of the stage.

例えば、特許文献1のレーザ描画装置では、音響光学変調器とポリゴンミラーとの間に第1の光量モニタが設けられ、描画ステージ上に第2の光量モニタが設けられる。当該レーザ描画装置では、光学部品の特性劣化や異物の付着等に起因して第1の光量モニタの光学特性が変化したとしても、第2の光量モニタにより検出された光量に基づいて、第1の光量モニタの光量検出精度が校正される。   For example, in the laser drawing apparatus of Patent Document 1, a first light quantity monitor is provided between an acousto-optic modulator and a polygon mirror, and a second light quantity monitor is provided on the drawing stage. In the laser drawing apparatus, even if the optical characteristics of the first light quantity monitor are changed due to the deterioration of the characteristics of the optical components, the adhesion of foreign matters, or the like, the first light quantity is detected based on the light quantity detected by the second light quantity monitor. The light amount detection accuracy of the light amount monitor is calibrated.

特許文献2の露光描画装置では、光源からの光を分離するアパーチャ部材と空間光変調手段との間に第1光量センサが設けられ、被露光体テーブル上に第2光量センサが設けられる。当該露光描画装置では、第1光量センサからの出力と第2光量センサからの出力とに基づいて、アパーチャ部材から被露光体に至る状況が判断される。   In the exposure drawing apparatus of Patent Document 2, a first light quantity sensor is provided between an aperture member that separates light from a light source and a spatial light modulation means, and a second light quantity sensor is provided on an exposed object table. In the exposure drawing apparatus, based on the output from the first light quantity sensor and the output from the second light quantity sensor, the situation from the aperture member to the object to be exposed is determined.

特許文献3の露光装置では、光源の光量を測定する第1光量センサが光源の近傍に設けられ、光学素子を経由した光量を測定する第2光量センサが基板の周辺に設けられる。当該露光装置では、第1光量センサからの出力に基づいて光源の寿命期間が判定される。第1光量センサからの出力により光源が寿命期間内であると判定されると、第2光量センサからの出力に基づいて、光学素子の特性の良否が判定される。   In the exposure apparatus of Patent Document 3, a first light amount sensor that measures the light amount of a light source is provided in the vicinity of the light source, and a second light amount sensor that measures the light amount via an optical element is provided around the substrate. In the exposure apparatus, the lifetime of the light source is determined based on the output from the first light quantity sensor. When the output from the first light quantity sensor determines that the light source is within the lifetime, the quality of the optical element is determined based on the output from the second light quantity sensor.

特開2003−177553号公報JP 2003-177553 A 特開2008−242173号公報JP 2008-242173 A 特開2010−85507号公報JP 2010-85507 A

ところで、特許文献1のレーザ描画装置では、第2の光量モニタの光学特性が劣化した場合、第1の光量モニタの光量検出精度を精度良く校正することは難しい。また、特許文献2および特許文献3の露光装置においても、第1光量センサおよび第2光量センサのいずれかに光学特性の劣化等が発生した場合、第1光量センサからの出力と第2光量センサからの出力とに基づく検査精度が低下するおそれがある。   By the way, in the laser drawing apparatus of Patent Document 1, it is difficult to accurately calibrate the light quantity detection accuracy of the first light quantity monitor when the optical characteristics of the second light quantity monitor deteriorate. Also, in the exposure apparatuses of Patent Document 2 and Patent Document 3, when deterioration of optical characteristics or the like occurs in either the first light amount sensor or the second light amount sensor, the output from the first light amount sensor and the second light amount sensor There is a risk that the inspection accuracy based on the output from the sensor will decrease.

本発明は、上記課題に鑑みなされたものであり、描画ヘッドの劣化要因を精度良く検出することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to accurately detect a deterioration factor of a drawing head.

請求項1に記載の発明は、対象物に光を照射してパターンの描画を行う描画装置であって、対象物に空間変調された光を照射する描画ヘッドと、前記対象物を保持するとともに前記描画ヘッドに対して相対的に移動することにより前記描画ヘッドからの光の照射領域を前記対象物上にて走査する保持部と、前記描画ヘッドの検査を行う検査部とを備え、前記描画ヘッドが、光を出射する光源と、空間光変調デバイスと、前記光源からの光を前記空間光変調デバイスへと導く照明光学系と、前記空間光変調デバイスにて空間変調された光を前記保持部へと導く投影光学系とを備え、前記検査部が、前記描画ヘッドに対して相対的に定められた描画光量測定位置に位置する際に前記投影光学系からの光を受光する光量センサと、前記光量センサを前記描画光量測定位置と予め定められた中間光量測定位置との間で移動するセンサ移動機構と、前記光源から前記空間光変調デバイスに至る光路上に挿入されて前記光源から前記空間光変調デバイスへと向かう光の少なくとも一部を取り込む採光ヘッドと、前記採光ヘッドにて取り込まれた光を前記中間光量測定位置に位置する前記光量センサへと導く測定光学系と、前記採光ヘッドを前記光路上に挿入し、また、前記光路上から離脱させる採光ヘッド移動機構とを備える。   The invention according to claim 1 is a drawing apparatus that draws a pattern by irradiating light on an object, and holds a drawing head that irradiates the object with spatially modulated light, and the object. A holding unit that scans an irradiation area of light from the drawing head on the object by moving relative to the drawing head; and an inspection unit that inspects the drawing head. A head includes a light source that emits light, a spatial light modulation device, an illumination optical system that guides light from the light source to the spatial light modulation device, and the light that is spatially modulated by the spatial light modulation device A projection optical system that leads to a light source, and a light amount sensor that receives light from the projection optical system when the inspection unit is positioned at a drawing light amount measurement position that is determined relative to the drawing head; , The light quantity sensor A sensor moving mechanism that moves between a drawing light quantity measurement position and a predetermined intermediate light quantity measurement position, and is inserted on an optical path from the light source to the spatial light modulation device, and from the light source to the spatial light modulation device A daylighting head that captures at least part of the light that travels toward the light, a measurement optical system that guides the light captured by the daylighting head to the light quantity sensor located at the intermediate light quantity measurement position, and the daylighting head on the optical path. And a daylighting head moving mechanism that is inserted and removed from the optical path.

請求項2に記載の発明は、請求項1に記載の描画装置であって、前記光量センサが前記保持部に設けられ、前記投影光学系の先端から前記光量センサの受光面に至る距離が、前記投影光学系の前記先端から前記対象物の表面に至る距離に等しく、前記センサ移動機構が、前記保持部を前記描画ヘッドに対して相対的に移動する。   Invention of Claim 2 is the drawing apparatus of Claim 1, Comprising: The said light quantity sensor is provided in the said holding | maintenance part, The distance from the front-end | tip of the said projection optical system to the light-receiving surface of the said light quantity sensor is the following. The sensor moving mechanism moves the holding unit relative to the drawing head at a distance equal to the distance from the tip of the projection optical system to the surface of the object.

請求項3に記載の発明は、請求項1または2に記載の描画装置であって、前記照明光学系がインテグレータを備え、前記採光ヘッドが、前記インテグレータから前記空間光変調デバイスに至る光路上に挿入される。   A third aspect of the present invention is the drawing apparatus according to the first or second aspect, wherein the illumination optical system includes an integrator, and the lighting head is disposed on an optical path from the integrator to the spatial light modulation device. Inserted.

請求項4に記載の発明は、請求項1ないし3のいずれかに記載の描画装置であって、前記光源から出射される光が紫外光である。   The invention according to claim 4 is the drawing apparatus according to any one of claims 1 to 3, wherein the light emitted from the light source is ultraviolet light.

請求項5に記載の発明は、請求項1ないし4のいずれかに記載の描画装置であって、前記空間光変調デバイスが、向きが変更可能な多数の微小鏡面を平面に配列した光学素子である。   A fifth aspect of the present invention is the drawing apparatus according to any one of the first to fourth aspects, wherein the spatial light modulation device is an optical element in which a number of micromirror surfaces whose directions can be changed are arranged in a plane. is there.

請求項6に記載の発明は、請求項1ないし5のいずれかに記載の描画装置であって、前記光量センサにて受光される前記測定光学系からの光の光量が、前記光量センサにて受光される前記投影光学系からの光の光量の10%以上100%以下である。   A sixth aspect of the present invention is the drawing apparatus according to any one of the first to fifth aspects, wherein a light amount of light from the measurement optical system received by the light amount sensor is determined by the light amount sensor. The amount of light received from the projection optical system is 10% or more and 100% or less.

請求項7に記載の発明は、請求項1ないし6のいずれかに記載の描画装置であって、前記検査部が、前記光量センサにて受光される前記測定光学系からの光の光量と、前記光量センサにて受光される前記投影光学系からの光の光量とに基づいて、前記描画ヘッドの異常を検出する異常検出部をさらに備える。   Invention of Claim 7 is the drawing apparatus in any one of Claim 1 thru | or 6, Comprising: The said test | inspection part is the light quantity from the said measurement optical system received by the said light quantity sensor, The apparatus further includes an abnormality detection unit that detects an abnormality of the drawing head based on the amount of light from the projection optical system received by the light amount sensor.

請求項8に記載の発明は、請求項7に記載の描画装置であって、前記検査部が、前記光量センサにより受光される前記測定光学系からの光の光量と、前記光源に供給される電流または電力とに基づいて、前記描画ヘッドの異常を検出するもう1つの異常検出部をさらに備える。   The invention according to claim 8 is the drawing apparatus according to claim 7, wherein the inspection unit is supplied to the light amount of the light from the measurement optical system received by the light amount sensor and the light source. The apparatus further includes another abnormality detection unit that detects abnormality of the drawing head based on current or power.

請求項9に記載の発明は、請求項1ないし8のいずれかに記載の描画装置であって、前記描画ヘッドと同様の構造を有する他の描画ヘッドをさらに備え、前記検査部が、前記他の描画ヘッドにおいて、光源から空間光変調デバイスに至る光路上に挿入されて前記光源から前記空間光変調デバイスへと向かう光の少なくとも一部を取り込む他の採光ヘッドと、前記他の採光ヘッドにて取り込まれた光を前記中間光量測定位置に位置する前記光量センサへと導く他の測定光学系とをさらに備え、前記光量センサが、前記センサ移動機構により前記他の描画ヘッドに対して相対的に定められた他の描画光量測定位置へと移動し、前記他の描画光量測定位置に位置する際に前記他の描画ヘッドの投影光学系からの光を受光する。   A ninth aspect of the present invention is the drawing apparatus according to any one of the first to eighth aspects, further comprising another drawing head having the same structure as the drawing head, wherein the inspection unit includes the other In the other drawing head, the other lighting head that takes in at least a part of the light that is inserted on the optical path from the light source to the spatial light modulation device and travels from the light source to the spatial light modulation device. Another measurement optical system that guides the captured light to the light amount sensor positioned at the intermediate light amount measurement position, and the light amount sensor is relative to the other drawing head by the sensor moving mechanism. It moves to another predetermined drawing light quantity measurement position and receives light from the projection optical system of the other drawing head when it is located at the other drawing light quantity measurement position.

請求項10に記載の発明は、請求項9に記載の描画装置であって、前記描画光量測定位置、前記他の描画光量測定位置、および、前記中間光量測定位置が直線上に配置される。   A tenth aspect of the present invention is the drawing apparatus according to the ninth aspect, wherein the drawing light quantity measurement position, the other drawing light quantity measurement position, and the intermediate light quantity measurement position are arranged on a straight line.

本発明では、描画ヘッドの劣化要因を精度良く検出することができる。   In the present invention, the deterioration factor of the drawing head can be accurately detected.

一の実施の形態に係る描画装置の正面図である。It is a front view of the drawing apparatus which concerns on one embodiment. 描画ヘッドおよび検査ヘッドの斜視図である。It is a perspective view of a drawing head and an inspection head. 空間光変調デバイスを示す図である。It is a figure which shows a spatial light modulation device. ヘッド異常検出部の機能を示すブロック図である。It is a block diagram which shows the function of a head abnormality detection part. 描画ヘッドの検査の流れを示す図である。It is a figure which shows the flow of a test | inspection of a drawing head. 描画装置の正面図である。It is a front view of a drawing apparatus.

図1は、本発明の一の実施の形態に係る描画装置1の構成を示す正面図である。描画装置1は、空間変調された略ビーム状の光を対象物上の感光材料に照射し、当該光の照射領域を対象物上にて走査することによりパターンの描画を行う直接描画装置(いわゆる、直描装置)である。図1に示す例では、対象物は、プリント配線基板(以下、単に「基板9」という。)である。基板9では、銅層上に感光材料により形成されたレジスト膜が設けられる。描画装置1では、基板9のレジスト膜に回路パターンが描画される。   FIG. 1 is a front view showing a configuration of a drawing apparatus 1 according to an embodiment of the present invention. The drawing apparatus 1 irradiates a light-sensitive material on a target object with light that is substantially beam-modulated and scans the light irradiation area on the target object, thereby drawing a pattern (a so-called direct drawing apparatus). , A direct drawing device). In the example shown in FIG. 1, the object is a printed wiring board (hereinafter simply referred to as “substrate 9”). In the substrate 9, a resist film made of a photosensitive material is provided on the copper layer. In the drawing apparatus 1, a circuit pattern is drawn on the resist film of the substrate 9.

描画装置1は、ステージ21と、移動機構22と、描画部3と、検査部4とを備える。描画部3は、X方向に配列される複数の描画ヘッド31を備える。複数の描画ヘッド31は、互いに同様の構造を有する。検査部4は、検査ヘッド41と、複数の採光ヘッド42と、複数のバンドルファイバ43と、光量センサ44と、採光ヘッド移動機構45とを備える。検査ヘッド41は、複数の描画ヘッド31の(+X)側に配置される。光量センサ44はステージ21上に設けられる。図1に示す例では、3つの描画ヘッド31の上方(すなわち、(+Z)側)に、3つの採光ヘッド42がそれぞれ配置される。検査部4は、複数の採光ヘッド42を利用し、複数の描画ヘッド31の検査を行う。   The drawing apparatus 1 includes a stage 21, a moving mechanism 22, a drawing unit 3, and an inspection unit 4. The drawing unit 3 includes a plurality of drawing heads 31 arranged in the X direction. The plurality of drawing heads 31 have the same structure. The inspection unit 4 includes an inspection head 41, a plurality of daylighting heads 42, a plurality of bundle fibers 43, a light amount sensor 44, and a daylighting head moving mechanism 45. The inspection head 41 is disposed on the (+ X) side of the plurality of drawing heads 31. The light quantity sensor 44 is provided on the stage 21. In the example shown in FIG. 1, three lighting heads 42 are arranged above the three drawing heads 31 (that is, on the (+ Z) side). The inspection unit 4 uses a plurality of daylighting heads 42 to inspect a plurality of drawing heads 31.

ステージ21は、基板9を下側から保持する保持部である。移動機構22は、基板9をステージ21と共に複数の描画ヘッド31および検査ヘッド41に対して相対的に移動する。移動機構22は、ステージ21をX方向に垂直なY方向に移動する第1移動機構23と、ステージ21をX方向に移動する第2移動機構24とを備える。以下の説明では、X方向およびY方向をそれぞれ「副走査方向」および「主走査方向」とも呼ぶ。なお、移動機構22により、基板9がステージ21と共に水平面内にて回転可能とされてもよい。   The stage 21 is a holding unit that holds the substrate 9 from below. The moving mechanism 22 moves the substrate 9 together with the stage 21 relative to the plurality of drawing heads 31 and the inspection head 41. The moving mechanism 22 includes a first moving mechanism 23 that moves the stage 21 in the Y direction perpendicular to the X direction, and a second moving mechanism 24 that moves the stage 21 in the X direction. In the following description, the X direction and the Y direction are also referred to as “sub-scanning direction” and “main scanning direction”, respectively. Note that the moving mechanism 22 may allow the substrate 9 to rotate together with the stage 21 in a horizontal plane.

描画装置1では、描画部3の複数の描画ヘッド31から空間変調された光を基板9の(+X)側の表面である上面91上に照射しつつ、第1移動機構により基板9を主走査方向に移動することにより、複数の描画ヘッド31からの光の照射領域が基板9上にて走査される。続いて、第2移動機構24により基板9が副走査方向に所定の距離だけ移動し、再び、空間変調された光を基板9上に照射しつつ基板9を主走査方向に移動する。描画装置1では、このように、基板9の主走査方向への移動、および、副走査方向への移動が繰り返されることにより、基板9に対する回路パターンの描画が行われる。   In the drawing apparatus 1, main scanning is performed on the substrate 9 by the first moving mechanism while irradiating the spatially modulated light from the plurality of drawing heads 31 of the drawing unit 3 onto the upper surface 91 which is the (+ X) side surface of the substrate 9. By moving in the direction, the irradiation area of the light from the plurality of drawing heads 31 is scanned on the substrate 9. Subsequently, the substrate 9 is moved by a predetermined distance in the sub-scanning direction by the second moving mechanism 24, and the substrate 9 is moved in the main scanning direction again while irradiating the spatially modulated light on the substrate 9. In the drawing apparatus 1, the circuit pattern is drawn on the substrate 9 by repeating the movement of the substrate 9 in the main scanning direction and the movement in the sub-scanning direction as described above.

図2は、描画部3の3つの描画ヘッド31のうち最も(+X)側の描画ヘッド31と、検査ヘッド41とを示す斜視図である。図2では、描画ヘッド31および検査ヘッド41の内部構造の理解を容易にするために、描画ヘッド31および検査ヘッド41のハウジングを破線にて描き、ハウジング内部の構成を実線にて描く。   FIG. 2 is a perspective view showing the most (+ X) drawing head 31 and the inspection head 41 among the three drawing heads 31 of the drawing unit 3. In FIG. 2, in order to facilitate understanding of the internal structures of the drawing head 31 and the inspection head 41, the housings of the drawing head 31 and the inspection head 41 are drawn with broken lines, and the configuration inside the housing is drawn with a solid line.

描画ヘッド31は、光源32と、照明光学系33と、空間光変調デバイス34と、投影光学系35とを備える。光源32は、光を出射する。光源32から出射される光は、例えば、紫外光である。光源32として、例えば、LED(Light Emitting Diode)が利用される。照明光学系33は、光源32からの光を空間光変調デバイス34へと導く。照明光学系33は、例えば、インテグレータ331と、レンズ332と、ミラー333とを備える。インテグレータ331は、光源32からの光の照度分布の均一性を向上する。インテグレータ331としては、例えば、石英ロッドが利用される。   The drawing head 31 includes a light source 32, an illumination optical system 33, a spatial light modulation device 34, and a projection optical system 35. The light source 32 emits light. The light emitted from the light source 32 is, for example, ultraviolet light. As the light source 32, for example, an LED (Light Emitting Diode) is used. The illumination optical system 33 guides light from the light source 32 to the spatial light modulation device 34. The illumination optical system 33 includes, for example, an integrator 331, a lens 332, and a mirror 333. The integrator 331 improves the uniformity of the illuminance distribution of the light from the light source 32. For example, a quartz rod is used as the integrator 331.

空間光変調デバイス34としては、例えば、それぞれの向きが個別に変更可能な多数の微小鏡面を平面に配列した光学素子であるDMD(デジタル・マイクロミラー・デバイス)が利用される。図3は、空間光変調デバイス34を示す図である。空間光変調デバイス34は、シリコン基板341上に設けられた微小鏡面群342を備える。微小鏡面群342では、多数の微小鏡面343が2次元に配列される(すなわち、互いに垂直な2方向に配列される)。実際の微小鏡面群342は、図3に示すよりも多数の微小鏡面343を含む。空間光変調デバイス34では、各微小鏡面343に対応するメモリセルに書き込まれたデータに従って、各微小鏡面343が静電作用によりシリコン基板341の表面に対して所定の角度だけ傾く。そして、所定のON状態に対応する姿勢にある微小鏡面343からの反射光のみにより形成される光(すなわち、空間変調された光)が、図2に示す投影光学系35へと導かれる。   As the spatial light modulation device 34, for example, a DMD (digital micromirror device), which is an optical element in which a number of micromirror surfaces whose directions can be individually changed, are arranged in a plane is used. FIG. 3 is a diagram illustrating the spatial light modulation device 34. The spatial light modulation device 34 includes a micromirror surface group 342 provided on a silicon substrate 341. In the micromirror surface group 342, a large number of micromirror surfaces 343 are two-dimensionally arranged (that is, arranged in two directions perpendicular to each other). The actual micromirror surface group 342 includes a larger number of micromirror surfaces 343 than shown in FIG. In the spatial light modulation device 34, each micro mirror surface 343 is inclined by a predetermined angle with respect to the surface of the silicon substrate 341 by electrostatic action according to data written in the memory cell corresponding to each micro mirror surface 343. Then, light (that is, spatially modulated light) formed only by the reflected light from the micromirror surface 343 in a posture corresponding to a predetermined ON state is guided to the projection optical system 35 shown in FIG.

空間光変調デバイス34にて空間変調された光は、投影光学系35によりステージ21上の基板9(図1参照)へと導かれる。投影光学系35からの光は、空間光変調デバイス34の微小鏡面群342(図3参照)に対して光学的に共役な基板9上の照射領域へと照射される。   The light spatially modulated by the spatial light modulation device 34 is guided to the substrate 9 (see FIG. 1) on the stage 21 by the projection optical system 35. The light from the projection optical system 35 is irradiated onto an irradiation region on the substrate 9 that is optically conjugate with respect to the micromirror surface group 342 (see FIG. 3) of the spatial light modulation device 34.

図2に示すように、検査部4の採光ヘッド42は、検査対象である描画ヘッド31の光源32から空間光変調デバイス34に至る光路上に挿入される。採光ヘッド42は、当該光路上にて、光源32から空間光変調デバイス34へと向かう光の少なくとも一部を取り込む。図2に示す例では、採光ヘッド42は、インテグレータ331から空間光変調デバイス34に至る光路上に挿入される。具体的には、採光ヘッド42はインテグレータ331の直後、すなわち、インテグレータ331とレンズ332との間に挿入される。他の採光ヘッド42も同様に、他の描画ヘッド31において光源32から空間光変調デバイス34に至る光路上に挿入され、光源32から空間光変調デバイス34へと向かう光の少なくとも一部を取り込む。図1に示す描画装置1では、他の採光ヘッド42も、他の描画ヘッド31のインテグレータ331から空間光変調デバイス34に至る光路上に挿入される。   As shown in FIG. 2, the daylighting head 42 of the inspection unit 4 is inserted on the optical path from the light source 32 of the drawing head 31 to be inspected to the spatial light modulation device 34. The daylighting head 42 captures at least part of the light traveling from the light source 32 to the spatial light modulation device 34 on the optical path. In the example shown in FIG. 2, the daylighting head 42 is inserted on the optical path from the integrator 331 to the spatial light modulation device 34. Specifically, the daylighting head 42 is inserted immediately after the integrator 331, that is, between the integrator 331 and the lens 332. Similarly, the other daylighting head 42 is inserted in the optical path from the light source 32 to the spatial light modulation device 34 in the other drawing head 31, and captures at least a part of the light traveling from the light source 32 to the spatial light modulation device 34. In the drawing apparatus 1 shown in FIG. 1, another daylighting head 42 is also inserted on the optical path from the integrator 331 of the other drawing head 31 to the spatial light modulation device 34.

複数のバンドルファイバ43は、複数の採光ヘッド42をそれぞれ検査ヘッド41に接続する。バンドルファイバ43は、素線である細い光ファイバが数百から数千本束ねられたものである。図2では、3本のバンドルファイバ43のうち2本のバンドルファイバ43については、その一部のみを図示する。   The plurality of bundle fibers 43 connect the plurality of daylighting heads 42 to the inspection head 41, respectively. The bundle fiber 43 is a bundle of hundreds to thousands of thin optical fibers that are strands. In FIG. 2, only a part of the two bundle fibers 43 out of the three bundle fibers 43 is illustrated.

検査ヘッド41は、検査ヘッド41のハウジングに固定されたインテグレータ(例えば、石英ロッド)やレンズ等を備える。採光ヘッド42にて取り込まれた光は、採光ヘッド42に接続されたバンドルファイバ43を介して検査ヘッド41へと導かれ、検査ヘッド41にて照度分布の均一性が向上されて光量センサ44へと導かれる。検査ヘッド41および図2に全体を示すバンドルファイバ43は、当該バンドルファイバ43が接続された採光ヘッド42にて取り込まれた光を、光量センサ44へと導く測定光学系である。また、当該検査ヘッド41および他のバンドルファイバ43は、他のバンドルファイバ43が接続された他の採光ヘッド42にて取り込まれた光を、光量センサ44へと導く他の測定光学系である。検査ヘッド41は、複数の測定光学系により共有される。   The inspection head 41 includes an integrator (for example, a quartz rod) and a lens that are fixed to the housing of the inspection head 41. The light taken in by the daylighting head 42 is guided to the inspection head 41 via the bundle fiber 43 connected to the daylighting head 42, and the uniformity of the illuminance distribution is improved by the inspection head 41 to the light amount sensor 44. It is guided. The inspection fiber 41 and the bundle fiber 43 shown in FIG. 2 as a whole is a measurement optical system that guides the light taken in by the daylighting head 42 to which the bundle fiber 43 is connected to the light amount sensor 44. The inspection head 41 and the other bundle fiber 43 are other measurement optical systems that guide the light taken in by the other daylighting head 42 to which the other bundle fiber 43 is connected to the light amount sensor 44. The inspection head 41 is shared by a plurality of measurement optical systems.

図1に示すように、採光ヘッド移動機構45は、複数の採光ヘッド42を複数の描画ヘッド31に対して相対的に移動する。図1に示す例では、採光ヘッド移動機構45により、複数の採光ヘッド42が上下方向(すなわち、Z方向)に同時に移動する。これにより、複数の採光ヘッド42が、図2に示すように複数の描画ヘッド31の光路上にそれぞれ挿入され、また、当該光路上からそれぞれ離脱する。図2では、光路上から離脱した位置における採光ヘッド42を二点鎖線にて描く。図2では、採光ヘッド移動機構45の図示を省略する。採光ヘッド移動機構45としては、例えば、エアシリンダが利用される。   As shown in FIG. 1, the lighting head moving mechanism 45 moves the plurality of lighting heads 42 relative to the plurality of drawing heads 31. In the example shown in FIG. 1, the plurality of daylighting heads 42 are simultaneously moved in the vertical direction (that is, the Z direction) by the daylighting head moving mechanism 45. Thereby, the plurality of daylighting heads 42 are respectively inserted on the optical paths of the plurality of drawing heads 31 as shown in FIG. In FIG. 2, the daylighting head 42 at a position separated from the optical path is drawn with a two-dot chain line. In FIG. 2, the illustration of the daylighting head moving mechanism 45 is omitted. As the lighting head moving mechanism 45, for example, an air cylinder is used.

上述のように、光量センサ44はステージ21上に配置される。図1に示すように、光量センサ44の受光面441は、ステージ21上に保持された基板9の上面91と、Z方向に関しておよそ同じ位置に位置する。描画装置1では、移動機構22によりステージ21がX方向およびY方向に移動することにより、光量センサ44もX方向およびY方向に移動する。   As described above, the light amount sensor 44 is disposed on the stage 21. As shown in FIG. 1, the light receiving surface 441 of the light amount sensor 44 is positioned at approximately the same position as the upper surface 91 of the substrate 9 held on the stage 21 with respect to the Z direction. In the drawing apparatus 1, when the stage 21 is moved in the X direction and the Y direction by the moving mechanism 22, the light quantity sensor 44 is also moved in the X direction and the Y direction.

検査部4は、描画部3の描画ヘッド31の異常を検出するヘッド異常検出部をさらに備える。図4は、ヘッド異常検出部46の機能を示すブロック図である。ヘッド異常検出部46は、各種演算処理を行うCPU、基本プログラムを記憶するROM、および、各種情報を記憶するRAM等をバスラインに接続した一般的なコンピュータシステムの構成となっている。ヘッド異常検出部46は、異常検出部461と、もう1つの異常検出部462とを備える。以下の説明では、異常検出部461,462を区別するために、それぞれ「第1異常検出部461」および「第2異常検出部462」と呼ぶ。図4では、ヘッド異常検出部46に接続される描画装置1の他の構成も併せて示す。   The inspection unit 4 further includes a head abnormality detection unit that detects an abnormality of the drawing head 31 of the drawing unit 3. FIG. 4 is a block diagram illustrating functions of the head abnormality detection unit 46. The head abnormality detection unit 46 has a general computer system configuration in which a CPU that performs various arithmetic processes, a ROM that stores basic programs, a RAM that stores various information, and the like are connected to a bus line. The head abnormality detection unit 46 includes an abnormality detection unit 461 and another abnormality detection unit 462. In the following description, in order to distinguish the abnormality detection units 461 and 462, they are referred to as “first abnormality detection unit 461” and “second abnormality detection unit 462”, respectively. In FIG. 4, another configuration of the drawing apparatus 1 connected to the head abnormality detection unit 46 is also shown.

次に、描画装置1における複数の描画ヘッド31の検査の流れについて、図5を参照しつつ説明する。描画装置1では、まず、移動機構22によりステージ21が移動され、図6に示すように、光量センサ44が、最も(+X)側の描画ヘッド31の真下(すなわち、(−Z)側)に位置する(ステップS11)。以下の説明では、図6に示す光量センサ44の位置を「描画光量測定位置」という。描画光量測定位置は、最も(+X)側に位置する描画ヘッド31に対して相対的に定められた位置である。   Next, the flow of inspection of a plurality of drawing heads 31 in the drawing apparatus 1 will be described with reference to FIG. In the drawing apparatus 1, first, the stage 21 is moved by the moving mechanism 22, and as shown in FIG. 6, the light amount sensor 44 is directly below the (+ X) side drawing head 31 (that is, (−Z) side). Located (step S11). In the following description, the position of the light amount sensor 44 shown in FIG. 6 is referred to as a “drawing light amount measurement position”. The drawing light amount measurement position is a position determined relatively to the drawing head 31 located on the most (+ X) side.

光量センサ44が描画光量測定位置に位置すると、図2に示す最も(+X)側の描画ヘッド31の光源32が点灯され、光源32からの光が照明光学系33、空間光変調デバイス34および投影光学系35を介して、図6に示す描画光量測定位置に位置する光量センサ44へと導かれる。光量センサ44では、投影光学系35からの光が受光され、当該光の光量が取得される(ステップS12)。以下の説明では、描画光量測定位置に位置する光量センサ44により受光される投影光学系35からの光の光量(すなわち、照度)を「描画光量」という。描画ヘッド31では、描画光量が所定の目標光量(例えば、基板9にパターンを描画する際の光量)に等しくなるように、光源32に供給される電流が調整される。   When the light quantity sensor 44 is positioned at the drawing light quantity measurement position, the light source 32 of the most (+ X) drawing head 31 shown in FIG. 2 is turned on, and the light from the light source 32 is illuminated with the illumination optical system 33, the spatial light modulation device 34, and the projection. The light is guided through the optical system 35 to the light quantity sensor 44 located at the drawing light quantity measurement position shown in FIG. The light amount sensor 44 receives light from the projection optical system 35 and acquires the light amount of the light (step S12). In the following description, the light amount (that is, illuminance) of light from the projection optical system 35 received by the light amount sensor 44 positioned at the drawing light amount measurement position is referred to as “drawing light amount”. In the drawing head 31, the current supplied to the light source 32 is adjusted so that the drawing light amount becomes equal to a predetermined target light amount (for example, the light amount when drawing a pattern on the substrate 9).

図6中の最も(+X)側の描画ヘッド31の描画光量が取得されると、第2移動機構24により光量センサ44がステージ21と共に(−X)方向へと移動し、3つの描画ヘッド31のうち中央の描画ヘッド31の真下に位置する。換言すれば、光量センサ44は、次の描画ヘッド31の描画光量測定位置に位置する(ステップS13,S11)。光量センサ44が次の描画光量測定位置に位置すると、中央の描画ヘッド31の光源32が点灯され、当該描画ヘッド31の投影光学系35からの光が光量センサ44により受光され、当該光の光量である描画光量が取得される(ステップS12)。そして、描画光量が上述の目標光量に等しくなるように、光源32に供給される電流が調整される。   When the drawing light amount of the most (+ X) drawing head 31 in FIG. 6 is acquired, the light amount sensor 44 is moved in the (−X) direction together with the stage 21 by the second moving mechanism 24, and the three drawing heads 31 are moved. Among them, it is located directly below the central drawing head 31. In other words, the light quantity sensor 44 is located at the drawing light quantity measurement position of the next drawing head 31 (steps S13 and S11). When the light amount sensor 44 is positioned at the next drawing light amount measurement position, the light source 32 of the central drawing head 31 is turned on, and the light from the projection optical system 35 of the drawing head 31 is received by the light amount sensor 44. Is obtained (step S12). Then, the current supplied to the light source 32 is adjusted so that the drawing light amount becomes equal to the target light amount.

描画装置1では、複数の描画ヘッド31に対応する複数の描画光量測定位置へと光量センサ44が順次移動し、複数の描画ヘッド31の描画光量が順次取得され、描画光量が目標光量に等しくなるように、光源32に供給される電流が調整される(ステップS11〜S13)。複数の描画ヘッド31のそれぞれの描画光量は、光量センサ44から図4に示すヘッド異常検出部46の第1異常検出部461へと送られる。第1異常検出部461に送られる複数の描画ヘッド31の描画光量は、目標光量におよそ等しい。   In the drawing apparatus 1, the light quantity sensor 44 sequentially moves to a plurality of drawing light quantity measurement positions corresponding to the plurality of drawing heads 31, the drawing light quantities of the plurality of drawing heads 31 are sequentially acquired, and the drawing light quantity becomes equal to the target light quantity. As described above, the current supplied to the light source 32 is adjusted (steps S11 to S13). The respective drawing light amounts of the plurality of drawing heads 31 are sent from the light amount sensor 44 to the first abnormality detection unit 461 of the head abnormality detection unit 46 shown in FIG. The drawing light amounts of the plurality of drawing heads 31 sent to the first abnormality detection unit 461 are approximately equal to the target light amount.

複数の描画ヘッド31の描画光量が取得されると、第2移動機構24により光量センサ44が(+X)方向へと移動し、図1および図2に示すように、検査ヘッド41の真下(すなわち、(−Z)側)に位置する(ステップS14)。以下の説明では、図1および図2に示す光量センサ44の位置を「中間光量測定位置」という。中間光量測定位置は、検査ヘッド41に対して予め定められた相対位置である。   When the drawing light amounts of the plurality of drawing heads 31 are acquired, the light amount sensor 44 is moved in the (+ X) direction by the second moving mechanism 24, and as shown in FIGS. , (−Z) side) (step S14). In the following description, the position of the light quantity sensor 44 shown in FIGS. 1 and 2 is referred to as “intermediate light quantity measurement position”. The intermediate light quantity measurement position is a predetermined relative position with respect to the inspection head 41.

描画装置1では、中間光量測定位置、および、複数の描画ヘッド31にそれぞれ対応する複数の描画光量測定位置は、X方向に平行な略直線上に配置される。第2移動機構24は、ステージ21を検査ヘッド41および複数の描画ヘッド31に対してX方向に相対的に移動することにより、光量センサ44を中間光量測定位置と複数の描画光量測定位置との間で移動するセンサ移動機構である。   In the drawing apparatus 1, the intermediate light quantity measurement positions and the plurality of drawing light quantity measurement positions respectively corresponding to the plurality of drawing heads 31 are arranged on a substantially straight line parallel to the X direction. The second moving mechanism 24 moves the stage 21 relative to the inspection head 41 and the plurality of drawing heads 31 in the X direction, thereby causing the light quantity sensor 44 to move between the intermediate light quantity measurement position and the plurality of drawing light quantity measurement positions. It is a sensor movement mechanism which moves between.

光量センサ44が中間光量測定位置に位置すると、採光ヘッド移動機構45により各採光ヘッド42が下降し、図2に実線にて示すように、対応する描画ヘッド31の光路上に挿入される(ステップS15)。そして、複数の描画ヘッド31のうち1つの描画ヘッド31において光源32が点灯され、他の描画ヘッド31では光源32が消灯される。例えば、最も(+X)側の描画ヘッド31の光源32のみが点灯され、他の描画ヘッド31の光源32は消灯される。そして、光源32が点灯された描画ヘッド31の光路上に挿入された採光ヘッド42により、当該光源32からの光の一部が取り込まれる。採光ヘッド42により取り込まれた光は、当該採光ヘッド42に対応する測定光学系(すなわち、当該採光ヘッド42に接続されたバンドルファイバ43および検査ヘッド41)により、中間光量測定位置に位置する光量センサ44へと導かれ、当該光量センサ44により受光される。以下の説明では、中間光量測定位置に位置する光量センサ44により受光される測定光学系からの光の光量(すなわち、照度)を「中間光量」という。   When the light quantity sensor 44 is positioned at the intermediate light quantity measurement position, each daylighting head 42 is lowered by the daylighting head moving mechanism 45 and is inserted on the optical path of the corresponding drawing head 31 as shown by the solid line in FIG. S15). The light source 32 is turned on in one of the drawing heads 31 and the light source 32 is turned off in the other drawing heads 31. For example, only the light source 32 of the most (+ X) drawing head 31 is turned on, and the light sources 32 of the other drawing heads 31 are turned off. Then, a part of the light from the light source 32 is taken in by the daylighting head 42 inserted on the optical path of the drawing head 31 in which the light source 32 is turned on. The light taken in by the daylighting head 42 is measured by the measurement optical system corresponding to the daylighting head 42 (that is, the bundle fiber 43 and the inspection head 41 connected to the daylighting head 42). 44 and is received by the light quantity sensor 44. In the following description, the light amount (that is, illuminance) of light from the measurement optical system received by the light amount sensor 44 located at the intermediate light amount measurement position is referred to as “intermediate light amount”.

最も(+X)側の描画ヘッド31の中間光量が取得されると、3つの描画ヘッド31のうち中央の描画ヘッド31の光源32が点灯され、他の描画ヘッド31の光源32は消灯される。そして、上記と同様に、中央の描画ヘッド31の光路上に挿入された中央の採光ヘッド42により、当該描画ヘッド31の光源32からの光の一部が取り込まれる。採光ヘッド42により取り込まれた光は、当該採光ヘッド42に対応する測定光学系により、中間光量測定位置に位置する光量センサ44へと導かれる。測定光学系からの光は光量センサ44により受光され、これにより中央の描画ヘッド31の中間光量が取得される。   When the intermediate light amount of the most (+ X) drawing head 31 is acquired, the light source 32 of the central drawing head 31 among the three drawing heads 31 is turned on, and the light sources 32 of the other drawing heads 31 are turned off. Similarly to the above, a part of the light from the light source 32 of the drawing head 31 is taken in by the central lighting head 42 inserted on the optical path of the central drawing head 31. The light taken in by the daylighting head 42 is guided to the light quantity sensor 44 located at the intermediate light quantity measurement position by the measurement optical system corresponding to the daylighting head 42. The light from the measurement optical system is received by the light quantity sensor 44, whereby the intermediate light quantity of the central drawing head 31 is acquired.

描画装置1では、複数の描画ヘッド31のそれぞれについて、上記の手順にて、中間光量が順次取得される(ステップS16)。複数の描画ヘッド31について中間光量が順次取得される間、光量センサ44は中間光量測定位置から移動しない。複数の描画ヘッド31のそれぞれの中間光量は、図4に示すヘッド異常検出部46の第1異常検出部461および第2異常検出部462へと送られる。各描画ヘッド31の中間光量は描画光量以下である。各描画ヘッド31において、中間光量は、例えば、描画光量の10%以上100%以下である。なお、複数の描画ヘッド31の中間光量は、必ずしも互いに等しい必要はない。   In the drawing apparatus 1, the intermediate light amount is sequentially acquired for each of the plurality of drawing heads 31 according to the above procedure (step S <b> 16). While the intermediate light amount is sequentially acquired for the plurality of drawing heads 31, the light amount sensor 44 does not move from the intermediate light amount measurement position. The intermediate light amounts of the plurality of drawing heads 31 are sent to the first abnormality detection unit 461 and the second abnormality detection unit 462 of the head abnormality detection unit 46 shown in FIG. The intermediate light amount of each drawing head 31 is less than the drawing light amount. In each drawing head 31, the intermediate light amount is, for example, 10% or more and 100% or less of the drawing light amount. Note that the intermediate light amounts of the plurality of drawing heads 31 are not necessarily equal to each other.

各描画ヘッド31の中間光量の取得が終了すると、採光ヘッド移動機構45により複数の採光ヘッド42が上昇し、複数の描画ヘッド31の光路上から離脱する(ステップS17)。そして、ヘッド異常検出部46の第1異常検出部461により、各描画ヘッド31の中間光量と描画光量とに基づいて、各描画ヘッド31の異常が検出される。具体的には、まず、光量センサ44からの出力に基づいて、描画ヘッド31の描画光量の中間光量に対する割合(以下、「測定光量割合」という。)が、第1異常検出部461により求められる。第1異常検出部461には、描画ヘッド31が正常な状態における測定光量割合である基準光量割合が予め記憶されている。   When the acquisition of the intermediate light amount of each drawing head 31 is completed, the plurality of daylighting heads 42 are raised by the daylighting head moving mechanism 45 and are separated from the optical paths of the plurality of drawing heads 31 (step S17). Then, the first abnormality detection unit 461 of the head abnormality detection unit 46 detects the abnormality of each drawing head 31 based on the intermediate light amount and the drawing light amount of each drawing head 31. Specifically, first, based on the output from the light amount sensor 44, a ratio of the drawing light amount of the drawing head 31 to the intermediate light amount (hereinafter referred to as “measured light amount ratio”) is obtained by the first abnormality detection unit 461. . The first abnormality detection unit 461 stores in advance a reference light amount ratio that is a measured light amount ratio when the drawing head 31 is in a normal state.

第1異常検出部461では、測定光量割合が基準光量割合よりも小さくなると、描画ヘッド31における採光ヘッド42の挿入位置よりも後の構成に、経年劣化や異物の付着等に起因する光学特性の劣化が生じていると判定される。採光ヘッド42の挿入位置よりも後の構成とは、投影光学系35、および、当該挿入位置と投影光学系35との間の構成である。図2に示す例では、照明光学系33のレンズ332およびミラー333、空間光変調デバイス34、並びに、投影光学系35である。第1異常検出部461では、測定光量割合が基準光量割合よりも所定の値(例えば、基準光量割合の10%)以上小さくなると、描画ヘッド31の採光ヘッド42の挿入位置よりも後の構成における光学特性の異常が検出される。第1異常検出部461により検出される描画ヘッド31の異常は、主に、光を空間変調させるために頻繁に駆動される空間光変調デバイス34の異常である。第1異常検出部461により検出された描画ヘッド31の異常は、モニタへの表示や警告音等の通知手段により作業者に通知される。   In the first abnormality detection unit 461, when the measured light amount ratio becomes smaller than the reference light amount ratio, the optical characteristics due to aging deterioration, adhesion of foreign matters, etc. are added to the configuration after the insertion position of the lighting head 42 in the drawing head 31. It is determined that deterioration has occurred. The configuration after the insertion position of the daylighting head 42 is a configuration of the projection optical system 35 and between the insertion position and the projection optical system 35. In the example illustrated in FIG. 2, the lens 332 and the mirror 333 of the illumination optical system 33, the spatial light modulation device 34, and the projection optical system 35. In the first abnormality detection unit 461, when the measured light amount ratio is smaller than the reference light amount ratio by a predetermined value (for example, 10% of the reference light amount ratio) or more, the first abnormality detection unit 461 has a configuration after the insertion position of the lighting head 42 of the drawing head 31. Abnormal optical properties are detected. The abnormality of the drawing head 31 detected by the first abnormality detection unit 461 is mainly an abnormality of the spatial light modulation device 34 that is frequently driven to spatially modulate light. The abnormality of the drawing head 31 detected by the first abnormality detection unit 461 is notified to the operator by notification means such as a display on a monitor or a warning sound.

ヘッド異常検出部46では、また、第2異常検出部462により、各描画ヘッド31の中間光量と、各描画ヘッド31の光源32に供給される電流とに基づいて、各描画ヘッド31の異常が検出される(ステップS18)。具体的には、まず、光量センサ44からの出力に基づいて、中間光量と理想光量との比較が行われる。理想光量としては、電流および時間を変数とした理想劣化関数が予め定められている。中間光量を測定する際には、光源32に供給される電流は一定値であるため、理想光量は時間を変数とした関数となる。中間光量も、同様に、時間を変数とした関数にて表し、理想光量に対する中間光量の割合が求められる。そして、当該割合が所定の値(例えば、10%)未満となると、描画ヘッド31の採光ヘッド42の挿入位置よりも手前の構成のうち、光源32を除く構成(すなわち、照明光学系33)における光学特性の異常が検出される。第2異常検出部462により検出された異常は、モニタへの表示や警告音等の通知手段により作業者に通知される。なお、中間光量と理想光量との比較は、描画光量が目標光量に等しくなるように光源32に供給される電流が調整されていない状態で行われてもよい。   In the head abnormality detection unit 46, the abnormality of each drawing head 31 is detected based on the intermediate light amount of each drawing head 31 and the current supplied to the light source 32 of each drawing head 31 by the second abnormality detection unit 462. It is detected (step S18). Specifically, first, the intermediate light amount and the ideal light amount are compared based on the output from the light amount sensor 44. As the ideal light quantity, an ideal deterioration function with current and time as variables is determined in advance. When measuring the intermediate light quantity, since the current supplied to the light source 32 is a constant value, the ideal light quantity is a function with time as a variable. Similarly, the intermediate light amount is also expressed by a function with time as a variable, and the ratio of the intermediate light amount to the ideal light amount is obtained. When the ratio is less than a predetermined value (for example, 10%), the configuration excluding the light source 32 (that is, the illumination optical system 33) in the configuration before the insertion position of the lighting head 42 of the drawing head 31 is used. Abnormal optical properties are detected. The abnormality detected by the second abnormality detection unit 462 is notified to the operator by a notification means such as a display on a monitor or a warning sound. Note that the comparison between the intermediate light amount and the ideal light amount may be performed in a state where the current supplied to the light source 32 is not adjusted so that the drawing light amount becomes equal to the target light amount.

また、第2異常検出部462では、描画光量が目標光量に等しくなるように調整された後の電流値(光源32に供給される電流)と、光源32に係る最大定格電流とが比較される。そして、光源32に供給される電流が、最大定格電流を基準として、ある程度以上大きい場合、光源32の異常が検出され、モニタへの表示や警告音等の通知手段により作業者に通知される。光源32の異常の通知は、例えば、光源32に供給される電流の大きさに基づいて、「サービスコール」および「要交換」の2段階に分けられてもよい。   In addition, the second abnormality detection unit 462 compares the current value (current supplied to the light source 32) after the drawing light amount is adjusted to be equal to the target light amount with the maximum rated current associated with the light source 32. . When the current supplied to the light source 32 is larger than a certain level with respect to the maximum rated current, an abnormality of the light source 32 is detected and notified to the operator by a notification means such as a display on a monitor or a warning sound. The notification of the abnormality of the light source 32 may be divided into two stages of “service call” and “replacement required” based on the magnitude of the current supplied to the light source 32, for example.

以上に説明したように、描画装置1の検査部4は、描画光量測定位置に位置する際に描画ヘッド31の投影光学系35からの光を受光する光量センサ44と、光量センサ44を描画光量測定位置と中間光量測定位置との間で移動する第2移動機構24と、描画ヘッド31の光路上に挿入されて光源32から空間光変調デバイス34へと向かう光の少なくとも一部を取り込む採光ヘッド42と、採光ヘッド42にて取り込まれた光を中間光量測定位置に位置する光量センサ44へと導く測定光学系(すなわち、バンドルファイバ43および検査ヘッド41)と、採光ヘッド42を上記光路上に挿入し、また、当該光路上から離脱させる採光ヘッド移動機構45とを備える。   As described above, the inspection unit 4 of the drawing apparatus 1 uses the light amount sensor 44 that receives light from the projection optical system 35 of the drawing head 31 and the light amount sensor 44 when the drawing light amount measurement position is located. A second moving mechanism 24 that moves between the measurement position and the intermediate light quantity measurement position, and a daylighting head that is inserted on the optical path of the drawing head 31 and captures at least part of the light traveling from the light source 32 toward the spatial light modulation device 34 42, a measurement optical system (that is, the bundle fiber 43 and the inspection head 41) for guiding the light taken in by the daylighting head 42 to the light amount sensor 44 located at the intermediate light amount measurement position, and the daylighting head 42 on the optical path. A daylighting head moving mechanism 45 that is inserted and removed from the optical path is provided.

このように、描画装置1では、描画ヘッド31の投影光学系35からの光の光量と、描画ヘッド31の光源32と空間光変調デバイス34との間から取り出された光の光量とが、同一の光量センサ44にて取得されて比較される。したがって、仮に、光量センサ44の光学特性が変化した場合であっても、当該光学特性の変化は、上述の光量の比較に対して大きな影響を与えない。このため、描画ヘッド31において、採光ヘッド42の挿入位置の前後いずれにて光学特性の劣化が生じているかを精度良く検出することができる。換言すれば、描画装置1では、描画ヘッド31の劣化要因を精度良く検出することができる。   Thus, in the drawing apparatus 1, the amount of light from the projection optical system 35 of the drawing head 31 is the same as the amount of light extracted from between the light source 32 and the spatial light modulation device 34 of the drawing head 31. Obtained by the light quantity sensor 44 and compared. Therefore, even if the optical characteristic of the light quantity sensor 44 is changed, the change in the optical characteristic does not have a great influence on the above-described comparison of the light quantity. For this reason, in the drawing head 31, it is possible to accurately detect whether the optical characteristics are degraded before or after the insertion position of the daylighting head 42. In other words, the drawing apparatus 1 can detect the deterioration factor of the drawing head 31 with high accuracy.

また、採光ヘッド移動機構45により採光ヘッド42の移動を行うことができるため、描画装置1のハウジング(図示省略)を開放することなく、描画ヘッド31の検査を行うことができる。その結果、ハウジングの開放に伴う描画装置1内の汚染を低減することができる。   Further, since the daylighting head 42 can be moved by the daylighting head moving mechanism 45, the drawing head 31 can be inspected without opening the housing (not shown) of the drawing apparatus 1. As a result, it is possible to reduce contamination in the drawing apparatus 1 due to the opening of the housing.

上述のように、描画装置1では、中間光量および描画光量に基づいて描画ヘッド31の異常を検出する第1異常検出部461を備える。これにより、描画ヘッド31において、採光ヘッド42の挿入位置よりも後の構成における異常(特に、空間光変調デバイス34の異常)を自動的に検出することができる。また、描画装置1では、中間光量と光源32に供給される電流とに基づいて描画ヘッド31の異常を検出する第2異常検出部462を備える。これにより、描画ヘッド31において、採光ヘッド42の挿入位置よりも手前の構成における異常を自動的に検出することができる。   As described above, the drawing apparatus 1 includes the first abnormality detection unit 461 that detects an abnormality of the drawing head 31 based on the intermediate light amount and the drawing light amount. Thereby, in the drawing head 31, an abnormality (particularly, an abnormality of the spatial light modulation device 34) in the configuration after the insertion position of the daylighting head 42 can be automatically detected. Further, the drawing apparatus 1 includes a second abnormality detection unit 462 that detects an abnormality of the drawing head 31 based on the intermediate light amount and the current supplied to the light source 32. Thereby, in the drawing head 31, it is possible to automatically detect an abnormality in the configuration before the insertion position of the daylighting head.

描画装置1では、光量センサ44がステージ21に設けられ、第2移動機構24がステージ21を描画ヘッド31に対して相対的に移動することにより、光量センサ44が中間光量測定位置と描画光量測定位置との間で移動する。これにより、描画装置1の構成を簡素化することができる。   In the drawing apparatus 1, the light amount sensor 44 is provided on the stage 21, and the second moving mechanism 24 moves the stage 21 relative to the drawing head 31, whereby the light amount sensor 44 measures the intermediate light amount measurement position and the drawing light amount measurement. Move between positions. Thereby, the structure of the drawing apparatus 1 can be simplified.

また、上述のように、光量センサ44の受光面441は基板9の上面91と上下方向に関しておよそ同じ位置に位置する。すなわち、各描画ヘッド31の投影光学系35の先端から描画光量測定位置に位置する光量センサ44の受光面441に至る上下方向の距離は、投影光学系35の先端から基板9の上面91に至る上下方向の距離におよそ等しい。したがって、光量センサ44により取得される各描画ヘッド31の描画光量は、基板9への描画の際に各描画ヘッド31の投影光学系35から基板9の上面91に照射される光の光量におよそ等しい。このため、基板9にパターンを描画する際の基板9上の光量を、描画光量測定位置に位置する光量センサ44により容易に測定することができる。そして、描画光量測定位置にて光量センサ44により取得される描画光量を目標光量に調整することにより、描画ヘッド31からの光の基板9上における光量を所望の光量に容易に調整することができる。   Further, as described above, the light receiving surface 441 of the light quantity sensor 44 is located at approximately the same position as the upper surface 91 of the substrate 9 in the vertical direction. That is, the vertical distance from the tip of the projection optical system 35 of each drawing head 31 to the light receiving surface 441 of the light quantity sensor 44 located at the drawing light quantity measurement position extends from the tip of the projection optical system 35 to the upper surface 91 of the substrate 9. Approximately equal to the vertical distance. Therefore, the drawing light amount of each drawing head 31 acquired by the light amount sensor 44 is approximately equal to the light amount irradiated to the upper surface 91 of the substrate 9 from the projection optical system 35 of each drawing head 31 when drawing on the substrate 9. equal. For this reason, the light quantity on the board | substrate 9 at the time of drawing a pattern on the board | substrate 9 can be easily measured by the light quantity sensor 44 located in a drawing light quantity measurement position. Then, by adjusting the drawing light amount acquired by the light amount sensor 44 at the drawing light amount measurement position to the target light amount, the light amount on the substrate 9 of the light from the drawing head 31 can be easily adjusted to a desired light amount. .

描画装置1では、描画ヘッド31の照明光学系33がインテグレータ331を備え、検査部4の採光ヘッド42が、インテグレータ331から空間光変調デバイス34に至る光路上に挿入される。すなわち、採光ヘッド42は、インテグレータ331により均一性が向上された光に挿入される。このため、採光ヘッド42の挿入位置が描画ヘッド31の光軸に垂直な方向に多少ずれた場合であっても、採光ヘッド42により取り込まれて光量センサ44により受光される光の光量の変化が抑制される。これにより、検査部4による描画ヘッド31の検査精度を向上することができる。   In the drawing apparatus 1, the illumination optical system 33 of the drawing head 31 includes an integrator 331, and the daylighting head 42 of the inspection unit 4 is inserted on the optical path from the integrator 331 to the spatial light modulation device 34. That is, the daylighting head 42 is inserted into the light whose uniformity is improved by the integrator 331. For this reason, even when the insertion position of the daylighting head 42 is slightly shifted in the direction perpendicular to the optical axis of the drawing head 31, the change in the amount of light captured by the daylighting head 42 and received by the light amount sensor 44 is changed. It is suppressed. Thereby, the test | inspection precision of the drawing head 31 by the test | inspection part 4 can be improved.

上述のように、各描画ヘッド31では、光源32から出射される光が紫外光である。このため、照明光学系33、空間光変調デバイス34および投影光学系35の各構成の劣化が比較的早くなる。したがって、描画ヘッド31の劣化要因を精度良く検出することができる描画装置1の上記構造は、光源から出射される光が紫外光である描画装置に特に適している。   As described above, in each drawing head 31, the light emitted from the light source 32 is ultraviolet light. For this reason, deterioration of each component of the illumination optical system 33, the spatial light modulation device 34, and the projection optical system 35 becomes relatively quick. Therefore, the above-described structure of the drawing apparatus 1 that can accurately detect the deterioration factor of the drawing head 31 is particularly suitable for a drawing apparatus in which the light emitted from the light source is ultraviolet light.

描画装置1では、上述のように、光量センサ44にて受光される中間光量が描画光量の10%以上100%以下である。このように、中間光量を適切な光量範囲とすることにより、描画ヘッド31の検査を精度良く行うことができる。また、検査部4は、中間光量が描画光量の10%以上100%以下となる光量範囲において、描画装置1とは投影光学系35の倍率が異なる他の描画装置に適用することができる。換言すれば、検査部4は、投影光学系35の倍率が互いに異なる複数種類の描画装置にそれぞれ適用することができる。   In the drawing apparatus 1, as described above, the intermediate light amount received by the light amount sensor 44 is 10% or more and 100% or less of the drawing light amount. In this way, the drawing head 31 can be inspected with high accuracy by setting the intermediate light amount to an appropriate light amount range. In addition, the inspection unit 4 can be applied to other drawing apparatuses in which the magnification of the projection optical system 35 is different from that of the drawing apparatus 1 in a light amount range in which the intermediate light amount is 10% to 100% of the drawing light amount. In other words, the inspection unit 4 can be applied to each of a plurality of types of drawing apparatuses having different projection optical system 35 magnifications.

上述のように、描画部3に複数の描画ヘッド31が設けられ、検査部4が、各描画ヘッド31に対応する採光ヘッド42および測定光学系を備える。そして、複数の測定光学系が検査ヘッド41を共有し、各採光ヘッド42にて取り込まれた光が、中間光量測定位置に位置する光量センサ44へと導かれる。これにより、検査部4の構造を簡素化することができる。また、複数の描画ヘッド31の中間光量を、光量センサ44を移動させることなく取得することができるため、複数の描画ヘッド31の検査に要する時間を短縮することもできる。さらには、中間光量測定位置および複数の描画光量測定位置が直線上に配置されるため、複数の描画ヘッド31を検査する際に、光量センサ44の移動を簡素化することができる。   As described above, the drawing unit 3 is provided with a plurality of drawing heads 31, and the inspection unit 4 includes a lighting head 42 and a measurement optical system corresponding to each drawing head 31. A plurality of measurement optical systems share the inspection head 41, and the light taken in by each daylighting head 42 is guided to the light amount sensor 44 located at the intermediate light amount measurement position. Thereby, the structure of the test | inspection part 4 can be simplified. Further, since the intermediate light amount of the plurality of drawing heads 31 can be acquired without moving the light amount sensor 44, the time required for the inspection of the plurality of drawing heads 31 can be shortened. Furthermore, since the intermediate light quantity measurement position and the plurality of drawing light quantity measurement positions are arranged on a straight line, the movement of the light quantity sensor 44 can be simplified when inspecting the plurality of drawing heads 31.

描画装置1では、様々な変更が可能である。   In the drawing apparatus 1, various changes can be made.

例えば、光量センサ44は、必ずしもステージ21上に設けられる必要はなく、ステージ21から独立して設けられてもよい。また、ステージ21を相対移動する移動機構22から独立して光量センサ44を移動するセンサ移動機構が、描画装置1に設けられてもよい。   For example, the light quantity sensor 44 is not necessarily provided on the stage 21 and may be provided independently of the stage 21. In addition, a sensor moving mechanism that moves the light amount sensor 44 independently of the moving mechanism 22 that relatively moves the stage 21 may be provided in the drawing apparatus 1.

検査部4では、複数の描画ヘッド31と同数の複数の検査ヘッド41が設けられてもよい。各検査ヘッド41は、例えば、対応する描画ヘッド31の(+X)側において、当該描画ヘッド31に対して相対的に定められた位置に配置される。すなわち、複数の描画ヘッド31と複数の検査ヘッド41とが、X方向において交互に配置される。そして、光量センサ44がX方向に移動しつつ、各描画ヘッド31の描画光量および中間光量が順次取得される。これにより、描画ヘッド31と検査ヘッド41との複数の組み合わせにおいて、描画ヘッド31と検査ヘッド41とを接続するバンドルファイバ43の長さをおよそ同じとすることができる。   In the inspection unit 4, the same number of inspection heads 41 as the plurality of drawing heads 31 may be provided. Each inspection head 41 is arranged at a position determined relative to the drawing head 31 on the (+ X) side of the corresponding drawing head 31, for example. That is, the plurality of drawing heads 31 and the plurality of inspection heads 41 are alternately arranged in the X direction. Then, the drawing light amount and the intermediate light amount of each drawing head 31 are sequentially acquired while the light amount sensor 44 moves in the X direction. Thereby, in a plurality of combinations of the drawing head 31 and the inspection head 41, the lengths of the bundle fibers 43 that connect the drawing head 31 and the inspection head 41 can be made approximately the same.

描画装置1では、光量センサ44は描画ヘッド31および検査ヘッド41に対して相対的に移動すればよい。例えば、光量センサ44が移動することなく、描画ヘッド31および検査ヘッド41が光量センサ44の上方にてX方向に移動してもよい。この場合、検査ヘッド41が光量センサ44の真上に位置する状態が、光量センサ44が中間光量測定位置に位置する状態である。また、描画ヘッド31が光量センサ44の真上に位置する状態が、光量センサ44が描画光量測定位置に位置する状態である。   In the drawing apparatus 1, the light amount sensor 44 may be moved relative to the drawing head 31 and the inspection head 41. For example, the drawing head 31 and the inspection head 41 may move in the X direction above the light amount sensor 44 without moving the light amount sensor 44. In this case, the state where the inspection head 41 is positioned directly above the light amount sensor 44 is the state where the light amount sensor 44 is positioned at the intermediate light amount measurement position. The state in which the drawing head 31 is positioned directly above the light amount sensor 44 is the state in which the light amount sensor 44 is positioned at the drawing light amount measurement position.

採光ヘッド42は、必ずしもインテグレータ331の直後に挿入される必要はなく、インテグレータ331から空間光変調デバイス34に至る光路上に挿入されるのであればよい。ただし、上述のように、採光ヘッド42をインテグレータ331の直後に挿入することにより、採光ヘッド42の挿入位置が描画ヘッド31の光軸に垂直な方向に多少ずれた場合であっても、採光ヘッド42により取り込まれて光量センサ44により受光される光の光量の変化が抑制される。その結果、検査部4による描画ヘッド31の検査精度を向上することができる。   The daylighting head 42 does not necessarily need to be inserted immediately after the integrator 331, and may be inserted on the optical path from the integrator 331 to the spatial light modulation device 34. However, as described above, even if the insertion position of the daylighting head 42 is slightly shifted in the direction perpendicular to the optical axis of the drawing head 31 by inserting the daylighting head 42 immediately after the integrator 331, the daylighting head 42 The change in the amount of light taken in by 42 and received by the light amount sensor 44 is suppressed. As a result, the inspection accuracy of the drawing head 31 by the inspection unit 4 can be improved.

採光ヘッド42は、光源32から空間光変調デバイス34に至る光路上に挿入されるのであれば、必ずしも、インテグレータ331から空間光変調デバイス34に至る光路上に挿入される必要はない。この場合であっても、上述のように、描画ヘッド31の劣化要因を精度良く検出することができる。   If the lighting head 42 is inserted on the optical path from the light source 32 to the spatial light modulation device 34, it is not always necessary to be inserted on the optical path from the integrator 331 to the spatial light modulation device 34. Even in this case, as described above, the deterioration factor of the drawing head 31 can be detected with high accuracy.

複数の採光ヘッド42は、必ずしも同時に上下方向に移動する必要はない。例えば、各採光ヘッド42に採光ヘッド移動機構45が設けられ、複数の採光ヘッド42が互いに独立して上下方向に移動してもよい。換言すれば、各採光ヘッド42の光路への挿入および離脱は、他の採光ヘッド42から独立して行われてもよい。   The plurality of daylighting heads 42 are not necessarily required to move in the vertical direction at the same time. For example, each daylighting head 42 may be provided with a daylighting head moving mechanism 45, and the plurality of daylighting heads 42 may move in the vertical direction independently of each other. In other words, each lighting head 42 may be inserted into and removed from the optical path independently from the other lighting heads 42.

検査部4では、複数の描画ヘッド31に対して1つの採光ヘッド42のみが設けられてもよい。この場合、採光ヘッド42をX方向に移動して測定対象の描画ヘッド31の真上に位置させ、採光ヘッド42を下降させることにより、当該描画ヘッド31の光路上に採光ヘッド42が挿入される。   In the inspection unit 4, only one lighting head 42 may be provided for the plurality of drawing heads 31. In this case, the daylighting head 42 is inserted into the optical path of the drawing head 31 by moving the daylighting head 42 in the X direction to be positioned right above the drawing head 31 to be measured and lowering the daylighting head 42. .

光源32はLEDには限定されず、例えば、LD(Laser Diode)や高圧水銀灯等が光源32として利用されてもよい。光源32として高圧水銀灯が用いられる場合、描画ヘッド31では、光源32に供給される電力が調整される。そして、ステップS18において、第2異常検出部462により、各描画ヘッド31の中間光量と、各描画ヘッド31の光源32に供給される電力とに基づいて、各描画ヘッド31の異常が検出される。描画装置1では、ヘッド異常検出部46による描画ヘッド31の異常の自動検出に代えて、光量センサ44から出力される中間光量および描画光量、並びに、光源32に供給される電流または電力に基づいて、作業者が描画ヘッド31の異常を検出してもよい。   The light source 32 is not limited to the LED. For example, an LD (Laser Diode), a high-pressure mercury lamp, or the like may be used as the light source 32. When a high pressure mercury lamp is used as the light source 32, the power supplied to the light source 32 is adjusted in the drawing head 31. In step S <b> 18, the second abnormality detection unit 462 detects an abnormality of each drawing head 31 based on the intermediate light amount of each drawing head 31 and the power supplied to the light source 32 of each drawing head 31. . In the drawing apparatus 1, instead of automatic detection of the abnormality of the drawing head 31 by the head abnormality detection unit 46, based on the intermediate light amount and drawing light amount output from the light amount sensor 44, and the current or power supplied to the light source 32. An operator may detect an abnormality in the drawing head 31.

各描画ヘッド31では、DMDに代えて、例えばGLV(グレーチング・ライト・バルブ)(登録商標)が空間光変調デバイス34として設けられてもよい。描画部3には、1つの描画ヘッド31のみが設けられてもよい。   In each drawing head 31, instead of the DMD, for example, a GLV (Grating Light Valve) (registered trademark) may be provided as the spatial light modulation device 34. Only one drawing head 31 may be provided in the drawing unit 3.

描画装置1において描画が行われる基板9は、必ずしもプリント配線基板には限定されない。描画装置1では、例えば、半導体基板、液晶表示装置やプラズマ表示装置等のフラットパネル表示装置用のガラス基板、フォトマスク用のガラス基板、太陽電池パネル用の基板等に対する回路パターンの描画が行われてもよい。   The board 9 on which drawing is performed in the drawing apparatus 1 is not necessarily limited to a printed wiring board. In the drawing apparatus 1, for example, a circuit pattern is drawn on a semiconductor substrate, a glass substrate for a flat panel display device such as a liquid crystal display device or a plasma display device, a glass substrate for a photomask, a substrate for a solar cell panel, or the like. May be.

上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。   The configurations in the above-described embodiments and modifications may be combined as appropriate as long as they do not contradict each other.

1 描画装置
4 検査部
9 基板
21 ステージ
22 移動機構
23 第1移動機構
24 第2移動機構
31 描画ヘッド
32 光源
33 照明光学系
34 空間光変調デバイス
35 投影光学系
41 検査ヘッド
42 採光ヘッド
43 バンドルファイバ
44 光量センサ
45 採光ヘッド移動機構
91 上面
331 インテグレータ
343 微小鏡面
441 受光面
461 第1異常検出部
462 第2異常検出部
S11〜S18 ステップ
DESCRIPTION OF SYMBOLS 1 Drawing apparatus 4 Inspection | inspection part 9 Board | substrate 21 Stage 22 Movement mechanism 23 1st movement mechanism 24 2nd movement mechanism 31 Drawing head 32 Light source 33 Illumination optical system 34 Spatial light modulation device 35 Projection optical system 41 Inspection head 42 Light collection head 43 Bundle fiber 44 Light quantity sensor 45 Daylighting head moving mechanism 91 Upper surface 331 Integrator 343 Micro mirror surface 441 Light receiving surface 461 First abnormality detection unit 462 Second abnormality detection unit S11 to S18 Steps

Claims (10)

対象物に光を照射してパターンの描画を行う描画装置であって、
対象物に空間変調された光を照射する描画ヘッドと、
前記対象物を保持するとともに前記描画ヘッドに対して相対的に移動することにより前記描画ヘッドからの光の照射領域を前記対象物上にて走査する保持部と、
前記描画ヘッドの検査を行う検査部と、
を備え、
前記描画ヘッドが、
光を出射する光源と、
空間光変調デバイスと、
前記光源からの光を前記空間光変調デバイスへと導く照明光学系と、
前記空間光変調デバイスにて空間変調された光を前記保持部へと導く投影光学系と、
を備え、
前記検査部が、
前記描画ヘッドに対して相対的に定められた描画光量測定位置に位置する際に前記投影光学系からの光を受光する光量センサと、
前記光量センサを前記描画光量測定位置と予め定められた中間光量測定位置との間で移動するセンサ移動機構と、
前記光源から前記空間光変調デバイスに至る光路上に挿入されて前記光源から前記空間光変調デバイスへと向かう光の少なくとも一部を取り込む採光ヘッドと、
前記採光ヘッドにて取り込まれた光を前記中間光量測定位置に位置する前記光量センサへと導く測定光学系と、
前記採光ヘッドを前記光路上に挿入し、また、前記光路上から離脱させる採光ヘッド移動機構と、
を備えることを特徴とする描画装置。
A drawing apparatus that draws a pattern by irradiating a target with light,
A drawing head for irradiating the object with spatially modulated light;
A holding unit that holds the object and scans the irradiation area of the light from the drawing head on the object by moving relative to the drawing head;
An inspection unit for inspecting the drawing head;
With
The drawing head is
A light source that emits light;
A spatial light modulation device;
An illumination optical system for guiding light from the light source to the spatial light modulation device;
A projection optical system for guiding light spatially modulated by the spatial light modulation device to the holding unit;
With
The inspection unit is
A light quantity sensor that receives light from the projection optical system when positioned at a drawing light quantity measurement position determined relative to the drawing head;
A sensor moving mechanism that moves the light quantity sensor between the drawing light quantity measurement position and a predetermined intermediate light quantity measurement position;
A daylighting head that is inserted on an optical path from the light source to the spatial light modulation device and captures at least a part of the light from the light source toward the spatial light modulation device;
A measurement optical system that guides light captured by the daylighting head to the light quantity sensor located at the intermediate light quantity measurement position;
A daylighting head moving mechanism for inserting the daylighting head into the optical path and detaching the daylighting head from the optical path;
A drawing apparatus comprising:
請求項1に記載の描画装置であって、
前記光量センサが前記保持部に設けられ、
前記投影光学系の先端から前記光量センサの受光面に至る距離が、前記投影光学系の前記先端から前記対象物の表面に至る距離に等しく、
前記センサ移動機構が、前記保持部を前記描画ヘッドに対して相対的に移動することを特徴とする描画装置。
The drawing apparatus according to claim 1,
The light amount sensor is provided in the holding unit;
The distance from the tip of the projection optical system to the light receiving surface of the light quantity sensor is equal to the distance from the tip of the projection optical system to the surface of the object,
The drawing apparatus, wherein the sensor moving mechanism moves the holding unit relative to the drawing head.
請求項1または2に記載の描画装置であって、
前記照明光学系がインテグレータを備え、
前記採光ヘッドが、前記インテグレータから前記空間光変調デバイスに至る光路上に挿入されることを特徴とする描画装置。
The drawing apparatus according to claim 1 or 2,
The illumination optical system includes an integrator,
The drawing apparatus, wherein the daylighting head is inserted on an optical path from the integrator to the spatial light modulation device.
請求項1ないし3のいずれかに記載の描画装置であって、
前記光源から出射される光が紫外光であることを特徴とする描画装置。
The drawing apparatus according to any one of claims 1 to 3,
The drawing apparatus, wherein the light emitted from the light source is ultraviolet light.
請求項1ないし4のいずれかに記載の描画装置であって、
前記空間光変調デバイスが、向きが変更可能な多数の微小鏡面を平面に配列した光学素子であることを特徴とする描画装置。
The drawing apparatus according to any one of claims 1 to 4,
The drawing apparatus, wherein the spatial light modulation device is an optical element in which a number of micromirror surfaces whose directions can be changed are arranged in a plane.
請求項1ないし5のいずれかに記載の描画装置であって、
前記光量センサにて受光される前記測定光学系からの光の光量が、前記光量センサにて受光される前記投影光学系からの光の光量の10%以上100%以下であることを特徴とする描画装置。
A drawing apparatus according to any one of claims 1 to 5,
The amount of light from the measurement optical system received by the light amount sensor is 10% to 100% of the amount of light from the projection optical system received by the light amount sensor. Drawing device.
請求項1ないし6のいずれかに記載の描画装置であって、
前記検査部が、前記光量センサにて受光される前記測定光学系からの光の光量と、前記光量センサにて受光される前記投影光学系からの光の光量とに基づいて、前記描画ヘッドの異常を検出する異常検出部をさらに備えることを特徴とする描画装置。
The drawing apparatus according to any one of claims 1 to 6,
Based on the light amount of the light from the measurement optical system received by the light amount sensor and the light amount of the light from the projection optical system received by the light amount sensor, the inspection unit A drawing apparatus, further comprising an abnormality detection unit for detecting an abnormality.
請求項7に記載の描画装置であって、
前記検査部が、前記光量センサにより受光される前記測定光学系からの光の光量と、前記光源に供給される電流または電力とに基づいて、前記描画ヘッドの異常を検出するもう1つの異常検出部をさらに備えることを特徴とする描画装置。
The drawing apparatus according to claim 7,
Another abnormality detection in which the inspection unit detects an abnormality of the drawing head based on a light amount of light from the measurement optical system received by the light amount sensor and a current or power supplied to the light source. The drawing apparatus further comprising a unit.
請求項1ないし8のいずれかに記載の描画装置であって、
前記描画ヘッドと同様の構造を有する他の描画ヘッドをさらに備え、
前記検査部が、
前記他の描画ヘッドにおいて、光源から空間光変調デバイスに至る光路上に挿入されて前記光源から前記空間光変調デバイスへと向かう光の少なくとも一部を取り込む他の採光ヘッドと、
前記他の採光ヘッドにて取り込まれた光を前記中間光量測定位置に位置する前記光量センサへと導く他の測定光学系と、
をさらに備え、
前記光量センサが、前記センサ移動機構により前記他の描画ヘッドに対して相対的に定められた他の描画光量測定位置へと移動し、前記他の描画光量測定位置に位置する際に前記他の描画ヘッドの投影光学系からの光を受光することを特徴とする描画装置。
A drawing apparatus according to any one of claims 1 to 8,
Further comprising another drawing head having the same structure as the drawing head,
The inspection unit is
In the other drawing head, another daylighting head that is inserted on an optical path from the light source to the spatial light modulation device and captures at least part of the light traveling from the light source to the spatial light modulation device;
Another measurement optical system that guides the light captured by the other daylighting head to the light quantity sensor located at the intermediate light quantity measurement position;
Further comprising
When the light quantity sensor moves to another drawing light quantity measurement position determined relative to the other drawing head by the sensor moving mechanism and is positioned at the other drawing light quantity measurement position, the other light quantity sensor A drawing apparatus for receiving light from a projection optical system of a drawing head.
請求項9に記載の描画装置であって、
前記描画光量測定位置、前記他の描画光量測定位置、および、前記中間光量測定位置が直線上に配置されることを特徴とする描画装置。
The drawing apparatus according to claim 9,
The drawing apparatus, wherein the drawing light quantity measurement position, the other drawing light quantity measurement position, and the intermediate light quantity measurement position are arranged on a straight line.
JP2013199333A 2013-09-26 2013-09-26 Drawing device Active JP6116457B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013199333A JP6116457B2 (en) 2013-09-26 2013-09-26 Drawing device
TW103128406A TWI539246B (en) 2013-09-26 2014-08-19 Drawing apparatus
KR1020140112213A KR101600187B1 (en) 2013-09-26 2014-08-27 Drawing apparatus
CN201410482524.9A CN104991421B (en) 2013-09-26 2014-09-19 Drawing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013199333A JP6116457B2 (en) 2013-09-26 2013-09-26 Drawing device

Publications (2)

Publication Number Publication Date
JP2015064525A true JP2015064525A (en) 2015-04-09
JP6116457B2 JP6116457B2 (en) 2017-04-19

Family

ID=52832437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199333A Active JP6116457B2 (en) 2013-09-26 2013-09-26 Drawing device

Country Status (4)

Country Link
JP (1) JP6116457B2 (en)
KR (1) KR101600187B1 (en)
CN (1) CN104991421B (en)
TW (1) TWI539246B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173495A (en) * 2017-03-31 2018-11-08 株式会社Screenホールディングス Light source device and drawing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190265101A1 (en) * 2016-07-25 2019-08-29 Shimadzu Corporation Photometer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267323A (en) * 1985-05-22 1986-11-26 Toshiba Corp Exposing equipment for semiconductor device manufacture
JPS6491026A (en) * 1987-10-01 1989-04-10 Nikon Corp Optical lighting apparatus
JPH07153683A (en) * 1993-10-06 1995-06-16 Nikon Corp Aligner
JPH10170399A (en) * 1996-12-06 1998-06-26 Nikon Corp Method and equipment for measuring aberration, aligner equipped with that method and equipment and fabrication of device
JPH10208991A (en) * 1997-01-17 1998-08-07 Nikon Corp Projection aligner
JP2000173893A (en) * 1998-12-04 2000-06-23 Nikon Corp Projection exposure system and contamination discriminating method of optical element
JP2001237169A (en) * 2000-02-24 2001-08-31 Canon Inc Exposure control method, device manufacturing method and aligner
JP2003324047A (en) * 2002-04-26 2003-11-14 Canon Inc Device manufacturing device
JP2008242173A (en) * 2007-03-28 2008-10-09 Orc Mfg Co Ltd Exposure drawing device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177623A (en) * 1984-02-24 1985-09-11 Hitachi Ltd Exposure device
US5978391A (en) * 1997-07-18 1999-11-02 Cymer, Inc. Wavelength reference for excimer laser
TW200301848A (en) * 2002-01-09 2003-07-16 Nikon Corp Exposure apparatus and exposure method
JP2006330163A (en) * 2005-05-24 2006-12-07 Citizen Watch Co Ltd Exposure device and manufacturing method for exposure device
JP5182913B2 (en) * 2006-09-13 2013-04-17 大日本スクリーン製造株式会社 Pattern drawing apparatus and pattern drawing method
JP2009174158A (en) * 2008-01-23 2009-08-06 Ochiken Kk Deformation analysis method associated with pile foundation and pile draft foundation for bearing horizontal force in multilayered ground, based on hybrid elastic theory
JP5205101B2 (en) * 2008-03-28 2013-06-05 大日本スクリーン製造株式会社 Pattern drawing apparatus and pattern drawing method
CN101561636B (en) * 2009-05-19 2011-06-29 上海微电子装备有限公司 Device and method for controlling photoetching exposure dose
CN102128678B (en) * 2010-01-12 2013-07-17 上海微电子装备有限公司 Device and method for measuring and correcting energy sensor
CN102589686B (en) * 2011-01-07 2014-04-16 上海微电子装备有限公司 Calibration method of energy sensors
CN102914945B (en) * 2011-08-04 2015-05-13 上海微电子装备有限公司 Distributed exposure dose control system and method
CN202472238U (en) * 2012-01-12 2012-10-03 合肥芯硕半导体有限公司 Light energy monitoring system for lithography system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267323A (en) * 1985-05-22 1986-11-26 Toshiba Corp Exposing equipment for semiconductor device manufacture
JPS6491026A (en) * 1987-10-01 1989-04-10 Nikon Corp Optical lighting apparatus
JPH07153683A (en) * 1993-10-06 1995-06-16 Nikon Corp Aligner
JPH10170399A (en) * 1996-12-06 1998-06-26 Nikon Corp Method and equipment for measuring aberration, aligner equipped with that method and equipment and fabrication of device
JPH10208991A (en) * 1997-01-17 1998-08-07 Nikon Corp Projection aligner
JP2000173893A (en) * 1998-12-04 2000-06-23 Nikon Corp Projection exposure system and contamination discriminating method of optical element
JP2001237169A (en) * 2000-02-24 2001-08-31 Canon Inc Exposure control method, device manufacturing method and aligner
JP2003324047A (en) * 2002-04-26 2003-11-14 Canon Inc Device manufacturing device
JP2008242173A (en) * 2007-03-28 2008-10-09 Orc Mfg Co Ltd Exposure drawing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173495A (en) * 2017-03-31 2018-11-08 株式会社Screenホールディングス Light source device and drawing device

Also Published As

Publication number Publication date
CN104991421B (en) 2017-06-23
CN104991421A (en) 2015-10-21
TW201516579A (en) 2015-05-01
TWI539246B (en) 2016-06-21
KR101600187B1 (en) 2016-03-04
JP6116457B2 (en) 2017-04-19
KR20150034604A (en) 2015-04-03

Similar Documents

Publication Publication Date Title
WO2008110061A1 (en) Plane substrate auto-test system and the method thereof
KR101216803B1 (en) Pattern inspection method, pattern inspection device, photomask manufacturing method, and pattern transfer method
JP2011145232A5 (en)
KR101870366B1 (en) Pattern inspection apparatus and pattern inspection method
JP6467233B2 (en) Inspection apparatus, drawing apparatus, and inspection method
KR20090133097A (en) System and method for inspection of semiconductor packages
CN111324007B (en) Automatic optical detector for mask plate
JP6116457B2 (en) Drawing device
JP7274312B2 (en) Optical system for automated optical inspection
JP6917751B2 (en) Drawing device
JP2008267903A (en) Reticle defect inspection device and inspection method using the same
JP2007024877A (en) Device for inspecting wafer
KR20200043468A (en) Optical system with compensation lens
KR20220102557A (en) Test apparatus, test method and program
JP2008139065A (en) Film evaluation apparatus and film evaluation method
JP2015055583A (en) Inspection device
TWI791125B (en) Exposure device
JP5702639B2 (en) Image acquisition device for unevenness inspection, unevenness inspection device, and position determination method of irradiation unit
KR102326795B1 (en) Lamp unit for inspecting synthetic resin coating substrate and inspecting method thereof
JP2005009995A (en) Lighting method, and method and detector for detecting surface condition
JP2010160079A (en) Defect inspection device and method therefor
JP4997746B2 (en) Lighting device
JP2023071041A (en) Foreign matter inspection device, exposure device, and manufacturing method of article
KR20100062654A (en) Apparatus for inspecting pattern and method thereof
KR20220041388A (en) Optical system calibration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170321

R150 Certificate of patent or registration of utility model

Ref document number: 6116457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250