JPS60177623A - Exposure device - Google Patents

Exposure device

Info

Publication number
JPS60177623A
JPS60177623A JP59032344A JP3234484A JPS60177623A JP S60177623 A JPS60177623 A JP S60177623A JP 59032344 A JP59032344 A JP 59032344A JP 3234484 A JP3234484 A JP 3234484A JP S60177623 A JPS60177623 A JP S60177623A
Authority
JP
Japan
Prior art keywords
exposure
wafer
light
intensity
exposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59032344A
Other languages
Japanese (ja)
Inventor
Maki Nagao
長尾 眞樹
Kazuya Kadota
和也 門田
Yasuo Kiguchi
木口 保雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59032344A priority Critical patent/JPS60177623A/en
Publication of JPS60177623A publication Critical patent/JPS60177623A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Abstract

PURPOSE:To perform uniform patterning on a wafer with high precision by a method wherein light of the same wavelength with exposing light is projected to the wafer, and the exposing condition is measured from intensity of reflected light to control exposing intensity and time length required. CONSTITUTION:A light source 12 is lighted, the alignment marks of a wafer 3 and a reticle 2 are recognized 14 utilizing reflected light of the wafer 3, and an X-Y table 4 is driven to perform positioning. The reflected light intensity signal of a sensor 13 is inputted to a control part 16 at the same time, compared with stored informations, resist film thickness and reflectivity of the substrate are calculated 17, the most suitable exposing condition is calculated 18 from relation between data thereof and pattern size, and control of the amount of exposure 19 (opening time of a shutter 7, intensity of a light source 8) is performed. As a result, because the most suitable condition can be set at every alignment or exposure, respective pattern sizes can be controlled uniformly with high precision.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は露光技術に関し、特に半導体装置パターンを高
精度に露光できうる技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to exposure technology, and particularly to technology that can expose semiconductor device patterns with high precision.

〔背景技術〕[Background technology]

半導体装置の製造に際しての素子パターン形成工程では
所謂ホ) IJソグラフイ技術が利用されており、素子
パターンを形成する半導体基板表面にホトレジスト(感
光樹脂)を膜状に塗布した後、これに所要パターンの露
光を行ない、かつこれを現像処理することにより前記パ
ターン形状のホトレジストマスクを形成でき、以下これ
を利用して半導体基板への選択拡散や選択エツチングを
可能とするものである。したがって、形成すべき拡散寸
法やエツチング寸法の精度が高くなれば、これに合わせ
てホトレジストパターン寸法精度を向上させる必要があ
る。例えば2μ常のパターン幅を形成する場合には±0
.2μ惧の寸法精度が要求される。
The so-called IJ lithography technology is used in the element pattern forming process during the manufacture of semiconductor devices, in which a film of photoresist (photosensitive resin) is applied to the surface of the semiconductor substrate on which the element pattern is to be formed, and then the desired pattern is formed on this. By exposing and developing the photoresist mask, a photoresist mask having the pattern described above can be formed, and this can be used to perform selective diffusion and selective etching onto a semiconductor substrate. Therefore, as the accuracy of the diffusion dimensions and etching dimensions to be formed increases, it is necessary to improve the dimensional accuracy of the photoresist pattern accordingly. For example, when forming a pattern width of 2μ, ±0
.. Dimensional accuracy of approximately 2μ is required.

ところで、このホトレジストの露光(感光)に際して、
露光量やホトレジスト膜厚がパターン寸法に大きな影響
を与えることが知られている。特に微細パターンの露光
には解像力を高めるためにg線等の単色光を利用してい
るため、ホトレジストの膜厚に応じて光の干渉に伴なう
定在波効果が生じ、第1図に示すような寸法の変動が生
じる。
By the way, when exposing this photoresist,
It is known that the exposure amount and photoresist film thickness have a large effect on pattern dimensions. In particular, when exposing fine patterns, monochromatic light such as G-line is used to increase resolution, so depending on the thickness of the photoresist, a standing wave effect occurs due to light interference, as shown in Figure 1. Dimensional variations occur as shown.

つまり、第1図ではホトレジストの膜厚が微小変化する
だけで寸法が大幅に変化されることが判る。
In other words, it can be seen from FIG. 1 that even a slight change in the photoresist film thickness causes a large change in dimensions.

同様にホトレジストの下地層の反射率のばらつきにより
寸法が変化され、第2図からこれが判る。
Similarly, variations in the reflectance of the photoresist underlayer cause the dimensions to change, as can be seen in FIG.

したがって、このホトリソグラフィ技術において高精度
に寸法を管理するためには、ホトレジストの膜厚や下地
層の反射率を測定し、この測定結果に基づいて最適な露
光量に変化調整することが必要とされる。このため、露
光前工程においてホトレジスト膜厚や下地層反射率を測
定し、この結果に基づいて露光装置の露光強度や露光時
間を設定し露光を行なう方式をとることが考えられる。
Therefore, in order to control the dimensions with high precision in this photolithography technology, it is necessary to measure the photoresist film thickness and the reflectance of the underlying layer, and adjust the exposure amount to the optimum amount based on the measurement results. be done. For this reason, it is conceivable to adopt a method of measuring the photoresist film thickness and underlayer reflectance in a pre-exposure step, and setting the exposure intensity and exposure time of the exposure device based on the results to perform exposure.

しかしながら、この種の方式では人為的に露光量を設定
しなければならないため、作業効率上の要求から各ロッ
ト或いは数ロットの先頭一枚の半導体基板(ウェーハ)
についてのみ測定およびこれに対応する設定を行ない、
以下のウェーハは全て同じ条件での露光を行なう方式を
採らざるを得ない。このため、この方式ではロット間は
もとよりロット内実にはウェーハ内におけるプロセスの
変動には対処することができず、高精度な寸法パターン
を均一に形成することが難かしいという問題が生じてい
ることが本発明者により明らかにされた。
However, in this type of method, the exposure amount must be set artificially, so the first semiconductor substrate (wafer) of each lot or several lots must be
Measurements and corresponding settings are made only for
The following wafers must all be exposed under the same conditions. For this reason, this method cannot deal with process variations not only between lots but also within lots and within wafers, creating the problem that it is difficult to uniformly form highly accurate dimensional patterns. was revealed by the present inventor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は自動的に最適露光量を設定しかつ直ちに
この条件での露光を行なうことができ、これにより各パ
ターン毎の最適露光を可能にして寸法精度の高いパター
ニングを実現することのできる露光技術を提供すること
にある。
The purpose of the present invention is to automatically set the optimum exposure amount and immediately perform exposure under these conditions, thereby enabling optimum exposure for each pattern and realizing patterning with high dimensional accuracy. Our goal is to provide exposure technology.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、露光装置の露出光と同一波長をウェーハに投
射させかつその反射光強度を測定する手段と、この反射
光強度から露光条件を算出しかつ算出した条件により露
光装置の露光強度や露光時間をコントロールする手段を
付設することにより、各パターンの露光毎に夫々最適露
光条件でかつ自動的に露光を行なうことができ、これに
より寸法精度が高くかつ均一なパターンの形成を可能に
するものである。
In other words, there is a means for projecting the same wavelength as the exposure light of the exposure device onto the wafer and measuring the intensity of the reflected light, and a means for calculating the exposure conditions from the intensity of the reflected light, and determining the exposure intensity and exposure time of the exposure device based on the calculated conditions. By adding a control means, it is possible to automatically perform exposure under the optimum exposure conditions for each exposure of each pattern, thereby making it possible to form a uniform pattern with high dimensional accuracy. .

〔実施例〕〔Example〕

第3図は本発明の一実施例である露光装置の全体構成図
を示す。図において、lは1:10の縮小型プロジェク
ションアライナで例示する露光装置であり、レチクル2
のパターンを1=10に縮小してウェーハ3上に露光す
ることができる。即ち、この露光装置1は前記ウェ′−
ハ3を上置してコレをX、Y、θ方向に移動できるXY
ステージ4を有し、かつその上方位置には前記レチクル
2を支持しているレチクル支持枠5との間に1:1゜の
縮小投影レンズ6およびシャッタ7を配設している。ま
た、レチクル支持枠5の上方にはg線を射出する光源8
およびコンデンサレンズ9を同一光軸上に配置し、前記
レチクル2を照明しかつレチクルパターンをウェーハ3
上に投影している。
FIG. 3 shows an overall configuration diagram of an exposure apparatus which is an embodiment of the present invention. In the figure, l is an exposure device exemplified by a 1:10 reduction type projection aligner, and a reticle 2
The pattern can be reduced to 1=10 and exposed onto the wafer 3. That is, this exposure apparatus 1
XY where you can place C3 on top and move this in the X, Y, and θ directions
It has a stage 4, and a 1:1 degree reduction projection lens 6 and a shutter 7 are disposed above the stage 4 between it and a reticle support frame 5 that supports the reticle 2. Also, above the reticle support frame 5 is a light source 8 that emits a G-line.
and a condenser lens 9 are arranged on the same optical axis to illuminate the reticle 2 and transfer the reticle pattern to the wafer 3.
It's projected onto the top.

一方、前記レチクル支持枠5の近傍にはミラー10を設
け、このミラー1oの側方にはこれに対向してハーフミ
ラ−11とアライメント光源12およびこれと直角位置
にCCD等の光センサ13を配設している。そして、ア
ライメント光源12からは前記露光用の光と同一波長の
、しかしながら低強度のアライメント光を射出し、この
光はレテク/I/2を通してウェーハ3に投射させ、反
射光を再びレチクル2を通した後にミラー10.ハーフ
ミラ−11で反射させて光センサ13に受光させる。光
センサ13にはパターン認識回路部14が接続され、こ
のパターン認識回路部14では前記ウェーハ3からの反
射光によってウェーハ3とレチクル2の各アライメント
マーク(図示せず)を認識でき、この認識結果に基づい
て両アライメントマークが一致されるよう、つまりウェ
ーッ・3とレチクル2の相対位置決め(アライメント)
が行なわれるようXYステージ駆動回路15を介してX
Yステージ4を駆動する。
On the other hand, a mirror 10 is provided in the vicinity of the reticle support frame 5, and a half mirror 11 and an alignment light source 12 are arranged on the sides of the mirror 1o to face it, and an optical sensor 13 such as a CCD is arranged at a right angle thereto. It is set up. The alignment light source 12 emits alignment light of the same wavelength as the exposure light, but with low intensity. This light is projected onto the wafer 3 through the reticle/I/2, and the reflected light is passed through the reticle 2 again. Mirror 10. The light is reflected by the half mirror 11 and received by the optical sensor 13. A pattern recognition circuit section 14 is connected to the optical sensor 13, and the pattern recognition circuit section 14 can recognize each alignment mark (not shown) on the wafer 3 and the reticle 2 by the reflected light from the wafer 3, and the recognition result can be recognized by the pattern recognition circuit section 14. In other words, relative positioning (alignment) of wave 3 and reticle 2 so that both alignment marks match based on
XY stage drive circuit 15 so that
Drive the Y stage 4.

更に、前記光センサ13は、光反射強度を測定し、その
強度に応じて電気信号を発生し、この光反射強度とアラ
イメント光源強度との差に基づいて前記ウェーハ3表面
に形成したホトレジスト膜の膜厚や下地層反射率をめる
第1演算回路17と、この計算結果からこれに適した露
光条件を算出する第2演算回路18とを備えるコントロ
ール部16を接続している。即ち、前記第2演算回路1
8は、第1図や第2図に示した特性を予め記憶しており
、この記憶情報を基礎として新たに第1演算回路17か
ら出力されたデータから、パターン寸法が所定値に一定
するようにその都度の露光量、更に言えば露光強度や露
光時間等の条件を算出する。そして、この算出結果に基
づいて、コントロール部16内のコントローラ19は前
記露光装置1の光源80強度やシャッタ7をコントロー
ルすることができる。
Furthermore, the optical sensor 13 measures the light reflection intensity, generates an electric signal according to the intensity, and detects the photoresist film formed on the surface of the wafer 3 based on the difference between the light reflection intensity and the alignment light source intensity. A control unit 16 is connected to the controller 16, which includes a first calculation circuit 17 that calculates the film thickness and base layer reflectance, and a second calculation circuit 18 that calculates appropriate exposure conditions from the calculation results. That is, the second arithmetic circuit 1
8 stores the characteristics shown in FIG. 1 and FIG. In each case, the exposure amount, and more specifically the conditions such as exposure intensity and exposure time, are calculated. Based on this calculation result, the controller 19 in the control section 16 can control the intensity of the light source 80 and the shutter 7 of the exposure apparatus 1.

以上の構成によれば、ウェーハ3へのレチクルパターン
の露光に先立ってアライメント光源12を点灯してアラ
イメント光をウェーッ・3に投射し、その反射光を利用
してウェーッ・3とレチクル2の各アライメントマーク
をパターン認識装置14で検出し、更にこれに基づyl
てXYステージ4を作動させることによりウェーハ3と
レチクル2の相対位置決めを完了させる。このとき、こ
れと平行して光センサ130反射光強度信号はコントロ
ール部16の第1演算回路17に入力され、ここで記憶
データとの対比が行なわれることによりホトレジスト膜
厚や下地層反射率がめられる。そして、この膜厚や反射
率と、要求されるパターン寸法との関係(第1図や第2
図)から第2演算回路18では最適な露光条件を算出し
、これに基づいてコントローラ19は露光装置の露光量
をコントロールする。この場合、露光強度又は露光時間
の一方を固定しておけば、他方を変化させて露光量をコ
ントロールすることになり、シャッタ7の開時間又は光
源8の光度を適宜コントロールすることになる。勿論、
両者を同時にコントロールすることもできる。この結果
、ホトレジスト膜厚や下地層反射率のばらつきに拘らず
、アライメント毎、つまり露光毎に好適な榮件に設定す
ることができ、各パターン寸法を高精度に均一に管理す
ることができる。したがって、ウェーッ・内はもとより
、同一ロット内実にはロット間においても均一なパター
ン寸法を高精度に得ることができる。なお、第1演算回
路と第2演算回路を一つの演算回路として構成しても良
い。
According to the above configuration, prior to exposing the reticle pattern onto the wafer 3, the alignment light source 12 is turned on to project alignment light onto the wafer 3, and the reflected light is used to illuminate each of the wafer 3 and the reticle 2. The alignment mark is detected by the pattern recognition device 14, and based on this
By operating the XY stage 4, the relative positioning of the wafer 3 and reticle 2 is completed. At this time, in parallel with this, the reflected light intensity signal from the optical sensor 130 is input to the first arithmetic circuit 17 of the control section 16, where it is compared with the stored data to determine the photoresist film thickness and base layer reflectance. It will be done. The relationship between this film thickness and reflectance and the required pattern dimensions (see Figures 1 and 2)
The second arithmetic circuit 18 calculates the optimum exposure conditions from FIG. In this case, if either the exposure intensity or the exposure time is fixed, the exposure amount is controlled by changing the other, and the opening time of the shutter 7 or the luminous intensity of the light source 8 is controlled as appropriate. Of course,
You can also control both at the same time. As a result, regardless of variations in photoresist film thickness or underlayer reflectance, suitable conditions can be set for each alignment, that is, each exposure, and the dimensions of each pattern can be managed uniformly and with high precision. Therefore, it is possible to obtain uniform pattern dimensions with high precision not only within a wave but also within the same lot and between lots. Note that the first arithmetic circuit and the second arithmetic circuit may be configured as one arithmetic circuit.

〔効果〕〔effect〕

(1)露光装置の一部に露出用の光と同一波長の光をウ
ェーハに投射させかつその反射強度を測定する手段と、
この反射光強度から露光条件を算出しかつこの結果から
露光条件に沿って露光装置を自動的にコントロールする
手段とを備えているので、各パターンの露光毎にホトレ
ジスト膜厚や下地層反射率を測定して各場合に最適な露
光条件に設定でき、これにより均一化した寸法のパター
ンを高精度に得ることができる。
(1) means for causing a part of the exposure apparatus to project light of the same wavelength as the exposure light onto the wafer and measuring the reflection intensity;
It is equipped with a means to calculate exposure conditions from the intensity of this reflected light and automatically control the exposure equipment according to the exposure conditions based on the results, so the photoresist film thickness and base layer reflectance can be adjusted for each pattern exposure. It is possible to measure and set the optimum exposure conditions for each case, thereby making it possible to obtain a pattern with uniform dimensions with high precision.

(2)ホトレジスト膜厚や下地層反射率を測定するため
の反射強度の測定手段を、レチクルとウェーハの相対位
置決めを行なうアライメント装置を兼用した構成として
いるので、既存の装置に対してコントロール手段を付設
するだけで本発明装置を構成でき、構成の容易化、低価
格化を達成できる。
(2) The reflection intensity measuring means for measuring the photoresist film thickness and underlying layer reflectance is configured to double as an alignment device that performs relative positioning of the reticle and wafer, so it is easy to control the existing equipment. The device of the present invention can be configured by simply attaching it, and the configuration can be simplified and the cost can be reduced.

(3)各パターンの露光毎に露光条件を自動設定できる
ので、ウェーハのロット間はもとより同一ロット内、更
には同一ウェーハにおける各チッグパターンの間におけ
るホトマスク膜厚や下地層反射率のばらつきに追従して
好適な露光を完成することができる。
(3) Since the exposure conditions can be automatically set for each pattern exposure, it is possible to follow variations in photomask film thickness and underlayer reflectance not only between wafer lots, but also within the same lot, and even between each TIG pattern on the same wafer. This allows suitable exposure to be completed.

(4)反射強度を測定するために、露光用の光と同一波
長のアライメント用の光源を用いることにより、ウェー
ハのアライメントと同時にレジスト膜厚や下地層反射率
をめて、最適な露光条件を設定することが可能となるた
め、スループットに影響なくかつ高精度な露光が可能と
なるという効果が得られる。
(4) To measure the reflection intensity, by using an alignment light source with the same wavelength as the exposure light, the resist film thickness and underlayer reflectance can be determined at the same time as wafer alignment, and the optimal exposure conditions can be determined. Since the settings can be made, it is possible to achieve the effect of enabling highly accurate exposure without affecting throughput.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、ウェーハで
の反射強度を測定する手段は、露光装置の前工程装置と
して設けられるプリアライメント装置に設け、ここで測
定を行なうと共にその測定結果を記憶させておき、露光
時には迅速に最適条件下での露光を行ない得るようにし
てもよい。また、前記実施例の場合、露光光源の一部を
利用してホトレジスト膜厚や下地層反射率の測定を行な
うようにしてもよく、更にこのとき露光用光学系の一部
を利用してもよい。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the means for measuring the reflection intensity on a wafer is installed in a pre-alignment device installed as a pre-process device of an exposure device, and the measurement results are memorized here, and the measurement results can be quickly set under the optimal conditions during exposure. It may also be possible to perform exposure at . Further, in the case of the above embodiment, a part of the exposure light source may be used to measure the photoresist film thickness and the underlying layer reflectance, and furthermore, a part of the exposure optical system may be used at this time. good.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である半導体装置の製造用
の露光装置、特にウェーハに対する露光装置に適用した
場合について説明したが、それに限定されるものではな
く、ウェーハ以外の物例えばマスク等への露光は勿論、
半導体製造用以外の装置にも適用することができる。
In the above explanation, the invention made by the present inventor was mainly applied to an exposure apparatus for manufacturing semiconductor devices, which is the background field of application, and in particular an exposure apparatus for wafers, but the present invention is not limited thereto. Of course, exposure to things other than wafers, such as masks, etc.
It can also be applied to equipment other than semiconductor manufacturing equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はホトレジスト膜厚と寸法との相関特性図、 第2図は下地層反射率と寸法との相関特性図、第3図は
本発明の露光装置の全体構成図である。
FIG. 1 is a diagram showing the correlation between photoresist film thickness and dimensions, FIG. 2 is a diagram showing the correlation between base layer reflectance and dimensions, and FIG. 3 is a diagram showing the overall configuration of the exposure apparatus of the present invention.

Claims (1)

【特許請求の範囲】 1、表面にホトレジスト等の膜を形成してなるウェーハ
に所要のパターンを露光する装置であって、この露光用
の光と同一波長の光を前記ウェーハ表面に投射しかつそ
の反射強度を測定する手段と、この反射光強度から最適
露光条件を算出しかつ算出した条件により前記露光装置
をコントロールする手段とを備えることを特徴とする露
光装置。 2、露光装置をコントロールする手段は、露光装置の露
光強度又は露光時間を制御する制御回路を備えてなる特
許請求の範囲第1項記載の露光装置。 3、反射強度を測定する手段は、露光装置に付設される
ウェーハアライメント機構のアライメント光又は露光光
の一部を利用してなる特許請求の範囲第1項又は第2項
記載の露光装置。
[Claims] 1. An apparatus for exposing a wafer having a film such as a photoresist formed on the surface thereof to light to form a desired pattern, the apparatus projecting light having the same wavelength as the exposure light onto the wafer surface; An exposure apparatus comprising means for measuring the reflected light intensity, and means for calculating optimum exposure conditions from the reflected light intensity and controlling the exposure apparatus according to the calculated conditions. 2. The exposure apparatus according to claim 1, wherein the means for controlling the exposure apparatus comprises a control circuit for controlling the exposure intensity or exposure time of the exposure apparatus. 3. The exposure apparatus according to claim 1 or 2, wherein the means for measuring the reflection intensity utilizes a part of the alignment light or exposure light of a wafer alignment mechanism attached to the exposure apparatus.
JP59032344A 1984-02-24 1984-02-24 Exposure device Pending JPS60177623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032344A JPS60177623A (en) 1984-02-24 1984-02-24 Exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032344A JPS60177623A (en) 1984-02-24 1984-02-24 Exposure device

Publications (1)

Publication Number Publication Date
JPS60177623A true JPS60177623A (en) 1985-09-11

Family

ID=12356340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032344A Pending JPS60177623A (en) 1984-02-24 1984-02-24 Exposure device

Country Status (1)

Country Link
JP (1) JPS60177623A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236532U (en) * 1985-08-20 1987-03-04
JPS62183522A (en) * 1986-02-07 1987-08-11 Nippon Kogaku Kk <Nikon> Projection and exposure apparatus
JPS62190837A (en) * 1986-02-18 1987-08-21 Mitsubishi Electric Corp Semiconductor manufacturing apparatus
JPS62204527A (en) * 1986-03-05 1987-09-09 Hitachi Ltd Mask exposure apparatus
JPS6322730U (en) * 1986-07-29 1988-02-15
JPS63284811A (en) * 1987-05-15 1988-11-22 Nec Corp Semiconductor substrate aligner
WO2002063395A1 (en) * 2001-02-02 2002-08-15 Advanced Micro Devices, Inc. Stepper exposure dose control base upon across wafer variations in photoresist thickness
CN104991421A (en) * 2013-09-26 2015-10-21 斯克林集团公司 Drawing apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236532U (en) * 1985-08-20 1987-03-04
JPH0416424Y2 (en) * 1985-08-20 1992-04-13
JPS62183522A (en) * 1986-02-07 1987-08-11 Nippon Kogaku Kk <Nikon> Projection and exposure apparatus
JPS62190837A (en) * 1986-02-18 1987-08-21 Mitsubishi Electric Corp Semiconductor manufacturing apparatus
JPS62204527A (en) * 1986-03-05 1987-09-09 Hitachi Ltd Mask exposure apparatus
JPS6322730U (en) * 1986-07-29 1988-02-15
JPS63284811A (en) * 1987-05-15 1988-11-22 Nec Corp Semiconductor substrate aligner
WO2002063395A1 (en) * 2001-02-02 2002-08-15 Advanced Micro Devices, Inc. Stepper exposure dose control base upon across wafer variations in photoresist thickness
US6576385B2 (en) 2001-02-02 2003-06-10 Advanced Micro Devices, Inc. Method of varying stepper exposure dose to compensate for across-wafer variations in photoresist thickness
CN104991421A (en) * 2013-09-26 2015-10-21 斯克林集团公司 Drawing apparatus
CN104991421B (en) * 2013-09-26 2017-06-23 斯克林集团公司 Drawing apparatus

Similar Documents

Publication Publication Date Title
WO2005008754A1 (en) Flare measurement method, exposure method, and flare measurement mask
US7382469B2 (en) Exposure apparatus for manufacturing semiconductor device, method of exposing a layer of photoresist, and method of detecting vibrations and measuring relative position of substrate during an exposure process
US5291239A (en) System and method for leveling semiconductor wafers
US5734462A (en) Exposure apparatus and exposure method
US5963324A (en) Exposure apparatus and method responsive to light beam wavelength variation
US6569579B2 (en) Semiconductor mask alignment system utilizing pellicle with zero layer image placement indicator
JPS60177623A (en) Exposure device
JP2914315B2 (en) Scanning reduction projection exposure apparatus and distortion measuring method
US7710583B2 (en) Surface position measuring system, exposure method and semiconductor device manufacturing method
JP3630852B2 (en) Pattern formation state detection apparatus and projection exposure apparatus using the same
JP3651630B2 (en) Projection exposure method and projection exposure apparatus
JPS59178729A (en) Controlling method of photoresist process
KR100781099B1 (en) Method of estimating lithography system, method of adjusting substrate processing apparatus, lithography system, and exposure apparatus
JPH0620913A (en) Exposure method and device
JPH06181168A (en) Aligning method
JPH0225016A (en) Aligner
JP2003332201A (en) Exposure method and exposure system
JP3636330B2 (en) Exposure method and apparatus
JP3056598B2 (en) Exposure equipment and alignment accuracy measurement method
JP5006711B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JPS62132318A (en) Exposing apparatus
KR100607780B1 (en) Alignment measurement system having a capability of a visual inspection
JP2000021730A (en) Reduction stepper
JPH08191045A (en) Alignment device and manufacturing method of semiconductor device using the same
JP2000195771A (en) Method and device for exposure