JPS62132318A - Exposing apparatus - Google Patents

Exposing apparatus

Info

Publication number
JPS62132318A
JPS62132318A JP60271666A JP27166685A JPS62132318A JP S62132318 A JPS62132318 A JP S62132318A JP 60271666 A JP60271666 A JP 60271666A JP 27166685 A JP27166685 A JP 27166685A JP S62132318 A JPS62132318 A JP S62132318A
Authority
JP
Japan
Prior art keywords
refractive index
exposure amount
film thickness
polarized light
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60271666A
Other languages
Japanese (ja)
Inventor
Izumi Tsukamoto
泉 塚本
Hiroshi Morohoshi
洋 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60271666A priority Critical patent/JPS62132318A/en
Publication of JPS62132318A publication Critical patent/JPS62132318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain a uniform pattern by detecting in advance the thickness and the refractive index of a photosensitizer layer of an element to be exposed before exposing, calculating an emitting exposure amount for maintaining an effective exposure amount constant on the basis of the detected results, and controlling the emitting exposure amount to the element to be exposed. CONSTITUTION:When an element 1 to be exposed is emitted by an incident polarized light 12 of linear polarized light at an incident angle theta, the light 12 is reflected on the surface of the element 1 to be exposed to cause the polarized state to alter. The light is incident as reflected polarized light 13 to a polarization measuring unit 4. Phase difference delta and reflection counting ratio angle psi of the measured results of the unit 4 are fed to a refractive index film thickness calculating mechanism 5, which are used together with a wavelength lambda, the incident angle theta and refractive indexes n0, n1 of a medium 14 and the element 1 to be exposed, input in advance to calculate the refractive index (n) and the thickness (d) of a photosensitizer layer 11. Data of the refractive index (n) and the thickness (d) calculated by the mechanism 5 are fed to an emitting exposure amount calculating and controlling mechanism 6, which calculates an emitting exposure amount that the effective exposure amount becomes constant.

Description

【発明の詳細な説明】 [発明の属する分野] 本発明は露光装置に関し、特に露光して得られるパター
ンが均一となるように照射する露光量をfl、l制御す
る露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to an exposure apparatus, and more particularly to an exposure apparatus that controls the amount of exposure fl and l so that the pattern obtained by exposure is uniform.

[従来の技術] 昨今のLSI製造技術の進歩は著しく、IC回路のパタ
ーンは高集積化のために微細になる一方である。このた
めIC回路のパターンをウェハに転写する露光装置も、
従来のコンタクト方式やプOキシミティ方式からプロジ
ェクション方式へと、変わり、プロジェクション方式で
もミラー役彰光学系からパターンを縮小して精度良く転
写できるレンズ投影光学系を持つ露光装置へと変遷して
きている。
[Prior Art] Recent advances in LSI manufacturing technology have been remarkable, and IC circuit patterns are becoming increasingly finer due to higher integration. For this reason, exposure equipment that transfers IC circuit patterns onto wafers also
The conventional contact method and proximity method have been replaced by a projection method, and even in the projection method, there has been a shift from a mirror optical system to an exposure apparatus having a lens projection optical system that can reduce the pattern and transfer it with high precision.

このレンズ投影光学系を持つ露光装置では解像性能を極
限までに高めるため、光学系の収差を単一の波長につい
てのみ最小にしている。つまり露光に使用できる光の波
長が単線、例えばQ線(波長436nm )あるいはi
線(波長365nm )だけとなっているのが菖通であ
る。
In an exposure apparatus having this lens projection optical system, the aberration of the optical system is minimized only for a single wavelength in order to maximize resolution performance. In other words, the wavelength of light that can be used for exposure is a single line, for example, Q line (wavelength 436 nm) or i
The irises have only lines (wavelength 365 nm).

ところが、被露光体へホトレジスト等感光剤をコーティ
ングする工程では、感光剤の粘度、溶媒の含有j、湯温
度の条件によって感光剤層の厚さや屈折率が左右され、
均一な感光剤層を得ることは至難の業である。このため
、特に単線の露光装置では被露光体へ照射する露光量(
照射露光量)が一定でも感光剤層が均一でない場合、感
光剤層中に発生するスタンディングウェーブが原因で得
られるパターン形状が安定しないという欠点があった。
However, in the process of coating an exposed object with a photosensitizer such as photoresist, the thickness and refractive index of the photosensitizer layer are affected by the viscosity of the photosensitizer, the content of the solvent, and the temperature of the hot water.
Obtaining a uniform photosensitive agent layer is extremely difficult. For this reason, especially in single-line exposure equipment, the amount of light irradiated to the exposed object (
Even if the irradiation exposure amount is constant, if the photosensitive agent layer is not uniform, there is a drawback that the pattern shape obtained is unstable due to standing waves generated in the photosensitive agent layer.

つまり、感光剤にとって有効に働く光のエネルギー(実
効露光量)は感光剤層の厚さ、屈折率によって変わり、
従来の露光装置のように照射露光量を一定にするだけで
は実効露光mを一定にすることはできず、従って露光の
結果1qられるパターンの幅が変化してIC回路の製造
上垂木な問題点となっていた。
In other words, the energy of light that effectively acts on the photosensitizer (effective exposure amount) varies depending on the thickness and refractive index of the photosensitizer layer.
It is not possible to keep the effective exposure m constant just by keeping the irradiation exposure constant as with conventional exposure equipment, and therefore the width of the pattern 1q produced as a result of exposure changes, causing problems in the manufacture of IC circuits. It became.

また、これに対して露光する波長の光で被露光体の反射
率を測定し、感光剤層の厚さのばらつきに対してパター
ンの形状を一定にするための(つまり実効露光量を一定
にする)照射露光量を演算する手段を持つ露光装置が提
案されている。しかし、この装置においても反射率測定
に使われる光の波長が露光波長と同じであるため、実際
にパターンを露光する部分の測定はできない。また、感
光剤層の膜厚が、測定光の波長λ、感光剤の屈折率nと
したとき、λ/4nを越えて大きくばらついているよう
な場合は、最適な照射露光量は求まっても、被露光体の
段差部での感光剤の段切れ等を検知できず、IC回路製
造上の重要な問題点を解決できない欠点を持、っていた
In addition, the reflectance of the exposed object is measured using light at the wavelength used for exposure, and in order to keep the shape of the pattern constant despite variations in the thickness of the photosensitive agent layer (that is, to keep the effective exposure amount constant). ) Exposure apparatuses have been proposed that have means for calculating the irradiation exposure amount. However, even with this device, the wavelength of the light used for reflectance measurement is the same as the exposure wavelength, so it is not possible to measure the portion of the pattern that is actually exposed. In addition, if the thickness of the photosensitive agent layer varies greatly by more than λ/4n, where the wavelength of the measurement light is λ and the refractive index of the photosensitive agent is n, the optimum irradiation exposure amount may not be determined. However, this method has the disadvantage that it cannot detect step breaks in the photosensitive material at the step portion of the exposed object, and cannot solve important problems in IC circuit manufacturing.

[発明の目的] 本発明の目的は、前述の従来露光装置の欠点に鑑みてな
されたものであり、露光する前に予め被露光体の感光剤
層の厚さと屈折率を検出し、この検出結果に基づいて実
効露光量を一定にする照射露光量を演算し、該被露光体
への照射露光量を制御し、均一なパターンを得ることを
可能とする露光装置を提供することにある。
[Object of the Invention] The object of the present invention has been made in view of the above-mentioned drawbacks of the conventional exposure apparatus. An object of the present invention is to provide an exposure apparatus that calculates an irradiation exposure amount that makes the effective exposure amount constant based on the result, controls the irradiation exposure amount to the exposed object, and makes it possible to obtain a uniform pattern.

また、本発明は同時に、感光剤層の厚さが大きくばらつ
く等IC回路製造上問題となる被露光体に対しては、露
光の作業をせずに飛ばし、無駄な作業を行なうことを避
け、スループット(歩留り)の向上を図ることを可能と
することをさらなる目的とする。
In addition, the present invention also provides for avoiding unnecessary work by skipping exposure work on objects to be exposed that pose problems in IC circuit manufacturing, such as large variations in the thickness of the photosensitive agent layer, without exposing them to light. A further object is to make it possible to improve throughput (yield).

し実施例] 以下、図面を参照しながら本発明の詳細な説明する。Examples] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例に係る露光装置の概略図で
ある。同図において、1は感光剤が塗布されている被露
光体、2は被露光体1を吸着保持する被露光体吸着チせ
ツク、3は任意の波長の光を任意の偏光状態で被露光体
1に照射できる漏光光源、4は被露光体1から反射して
きた光の偏光状態を測定する偏光測定器、5は偏光測定
器4の出力結果に基づいて被露光体表面の感光剤層の屈
折率と膜厚を演算する屈折率・膜厚演算機構、6は屈折
率・膜厚演算機構5により演算された感光剤層の屈折率
・膜厚に対して実効露光量が一定となる照射露光量を演
算し、被露光体への照射露光量を制御する照射露光借演
算・制tI機構、7は照射露光吊演専・制御機f16に
よって照!lFl露光量を制御される照明系、8は転写
するIC回路パターンが描画されたレチクルまたはマス
ク、9はレチクル8のIC回路パターンを被露光体へ転
写する投影光学系、10は被露光体1を感光剤層の屈折
率・膜厚を測定する位置から露光位置へ動かしたり、被
露光体1をステップ送りしてその部分部分へ繰り返し露
光したり、被露光体1の複数位置で感光剤層の屈折率・
膜厚測定ができるように被露光体1を駆動したりするこ
とができるXYZステージである。
FIG. 1 is a schematic diagram of an exposure apparatus according to an embodiment of the present invention. In the figure, 1 is an exposed object coated with a photosensitizer, 2 is an exposed object suction chip that adsorbs and holds the exposed object 1, and 3 is an exposed object with light of an arbitrary wavelength in an arbitrary polarization state. A light leakage light source capable of irradiating the body 1; 4 a polarization measuring device for measuring the polarization state of light reflected from the subject 1; A refractive index/thickness calculation mechanism 6 calculates the refractive index and film thickness, and 6 is an irradiation unit whose effective exposure amount is constant for the refractive index and film thickness of the photosensitive material layer calculated by the refractive index/thickness calculation mechanism 5. The irradiation exposure calculation/control mechanism 7 calculates the exposure amount and controls the irradiation exposure amount to the exposed object. 8 is a reticle or mask on which the IC circuit pattern to be transferred is drawn; 9 is a projection optical system that transfers the IC circuit pattern on the reticle 8 to the object to be exposed; 10 is the object to be exposed 1 The photosensitive agent layer can be moved from the position where the refractive index and film thickness of the photosensitive agent layer is measured to the exposure position, or the exposed object 1 can be moved in steps to repeatedly expose that portion, or the photosensitive agent layer can be measured at multiple positions on the exposed object 1. The refractive index of
It is an XYZ stage that can drive the exposed object 1 so that film thickness can be measured.

第2図は、被露光体表面の感光剤層の屈折率・膜厚を測
定する原理を説明する図である。同図において、11は
被露光体1の表面に塗布された感光剤層、12は被露光
体1へ入射角θで入射する入射偏光、13は被露光体か
ら反射された反射偏光、14は媒質(普通は空気)であ
る。また、λは入射偏光12の波長、n、dは感光剤層
11の屈折率と膜厚、noは媒質14の屈折率、nlは
被露光体1の屈折率を示している。第2図(a)の例で
は入射偏光12はS方向の直線偏光、反射偏光13は楕
円偏光となっている。
FIG. 2 is a diagram illustrating the principle of measuring the refractive index and film thickness of a photosensitive agent layer on the surface of an exposed object. In the figure, 11 is a photosensitive agent layer coated on the surface of the exposed object 1, 12 is the incident polarized light that enters the exposed object 1 at an incident angle θ, 13 is the reflected polarized light reflected from the exposed object, and 14 is the polarized light that is reflected from the exposed object. medium (usually air). Further, λ is the wavelength of the incident polarized light 12, n and d are the refractive index and thickness of the photosensitive layer 11, no is the refractive index of the medium 14, and nl is the refractive index of the exposed object 1. In the example shown in FIG. 2(a), the incident polarized light 12 is linearly polarized light in the S direction, and the reflected polarized light 13 is elliptically polarized light.

第3図は、屈折率nの感光剤層の膜厚dと、均一なパタ
ーンを得るための(実効露光量が一定となる)照射露光
量との関係を例示する。
FIG. 3 illustrates the relationship between the film thickness d of a photosensitive layer having a refractive index n and the irradiation exposure amount for obtaining a uniform pattern (effective exposure amount is constant).

次に、第2および3図を参照しながら、第1図に示す構
成の露光装置の動作を説明する。
Next, the operation of the exposure apparatus having the configuration shown in FIG. 1 will be explained with reference to FIGS. 2 and 3.

被露光体1は、先ず、被露光体吸着チャック2にセット
され、図示されていない駆動機構によりxYZステージ
10上の感光剤層11の屈折率・m厚測定位冒に設問さ
れる。
The object to be exposed 1 is first set on the object suction chuck 2, and the refractive index and thickness in m of the photosensitive agent layer 11 on the xYZ stage 10 are measured by a drive mechanism (not shown).

ここで第2図(a)に示すように被露光体1に入射角θ
で偏光状態が直線偏光の入射偏光12を照射すると、該
入射偏光12は被露光体1の表面で反射することによっ
て偏光状態が変化し、反射偏光13となって偏光測定器
4に入射する。一般には被露光体1からの反射偏光13
は楕円偏光の反射偏光13になる。この変化は次の2個
のパラメータで記述できる。1つは、反射偏光13のP
、S成分波間の位相差δであり、もう1つは、P、S成
分波間の反射計数比角ψである。この2つのパラメータ
δ、ψを偏光測定器4により測定する。δ、Φは、第2
図(b)に示す入射偏光12の波長λ、媒質14と被露
光体1の屈折率noとnI、感光剤層11の屈折率n1
膜厚dより関係式 %式%) この偏光測定器4の測定結果の位相差δ9反射計数比角
ψは屈折率・、膜厚演算機構5に送られ、ここに予め入
力しておいた波長λ、入射角θ、媒質14ど被露光体1
の屈折率noとnlの値と共に、感光剤層11の屈折率
n、膜厚dの演粋に使用される。屈折率・膜厚演算機構
5により演算された屈折率n 33よび膜厚dのデータ
は、照射露光量演算・制御機構6に送られ、ここで第3
図のような関係により実効霜光伍一定となる照射露光m
が演算される。
Here, as shown in FIG. 2(a), the incident angle θ is
When incident polarized light 12 whose polarization state is linearly polarized light is irradiated, the incident polarized light 12 changes its polarization state by being reflected on the surface of the object 1 to be exposed, becomes reflected polarized light 13, and enters the polarization measuring device 4. In general, reflected polarized light 13 from the exposed object 1
becomes reflected polarized light 13 of elliptically polarized light. This change can be described by the following two parameters. One is P of reflected polarization 13
, the phase difference δ between the S component waves, and the other is the reflection count ratio angle ψ between the P and S component waves. These two parameters δ and ψ are measured by a polarimeter 4. δ, Φ are the second
The wavelength λ of the incident polarized light 12 shown in FIG.
From the film thickness d, the phase difference δ9 reflection count ratio angle ψ obtained from the measurement result of the polarization meter 4 is sent to the refractive index/film thickness calculation mechanism 5, where the wavelength input in advance is λ, incident angle θ, medium 14, exposed object 1
Together with the values of the refractive index no and nl, it is used to determine the refractive index n and film thickness d of the photosensitive agent layer 11. Data on the refractive index n 33 and film thickness d calculated by the refractive index/thickness calculation mechanism 5 are sent to the irradiation exposure amount calculation/control mechanism 6, where the third
Irradiation exposure m at which the effective frost level is constant due to the relationship shown in the figure
is calculated.

この後、被露光体1はXYzステージ10により投影光
学系9の下まで運ばれる。そして照射露光闇演粋・制御
機4M6により制御された照明系7により、レチクル8
のIC回路パターンが投影光学系9を介して被露光体1
に実効露光量一定となる照射露光量で露光される。
Thereafter, the object 1 to be exposed is carried by the XYz stage 10 to below the projection optical system 9. Then, the reticle 8 is illuminated by the illumination system 7 controlled by the irradiation, exposure, and control device 4M6.
The IC circuit pattern is projected onto the exposed object 1 through the projection optical system 9.
The irradiation exposure amount is such that the effective exposure amount is constant.

[変形例コ 前述の実施例では、感光剤層11の屈折率n、膜厚dの
測定に偏光を用いているが、屈折率nが既知であり、膜
厚dのばらつきが小さい場合は、屈折率は予め設定して
おき、上記偏光光源および偏光測定器4からなる膜厚お
よび屈折率測定手段に代えて単に被露光体の反射率を測
定するだけの機構を用い、膜厚dはこの反射率の関数と
みなしてもよい。
[Modified example] In the above embodiment, polarized light is used to measure the refractive index n and film thickness d of the photosensitive agent layer 11, but if the refractive index n is known and the variation in the film thickness d is small, The refractive index is set in advance, and a mechanism that simply measures the reflectance of the exposed object is used instead of the film thickness and refractive index measuring means consisting of the polarized light source and polarization measuring device 4, and the film thickness d is determined by this value. It may be regarded as a function of reflectance.

また、反射偏光が直線偏光となるような入射偏光を射出
する構成にし、入射偏光の偏光状態を測定しても、はぼ
同様の手段で感光剤層の屈折率n。
Furthermore, even if the configuration is such that the incident polarized light is emitted so that the reflected polarized light becomes linearly polarized light, and the polarization state of the incident polarized light is measured, the refractive index n of the photosensitive agent layer can be determined using the same method.

膜厚dを測定することができる。The film thickness d can be measured.

[発明の効果] 以上説明したように本発明によれば、被露光体の感光剤
層の屈折率、膜厚がばらついて照射露光量を一定にする
だけでは均一なパターン形状が得られない場合でも、実
効露光量を一定にするように照射露光量を変化させるこ
とができ、均一なパターン形状が得られる。
[Effects of the Invention] As explained above, according to the present invention, when the refractive index and film thickness of the photosensitive agent layer of the exposed object vary and a uniform pattern shape cannot be obtained simply by keeping the irradiation exposure constant. However, the irradiation exposure amount can be changed so as to keep the effective exposure amount constant, and a uniform pattern shape can be obtained.

また、本発明によれば、感光剤層の屈折率、膜厚測定の
際に、感光剤層を傷めないように露光波長以外の複数の
波長で測定し、屈折率と波長の分散関係から露光波長で
の感光剤層の屈折率を求めることも可能であり、この場
合、実際に10回路パターンを焼付ける部分の感光剤層
の屈折率、膜厚を測定することができる。
Further, according to the present invention, when measuring the refractive index and film thickness of the photosensitive agent layer, measurements are performed at multiple wavelengths other than the exposure wavelength so as not to damage the photosensitive agent layer, and the exposure light is measured based on the dispersion relationship between the refractive index and the wavelength. It is also possible to determine the refractive index of the photosensitive layer at different wavelengths, and in this case, the refractive index and film thickness of the photosensitive layer at the portion where the 10 circuit pattern is actually printed can be measured.

さらに、被露光体表面の複数の場所で感光剤層の屈折率
、膜厚を測定するようにすれば、被露光体表面を部分部
分分割して露光してゆく露光装置の場合、その各露光部
分ごとに実効露光量が一定となるように照射露光量を変
化させることも可能である。この場合、被露光体表面で
感光剤層の膜厚分布があっても被露光体全面に渡って実
効露光露光量を一定にすることができる。
Furthermore, if the refractive index and film thickness of the photosensitive agent layer are measured at multiple locations on the surface of the exposed object, it is possible to It is also possible to vary the irradiation exposure amount so that the effective exposure amount is constant for each portion. In this case, even if there is a film thickness distribution of the photosensitive agent layer on the surface of the exposed object, the effective exposure amount can be made constant over the entire surface of the exposed object.

また、感光剤層の膜厚に上、下限のリミットを設けてお
けば、後のIC回路製造工程で問題を起こす程膜厚がば
らついている被露光体に対しては、露光前にそのことが
わかるので無駄な露光を行なわず済ませ、スループット
(歩留り)向上を図ることができる。
In addition, if upper and lower limits are set for the thickness of the photosensitive agent layer, it is possible to check the thickness of the exposed object before exposure if the thickness varies enough to cause problems in the later IC circuit manufacturing process. Since it is possible to avoid unnecessary exposure, it is possible to improve throughput (yield).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る露光装置の概略構成
図、 第2図は、被露光体表面の感光剤層の屈折率および膜厚
を測定する原理を説明するための図、第3図は、屈折率
nの感光剤層の膜厚に対して均一なパターンを得るため
のく実効露光0が一定となる)照射露光量の関係を示し
た図である。 1:被露光体、 2:被露光体吸着チャック、3:Q先
光源、 4:偏光測定器、 5:屈折率・膜厚演算機構、 6:照射露光量演算・制御機構、 7:照明系、   8ニレチクルまたはマスク、9:投
影光学系、 10:XYZステージ、11:感光剤層、
12:入射偏光、13:反射偏光。
FIG. 1 is a schematic configuration diagram of an exposure apparatus according to an embodiment of the present invention; FIG. 2 is a diagram for explaining the principle of measuring the refractive index and film thickness of a photosensitive agent layer on the surface of an exposed object; FIG. 3 is a diagram showing the relationship between the irradiation exposure amount and the thickness of the photosensitive agent layer with the refractive index n (effective exposure 0 is constant for obtaining a uniform pattern). 1: Exposed object, 2: Exposed object adsorption chuck, 3: Q-direction light source, 4: Polarization meter, 5: Refractive index/film thickness calculation mechanism, 6: Irradiation exposure amount calculation/control mechanism, 7: Illumination system , 8 reticle or mask, 9: projection optical system, 10: XYZ stage, 11: photosensitive layer,
12: incident polarized light, 13: reflected polarized light.

Claims (1)

【特許請求の範囲】 1、照明系から照射される光により原板の像を被露光体
上に投影する投影光学系と、 上記被露光体の感光剤層の屈折率と膜厚を設定する屈折
率・膜厚設定手段と、 設定された屈折率と膜厚に基づいて適正照射露光量を演
算する照射露光量演算手段と、 該演算結果に基づき適正照射露光量を照射するように上
記照明系を制御する照射露光量制御手段とを有すること
を特徴とする露光装置。 2、前記屈折率・膜厚設定手段が、 前記被露光体に偏光を照射する偏光光源と、該被露光体
表面照射された偏光の反射光を受光し該反射偏光の直交
成分波間の位相差と反射係数比角とを出力する偏光測定
器と、 該位相差と該反射係数比角から感光剤層の屈折率および
膜厚を算出する屈折率・膜厚演算機構とを有することを
特徴とする特許請求の範囲第1項記載の露光装置。 3、前記被露光体表面の反射率を測定する手段を備え、
前記屈折率・膜厚設定手段は、前記屈折率が既知であり
、かつ膜厚のばらつきが小さい場合に該反射率測定値を
膜厚の関数として、上記屈折率をマニュアル入力で設定
されるものである特許請求の範囲第1項記載の露光装置
[Scope of Claims] 1. A projection optical system that projects an image of an original plate onto an exposed object using light irradiated from an illumination system, and a refractor that sets the refractive index and film thickness of a photosensitive agent layer of the exposed object. an irradiation exposure amount calculation means for calculating an appropriate irradiation exposure amount based on the set refractive index and film thickness; and an irradiation exposure amount calculation means for calculating an appropriate irradiation exposure amount based on the calculation result 1. An exposure apparatus comprising: irradiation exposure amount control means for controlling irradiation exposure amount. 2. The refractive index/film thickness setting means includes a polarized light source that irradiates the exposed object with polarized light, and a phase difference between orthogonal component waves of the reflected polarized light that is received by the polarized light that is irradiated onto the surface of the exposed object. and a refractive index/thickness calculation mechanism that calculates the refractive index and film thickness of the photosensitive agent layer from the phase difference and the reflection coefficient ratio angle. An exposure apparatus according to claim 1. 3. comprising means for measuring the reflectance of the surface of the exposed object;
The refractive index/film thickness setting means sets the refractive index by manually inputting the measured reflectance value as a function of the film thickness when the refractive index is known and the variation in film thickness is small. An exposure apparatus according to claim 1.
JP60271666A 1985-12-04 1985-12-04 Exposing apparatus Pending JPS62132318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60271666A JPS62132318A (en) 1985-12-04 1985-12-04 Exposing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60271666A JPS62132318A (en) 1985-12-04 1985-12-04 Exposing apparatus

Publications (1)

Publication Number Publication Date
JPS62132318A true JPS62132318A (en) 1987-06-15

Family

ID=17503192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60271666A Pending JPS62132318A (en) 1985-12-04 1985-12-04 Exposing apparatus

Country Status (1)

Country Link
JP (1) JPS62132318A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191397B1 (en) * 1998-07-02 2001-02-20 Kabushiki Kaisha Toshiba Heating device, method for evaluating heating device and pattern forming method
JP2003532306A (en) * 2000-05-04 2003-10-28 ケーエルエー・テンコール・テクノロジーズ・コーポレーション Method and system for lithographic process control
JP2007184378A (en) * 2006-01-05 2007-07-19 Canon Inc Method and device for obtaining position of substrate for luminous exposure and/or focusing in exposure system
JP2007208245A (en) * 2006-01-05 2007-08-16 Canon Inc Method and program for obtaining offset of exposure dose and focus position, and method of manufacturing device for the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191397B1 (en) * 1998-07-02 2001-02-20 Kabushiki Kaisha Toshiba Heating device, method for evaluating heating device and pattern forming method
US6441351B2 (en) 1998-07-02 2002-08-27 Kabushiki Kaisha Toshiba Heating device, method for evaluating heating device and pattern forming method
US6603101B2 (en) 1998-07-02 2003-08-05 Kabushiki Kaisha Toshiba Heating device, method for evaluating heating device and pattern forming method
US6831258B2 (en) 1998-07-02 2004-12-14 Kabushiki Kaisha Toshiba Heating device, method for evaluating heating device and pattern forming method
JP2003532306A (en) * 2000-05-04 2003-10-28 ケーエルエー・テンコール・テクノロジーズ・コーポレーション Method and system for lithographic process control
JP2007184378A (en) * 2006-01-05 2007-07-19 Canon Inc Method and device for obtaining position of substrate for luminous exposure and/or focusing in exposure system
JP2007208245A (en) * 2006-01-05 2007-08-16 Canon Inc Method and program for obtaining offset of exposure dose and focus position, and method of manufacturing device for the same
US7771905B2 (en) 2006-01-05 2010-08-10 Canon Kabushiki Kaisha Method and program for calculating exposure dose and focus position in exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
TWI431439B (en) Level sensor arrangement for lithographic apparatus and device manufacturing method
TWI428705B (en) Inspection apparatus, lithographic apparatus, lithographic processing cell and inspection method
TWI447535B (en) Method of overlay measurement, lithographic apparatus, inspection apparatus, processing apparatus and lithographic processing cell
KR100334301B1 (en) Heating apparatus and a test method of the heating apparatus
TWI389137B (en) Method of forming a substrate for use in calibrating a metrology tool, calibration substrate and metrology tool calibration method
US20020093656A1 (en) Exposure apparatus
TWI383269B (en) An optical focus sensor, an inspection apparatus and a lithographic apparatus
KR102549991B1 (en) Lithography apparatus, pattern forming method, and article manufacturing method
US5916717A (en) Process utilizing relationship between reflectivity and resist thickness for inhibition of side effect caused by halftone phase shift masks
TWI467346B (en) A method of determining a characteristic
US7710583B2 (en) Surface position measuring system, exposure method and semiconductor device manufacturing method
JP2816866B2 (en) Processing method and processing apparatus
JP3630852B2 (en) Pattern formation state detection apparatus and projection exposure apparatus using the same
JPS62132318A (en) Exposing apparatus
EP0134453B1 (en) Method for exposure dose calculation of photolithography projection printers
JPS59178729A (en) Controlling method of photoresist process
JPS60177623A (en) Exposure device
JP2796404B2 (en) Exposure method and apparatus, and thin film production control method and apparatus using the same
JPH10135112A (en) Measurement of resist photosensitive parameter and semiconductor lithography based thereon
JP2000100797A (en) Manufacture of element and manufacturing device
JP3880904B2 (en) Alignment detection method, alignment detection apparatus, device manufacturing method, and device manufacturing apparatus
JPH0225016A (en) Aligner
JPH07111235A (en) Method and device for exposure
JPH036011A (en) Wafer aligner for semiconductor-device manufacture
JPH07142363A (en) Method and apparatus for manufacture of semiconductor integrated circuit device