JPH07153494A - Nonaqueous secondary battery - Google Patents
Nonaqueous secondary batteryInfo
- Publication number
- JPH07153494A JPH07153494A JP5321326A JP32132693A JPH07153494A JP H07153494 A JPH07153494 A JP H07153494A JP 5321326 A JP5321326 A JP 5321326A JP 32132693 A JP32132693 A JP 32132693A JP H07153494 A JPH07153494 A JP H07153494A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- charge
- discharge
- negative electrode
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、非水系二次電池に係わ
り、詳しくはサイクル特性を改善することを目的とし
た、正極及び負極の各充放電効率の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to improvement of charge and discharge efficiency of a positive electrode and a negative electrode for the purpose of improving cycle characteristics.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】近年、
非水系二次電池の負極材料として、可撓性に優れ、しか
も樹枝状の電析リチウムの成長に因る内部短絡の虞れが
無いなどの理由から、リチウムイオンを吸蔵放出するこ
とが可能なコークス、黒鉛等の炭素材料が、また同電池
の正極材料として、放電電位が3.5〜4V(vs. Li
/Li+ )と高いため、高電圧設計が可能となるなどの
理由から、LiNiO2 、LiCoO2 などのリチウム
−遷移金属複合酸化物が、それぞれ注目されている。2. Description of the Related Art In recent years,
As a negative electrode material for a non-aqueous secondary battery, it is possible to absorb and release lithium ions because it has excellent flexibility and there is no fear of internal short circuit due to the growth of dendritic lithium. Carbon materials such as coke and graphite are used as the positive electrode material of the battery, and the discharge potential is 3.5 to 4 V ( vs. Li.
/ Li + ), the lithium-transition metal composite oxides such as LiNiO 2 and LiCoO 2 are attracting attention because they enable high-voltage design.
【0003】しかしながら、負極材料として炭素材料
を、また正極材料としてリチウム−遷移金属複合酸化物
を用いた非水系二次電池には、放電末期に負極電位が急
激に上昇し、放電末期及び充電初期に負極の表面で非水
電解液がガスの発生を伴って分解することに起因して、
電池容量が次第に低下するという問題がある。すなわ
ち、リチウム−遷移金属複合酸化物と炭素材料とを正負
各極の電極材料として用いると、高電圧化及び高容量化
が可能であるという利点がある反面、非水電解液の分解
が生じ易いためサイクル特性が良くないという欠点があ
るのである。このような欠点は、結晶性が高い、すなわ
ち黒鉛化度が大きい炭素材料を負極材料に用いた場合に
特に生じ易い。However, in a non-aqueous secondary battery using a carbon material as a negative electrode material and a lithium-transition metal composite oxide as a positive electrode material, the negative electrode potential sharply rises at the end of discharge, and the end of discharge and the initial stage of charge. Due to the fact that the non-aqueous electrolyte decomposes with the generation of gas on the surface of the negative electrode,
There is a problem that the battery capacity gradually decreases. That is, when a lithium-transition metal composite oxide and a carbon material are used as electrode materials for positive and negative electrodes, there is an advantage that high voltage and high capacity can be obtained, but on the other hand, decomposition of the non-aqueous electrolyte is likely to occur. Therefore, there is a drawback that the cycle characteristics are not good. Such a defect is likely to occur particularly when a carbon material having high crystallinity, that is, having a high degree of graphitization is used as the negative electrode material.
【0004】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、炭素材料を負極材
料とし、リチウム−遷移金属複合酸化物を正極材料とす
る非水系二次電池のサイクル特性を改善するにある。The present invention has been made in view of the above circumstances, and an object thereof is a non-aqueous secondary battery in which a carbon material is a negative electrode material and a lithium-transition metal composite oxide is a positive electrode material. To improve the cycle characteristics of.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系二次電池(以下「本発明電池」と
称する。)は、リチウムイオンを吸蔵放出することが可
能な炭素材料を負極材料とする負極と、式:LiX MO
Y (但し、Xは、充放電時のリチウムの吸蔵放出に伴い
変動する値;1.8≦Y≦2.2;Mは、ニッケル及び
/又はコバルト、又は、ニッケル及び/又はコバルトを
主成分とする遷移金属である。)で表されるリチウム−
遷移金属複合酸化物を正極活物質とする正極とを備える
非水系二次電池において、下式(A)にて定義される前
記正極の充放電効率Ep を下式(B)にて定義される前
記負極の充放電効率EN よりも低くしてあることを特徴
とする。A non-aqueous secondary battery according to the present invention (hereinafter referred to as "the present battery") for achieving the above object is a carbon material capable of inserting and extracting lithium ions. And a formula: Li X MO
Y (however, X is a value that varies with the occlusion and release of lithium during charge and discharge; 1.8 ≦ Y ≦ 2.2; M is nickel and / or cobalt, or nickel and / or cobalt as a main component Lithium represented by
In a non-aqueous secondary battery comprising a positive electrode using a transition metal composite oxide as a positive electrode active material, the charge / discharge efficiency E p of the positive electrode defined by the following formula (A) is defined by the following formula (B). that wherein the are lower than the negative electrode of the charge-discharge efficiency E N.
【0006】 Ep =(P1 −P2 )×100/(P3 −P2 )…(A)E p = (P 1 −P 2 ) × 100 / (P 3 −P 2 ) ... (A)
【0007】〔但し、式(A)中、P1 、P2 及びP3
は、前記正極と当該正極に比し容量が大きいリチウム極
とを用いて、前記正極を満充電した後、前記正極の電位
が2V(vs. Li/Li+ )に降下するまで放電した場
合の上式:LiX MOY 中のXの、それぞれ放電後の
値、満充電後の値、及び、充電前の値である。〕[However, in the formula (A), P 1 , P 2 and P 3
Is a case where the positive electrode and a lithium electrode having a larger capacity than the positive electrode are used to fully charge the positive electrode and then discharge until the potential of the positive electrode drops to 2 V ( vs. Li / Li + ). The above formula is the value of X in Li X MO Y after discharge, the value after full charge, and the value before charge. ]
【0008】 EN =(N1 −N2 )×100/N1 …(B)E N = (N 1 −N 2 ) × 100 / N 1 (B)
【0009】〔但し、式(B)中、N1 及びN2 は、前
記負極と当該負極に比し容量が大きいリチウム極とを用
いて前記負極を満充電した後、前記負極の電位が1V(
vs. Li/Li+ )に上昇するまで放電した場合の、生
成せるリチウム含有炭素材料を表す式:CLiw (但
し、Wは、充放電時のリチウムの吸蔵放出に伴い変動す
る値)中のWの、それぞれ満充電後の値、及び、放電後
の値である。〕[In the formula (B), N 1 and N 2 have a potential of 1 V after the negative electrode is fully charged using the negative electrode and a lithium electrode having a larger capacity than the negative electrode. (
vs. Li / Li + ) in the formula representing the lithium-containing carbon material that can be produced when discharged until it rises to: CLi w (where W is a value that varies with the occlusion and release of lithium during charge and discharge) W is a value after full charge and a value after discharge. ]
【0010】本発明における式:LiX MOY で表され
るリチウム−遷移金属複合酸化物としては、LiCoO
2 、LiNiO2 、及びLiNi1-Z CoZ O2 (1>
Z>0)が代表的なものとして例示されるが、特にこれ
らに限定されない。The lithium-transition metal composite oxide represented by the formula: Li X MO Y in the present invention is LiCoO 2.
2 , LiNiO 2 , and LiNi 1-Z Co Z O 2 (1>
Z> 0) is exemplified as a typical one, but is not particularly limited thereto.
【0011】正極の充放電効率Ep は、正極活物質の作
製に使用する出発原料が異なると変動する。例えば、L
iNi1-Z CoZ O2 の作製において、コバルト原料と
してCo3 O4 とCo(OH)2 との混合物を用いる場
合と、Co(OH)2 とCoCO3 との混合物を用いる
場合とでは、Ep の値が異なる。また、ニッケル原料と
コバルト原料との混合割合を変えた場合にも、Ep の値
が変動する。その他、正極活物質を作製する際の熱処理
温度が異なる場合にも、Ep の値は変動する。The charging / discharging efficiency E p of the positive electrode varies depending on the starting materials used for producing the positive electrode active material. For example, L
In the production of iNi 1 -Z Co Z O 2 , a mixture of Co 3 O 4 and Co (OH) 2 is used as a cobalt raw material and a mixture of Co (OH) 2 and CoCO 3 is used. The value of E p is different. The value of E p also varies when the mixing ratio of the nickel raw material and the cobalt raw material is changed. In addition, the value of E p also varies when the heat treatment temperature for producing the positive electrode active material is different.
【0012】負極の充放電効率EN は、炭素材料の格子
面(002)面におけるd値(d002 )又はLcが異な
ると、異なった値をとる。The charging / discharging efficiency E N of the negative electrode takes different values when the d value (d 002 ) or Lc on the lattice plane (002) plane of the carbon material is different.
【0013】特に、d値(d002 )が3.35〜3.3
7Å、Lc値が200Å以上である黒鉛化度が大きく、
且つ、結晶性が高い高容量の炭素材料を用いた場合に
は、高容量化が可能となる反面、非水電解液の分解劣化
が起こり易くなる。かかる非水電解液の分解劣化を抑制
するためには、上述の炭素材料を電極材料として用いた
負極の充放電効率EN が92%程度であることから、正
極としては、充放電効率Ep が、92%未満のもの、好
ましくは90%以下のもの、さらに好ましくは85%以
下のものを用いる。但し、充放電効率Ep が70%未満
の正極を用いると、正極容量、ひいては電池容量が小さ
くなり過ぎるので、正極としては、充放電効率Ep が7
0〜85%のものを用いることが最も好ましい。In particular, the d value (d 002 ) is 3.35-3.3.
7Å, Lc value is 200Å or more, the degree of graphitization is large,
In addition, when a high-capacity carbon material having high crystallinity is used, the capacity can be increased, but decomposition and deterioration of the non-aqueous electrolyte is likely to occur. Since in order to suppress the decomposition deterioration of such non-aqueous electrolyte solution, the charge and discharge efficiency E N of the negative electrode using carbon materials described above as the electrode material is about 92%, as the positive electrode, the charge-discharge efficiency E p Of less than 92%, preferably 90% or less, more preferably 85% or less. However, when the charge-discharge efficiency E p is used a positive electrode of less than 70%, positive electrode capacity, and thus since the battery capacity becomes too small, as the positive electrode, the charge-discharge efficiency E p is 7
Most preferably, 0 to 85% is used.
【0014】なお、負極の充放電効率EN が約92%と
なる黒鉛化度が大きく、且つ、結晶性が高い高容量の炭
素材料としては、黒鉛(天然黒鉛及び人造黒鉛)の他、
例えば高圧処理などにより結晶性を高めた変性コークス
が挙げられる。[0014] Incidentally, large graphitization degree of the negative electrode charge-discharge efficiency E N is about 92%, and, as a carbon material having high crystallinity high capacity, other graphite (natural graphite and artificial graphite),
For example, a modified coke whose crystallinity is improved by high pressure treatment or the like can be mentioned.
【0015】この種の電池は通常は電池電圧が2.0V
程度に降下した時点を放電終止とするが、式(A)にお
いて、式:LiX MOY 中のXの放電後の値P1 を正極
の電位が2V(vs. Li/Li+ )になるまで放電した
後の値としたのは、この種の正極活物質を用いた電池で
は、一般に、リチウム標準単極電位に対する正極の電位
が3.0V程度に低下した時点で放電を終えるように容
量設計されることに鑑み、約1.0V分余裕を持たせる
ためである。This type of battery usually has a battery voltage of 2.0V.
The discharge is terminated when the voltage falls to a certain extent, but in the formula (A), the value P 1 of X in the formula: Li X MO Y after discharge becomes the potential of the positive electrode becomes 2 V ( vs. Li / Li + ). The value after the discharge to the above is that in a battery using this type of positive electrode active material, in general, the capacity is set so that the discharge is finished when the potential of the positive electrode with respect to the lithium standard single electrode potential decreases to about 3.0V. This is because there is a margin of about 1.0 V in consideration of the design.
【0016】また、式(B)において、式:CLiw 中
のWの放電後の値N2 を負極の電位が1V(vs. Li/
Li+ )になるまで放電した後の値としたのは、以下の
理由による。In the formula (B), the value N 2 of the W in the formula: CLi w after discharge is set to the negative electrode potential of 1 V ( vs. Li /
The reason why the value after discharging until Li + ) is reached is as follows.
【0017】すなわち、炭素材料を負極材料とする電池
を放電すると、負極の電位(vs. Li/Li+ )が通常
1.0Vになると急激に電位の上昇が見られ、このよう
な電位で充放電を行うと電解液の分解劣化が顕著とな
る。したがって、電解液の分解劣化を抑制するために
は、正極の電位が3.0V(通常の放電終止電位)にな
る時点の負極の電位を1.0V未満の電位となるように
すればよいからである。That is, when a battery using a carbon material as a negative electrode material is discharged, a sharp increase in the potential is observed when the negative electrode potential ( vs. Li / Li + ) is usually 1.0 V. When discharging, the decomposition and deterioration of the electrolytic solution becomes remarkable. Therefore, in order to suppress decomposition and degradation of the electrolytic solution, the potential of the negative electrode at the time when the potential of the positive electrode becomes 3.0 V (normal discharge end potential) may be set to a potential of less than 1.0 V. Is.
【0018】本発明は、負極材料として炭素材料を、ま
た正極材料として特定のリチウム−遷移金属複合酸化物
を用いた場合に問題となっていた非水電解液の分解に起
因するサイクル特性の低下を、正極の充放電効率Ep を
負極の充放電効率EN よりも低くし、これにより電池組
み立て後の初回の放電が正極支配で行われるようにして
抑制するものである。それゆえ、電解液など、電池を構
成する他の部材については従来非水系二次電池用として
提案され、或いは実用されている種々の材料を特に制限
なく用いることが可能である。In the present invention, the deterioration of the cycle characteristics due to the decomposition of the non-aqueous electrolyte, which has been a problem when the carbon material is used as the negative electrode material and the specific lithium-transition metal composite oxide is used as the positive electrode material. The charge and discharge efficiency E p of the positive electrode is made lower than the charge and discharge efficiency E N of the negative electrode so that the first discharge after battery assembly is controlled by the positive electrode. Therefore, for other members constituting the battery such as the electrolytic solution, various materials conventionally proposed or put into practical use for non-aqueous secondary batteries can be used without particular limitation.
【0019】非水電解液としては、エチレンカーボネー
ト、ビニレンカーボネート、プロピレンカーボネートな
どの有機溶媒や、これらとジメチルカーボネート、ジエ
チルカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、エトキシメトキシエタンなどの低
沸点溶媒との混合溶媒に、LiPF6 、LiClO4、
LiCF3 SO3 などの溶質を0.7〜1.5M(モル
/リットル)の割合で溶かした溶液が例示される。Examples of the non-aqueous electrolyte include organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, and dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2
In a mixed solvent with a low boiling point solvent such as diethoxyethane or ethoxymethoxyethane, LiPF 6 , LiClO 4 ,
A solution in which a solute such as LiCF 3 SO 3 is dissolved at a ratio of 0.7 to 1.5 M (mol / liter) is exemplified.
【0020】[0020]
【作用】本発明電池においては、初回放電後の負極の電
位が、電解液を分解する電位よりも低くなるため、負極
の炭素材料の表面における非水電解液の分解劣化が抑制
される。In the battery of the present invention, the potential of the negative electrode after the initial discharge becomes lower than the potential for decomposing the electrolytic solution, so that decomposition and deterioration of the non-aqueous electrolytic solution on the surface of the carbon material of the negative electrode is suppressed.
【0021】図1及び図2は本発明の原理説明図であ
り、図1は縦軸に正極のリチウム標準単極電位に対する
電位(V vs.Li/Li+ )を、また横軸に正極の正極
活物質1g当たりの充放電容量(mAh/g)をとって
示したグラフであり、図2は縦軸に炭素材料からなる負
極のリチウム標準単極電位に対する電位(V vs.Li/
Li+ )を、また横軸に負極の炭素材料1g当たりの充
放電容量(mAh/g)をとって示したグラフである。
なお、図1及び図2中の矢符の方向は、充放電時の各極
における電位の昇降の向きを示す。1 and 2 are explanatory views of the principle of the present invention. In FIG. 1, the vertical axis represents the potential (V vs. Li / Li + ) with respect to the lithium standard single-pole potential of the positive electrode, and the horizontal axis represents the positive electrode. FIG. 2 is a graph showing the charge / discharge capacity (mAh / g) per 1 g of the positive electrode active material, and FIG. 2 shows the potential (V vs. Li /
2 is a graph in which the charge / discharge capacity (mAh / g) per 1 g of the carbon material of the negative electrode is plotted on the horizontal axis.
The directions of the arrows in FIG. 1 and FIG. 2 indicate the direction of the potential increase / decrease at each electrode during charging / discharging.
【0022】先ず、上式(A)と図1との対応関係を以
下に示す。図1に示すように、初回充電(第1回目の充
電)前は3V( vs.Li/Li+ )程度であったLiX
MOY を正極活物質とする正極(以下、「LiX MOY
極」と称する。)の電位(a点)は、初回充電が進み、
LiX MOY 極からLiが離脱するにつれて電位が上昇
し、充電満了時にはb点に至る。次いで初回放電を行う
と、放電が進むにつれてLiX MOY 極の電位は降下
し、縦軸座標値が放電終止電位2V( vs.Li/L
i+ )を示すc点(従来電池)又はd点(本発明電池)
に至る。この際、a点の横軸座標値とb点の横軸座標値
との差Sが式(A)中のP3 −P2 と対応しており、b
点の横軸座標値とc点又はd点の横軸座標値との差T2
又はT1 が式(B)中のP1 −P2 と対応している。し
たがって、正極の充放電効率Ep は下式(C)で表すこ
ともできる。First, the correspondence between the above equation (A) and FIG. 1 is shown below. As shown in FIG. 1, Li X was about 3 V ( vs. Li / Li + ) before the first charge (first charge).
A positive electrode using MO Y as a positive electrode active material (hereinafter referred to as “Li X MO Y
It is called a "pole." ) Potential (point a), the initial charging progresses,
The potential increases as Li separates from the Li X MO Y electrode, and reaches the point b when the charge is completed. Next, when the first discharge is performed, the potential of the Li X MO Y pole drops as the discharge progresses, and the vertical axis coordinate value is the discharge end potential of 2 V ( vs. Li / L.
i + ) point c (conventional battery) or point d (invention battery)
Leading to. At this time, the difference S between the horizontal axis coordinate value of the point a and the horizontal axis coordinate value of the point b corresponds to P 3 −P 2 in the formula (A),
The difference T 2 between the horizontal axis coordinate value of the point and the horizontal axis coordinate value of the point c or d
Alternatively, T 1 corresponds to P 1 -P 2 in the formula (B). Therefore, the charge / discharge efficiency E p of the positive electrode can also be expressed by the following formula (C).
【0023】 Ep =(T1 又はT2 )×100/S…(C)E p = (T 1 or T 2 ) × 100 / S ... (C)
【0024】次いで、上式(B)と図2との対応関係を
以下に示す。図2に示すように、初回充電前は3V(
vs.Li/Li+ )程度であった炭素材料からなる負極
の電位(e点の縦軸座標値)は、初回充電が進み、炭素
材料にLiが挿入されるにつれてリチウム標準単極電
位、すなわち0V( vs.Li/Li+ )に近づき、満充
電後にはf点に至る。次いで初回放電を行うと、放電が
進むにつれて負極の電位は上昇し、放電末期には縦軸座
標値が放電終止電位1V( vs.Li/Li+ )を示すg
点に至る。この際、e点の横軸座標値とf点の横軸座標
値との差Qが式(B)中のN1 と対応しており、f点の
横軸座標値とg点の横軸座標値との差Rが式(B)中の
N1 −N2 と対応している。したがって、負極の充放電
効率EN は下記式(D)で表すこともできる。Next, the correspondence between the above equation (B) and FIG. 2 is shown below. As shown in FIG. 2, 3V (
vs. Li / Li + ) The potential of the negative electrode made of the carbon material (vertical axis coordinate value at point e) was about the lithium standard monopolar potential as Li was inserted into the carbon material, that is, It approaches 0 V ( vs. Li / Li + ) and reaches point f after full charge. Next, when the first discharge is performed, the potential of the negative electrode rises as the discharge progresses, and the ordinate coordinate value indicates the discharge end potential of 1 V ( vs. Li / Li + ) at the end of the discharge.
To the point. At this time, the difference Q between the horizontal axis coordinate value of the point e and the horizontal axis coordinate value of the f point corresponds to N 1 in the equation (B), and the horizontal axis coordinate value of the f point and the horizontal axis of the g point. The difference R from the coordinate value corresponds to N 1 -N 2 in the formula (B). Thus, charge and discharge efficiency E N of the negative electrode can also be represented by the following formula (D).
【0025】EN =R×100/Q…(D)E N = R × 100 / Q ... (D)
【0026】なお、図1及び図2において、初回放電の
際に、正負両極共、初回充電の際に辿ったルートを戻ら
ずにヒステリシスにc点若しくはd点(共に、正極の場
合)又はg点(負極の場合)に戻るのは、図2中のQ−
Rで表される容量に相当するLiが炭素材料の安定化の
ために使用、すなわち炭素材料に捕捉されてしまうから
である。It should be noted that, in FIGS. 1 and 2, both positive and negative electrodes do not return to the route followed during the initial charge during the initial discharge, and the hysteresis does not return to the point c or d (both are positive electrodes) or g. Returning to the point (in the case of the negative electrode) is Q- in FIG.
This is because Li corresponding to the capacity represented by R is used for stabilizing the carbon material, that is, captured by the carbon material.
【0027】ところで、従来の非水系二次電池では、正
極の充放電効率Ep が負極の充放電効率EN より大きく
なるように規制されていた。図1及び図2中の破線で示
す曲線(一部実線と重複している。)は、従来電池の正
極(Ep =93%)及び負極(EN =92%)の各放電
曲線を一例として示したものである。このような電池を
初回放電すると、放電末期に負極の電位が急激に上昇す
る。これは、負極の電位が急上昇する負極からのリチウ
ムの放出が止まった後も、正極の放電、すなわちリチウ
ムの吸蔵が引き続き起こり、放電が負極支配型となるか
らである。この場合、負極の放電終止電位は1V以上に
なる(図2中のh点)。そして、その後の充放電サイク
ルにおいては、負極の電位はf→h→f→hの如く変動
し、各サイクルにおける負極の放電終止電位が、非水電
解液が分解し始める時点(図2中のg点)の負極の電位
よりはるかに高くなるため、非水電解液の分解劣化が著
しく起こるのである。By the way, in the conventional non-aqueous secondary battery, the charging / discharging efficiency E p of the positive electrode is regulated to be higher than the charging / discharging efficiency E N of the negative electrode. Curves shown by broken lines in FIGS. 1 and 2 (partly overlapping with solid lines) are examples of discharge curves of a positive electrode (E p = 93%) and a negative electrode (E N = 92%) of a conventional battery. It is shown as. When such a battery is first discharged, the potential of the negative electrode sharply rises at the end of discharge. This is because the discharge of the positive electrode, that is, the occlusion of lithium continues to occur even after the release of lithium from the negative electrode where the potential of the negative electrode sharply rises is stopped, and the discharge becomes the negative electrode dominant type. In this case, the discharge termination potential of the negative electrode is 1 V or higher (point h in FIG. 2). Then, in the subsequent charge / discharge cycle, the potential of the negative electrode fluctuates as f → h → f → h, and the discharge end potential of the negative electrode in each cycle starts when the non-aqueous electrolyte starts to decompose (see FIG. 2). This is much higher than the potential of the negative electrode at point g), so that the decomposition and deterioration of the non-aqueous electrolyte occurs remarkably.
【0028】これに対して、本発明電池では、正極の充
放電効率Ep が負極の充放電効率EN より小さい各電極
を正負両極に用いる。図1及び図2中の実線で示す曲線
は、本発明電池の正極(Ep =90%)及び負極(EN
=92%)の各充放電曲線を一例として示したものであ
る。このような電池を初回放電すると、正極の電位が2
V( vs.Li/Li+ )に近づく放電末期になっても負
極の電位は、非水電解液が分解し始める電位(約1.0
V vs.Li/Li+ )にまで上昇せず、正極の電位が2
V( vs.Li/Li+ )になった時点でも、負極はg点
の手前のj点で放電が終了することとなる。すなわち、
放電が正極支配型となる。そして、その後の充放電サイ
クルにおいては、負極の電位はf→j→f→jの如く変
動し、各サイクルにおける負極の放電終止電位が、非水
電解液が分解し始める時点(図2中のg点)の負極の電
位より低いところで充放電サイクルが繰り返されるの
で、非水電解液の分解劣化が抑制されるのである。On the other hand, in the battery of the present invention, each electrode having a positive electrode charge / discharge efficiency E p lower than the negative electrode charge / discharge efficiency E N is used for both positive and negative electrodes. The curves shown by the solid lines in FIGS. 1 and 2 are the positive electrode (E p = 90%) and the negative electrode (E N of the battery of the present invention.
= 92%) of each charge / discharge curve is shown as an example. When such a battery is first discharged, the potential of the positive electrode becomes 2
Even at the end of discharge, which is close to V ( vs. Li / Li + ), the potential of the negative electrode is the potential at which the non-aqueous electrolyte begins to decompose (about 1.0
V vs. Li / Li + ) and the potential of the positive electrode is 2
Even when V ( vs. Li / Li + ) is reached, the discharge of the negative electrode ends at the j point before the g point. That is,
The discharge becomes the positive electrode dominant type. Then, in the subsequent charge / discharge cycle, the potential of the negative electrode fluctuates as f → j → f → j, and the discharge end potential of the negative electrode in each cycle starts when the non-aqueous electrolyte starts to decompose (see FIG. 2). Since the charging / discharging cycle is repeated at a point lower than the potential of the negative electrode at point g), decomposition and deterioration of the non-aqueous electrolyte is suppressed.
【0029】[0029]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.
【0030】(実施例1)扁平型の非水系二次電池(本
発明電池)を作製した。Example 1 A flat non-aqueous secondary battery (the battery of the present invention) was produced.
【0031】〔正極〕LiOHと、Ni(OH)2 と、
Coの原料(Co3 O4 と、Co(OH)2とからなり
モル比3:1)とを、LiとNiとCoとのモル比が
2:1:1となるように乳鉢にて混合した後、この混合
物を乾燥空気雰囲気下にて、700°Cで20時間熱処
理し、LiNi0.5 Co0.5 O2 で示される正極活物質
を得た。次いで、平均粒径が5μmとなるように石川式
らいかい乳鉢中で粉砕して正極活物質粉末を得た。[Positive electrode] LiOH, Ni (OH) 2 ,
A raw material of Co (Co 3 O 4 and Co (OH) 2 in a molar ratio of 3: 1) is mixed in a mortar so that the molar ratio of Li, Ni and Co is 2: 1: 1. After that, this mixture was heat-treated in a dry air atmosphere at 700 ° C. for 20 hours to obtain a positive electrode active material represented by LiNi 0.5 Co 0.5 O 2 . Then, the powder was crushed in an Ishikawa type raid mortar so that the average particle size was 5 μm, to obtain a positive electrode active material powder.
【0032】次いで、上記正極活物質粉末と、導電剤と
しての炭素粉末と、結着剤としてのポリフッ化ビニリデ
ン(PVDF)とを、重量比80:10:10で混合し
て正極合剤を調製し、この正極合剤を2トン/cm2 の
圧力で円板状に加圧成型した後、150°Cで2時間熱
処理して正極を作製した。Next, the positive electrode active material powder, carbon powder as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder are mixed at a weight ratio of 80:10:10 to prepare a positive electrode mixture. Then, this positive electrode mixture was pressure-molded into a disk shape at a pressure of 2 ton / cm 2 , and then heat-treated at 150 ° C. for 2 hours to produce a positive electrode.
【0033】〔負極〕天然黒鉛〔格子面(002)面に
おけるd値(d002 )が3.354Åであり、Lc値が
1000Åである。〕と、PVDFとを、重量比95:
5で混合して負極合剤を調製し、この負極合剤を2トン
/cm2 の圧力で円板状に加圧成型した後、150°C
で2時間熱処理して負極を作製した。なお、前記式
(D)に示す負極の充放電効率EN は、92%であっ
た。[Negative electrode] Natural graphite [The d value (d 002 ) on the lattice plane (002) plane is 3.354Å and the Lc value is 1000Å. ] And PVDF in a weight ratio of 95:
5 to prepare a negative electrode mixture, and the negative electrode mixture was pressure-molded into a disk shape at a pressure of 2 ton / cm 2 and then at 150 ° C.
Was heat-treated for 2 hours to prepare a negative electrode. The charge-discharge efficiency E N of the negative electrode shown in the formula (D) was 92%.
【0034】〔非水電解液〕エチレンカーボネートに、
LiPF6 を1M(モル/リットル)の割合で溶かして
非水電解液を調製した。[Non-Aqueous Electrolyte] In ethylene carbonate,
LiPF 6 was dissolved at a ratio of 1 M (mol / liter) to prepare a non-aqueous electrolytic solution.
【0035】〔電池の作製〕以上の正負両極及び非水電
解液を用いて扁平型の本発明電池BA1を作製した(電
池寸法:直径20mm、厚さ1.6mm)。なお、セパ
レータとしては、ポリプロピレン製の微多孔膜(ヘキス
トセラニーズ社製、商品名「セルガード」)を使用し、
これに先の非水電解液を含浸させた。[Production of Battery] A flat type battery BA1 of the present invention was produced using the above-described positive and negative electrodes and the non-aqueous electrolyte (battery size: diameter 20 mm, thickness 1.6 mm). As the separator, a polypropylene microporous film (Hoechst Celanese, trade name "Celgard") is used.
This was impregnated with the above non-aqueous electrolyte.
【0036】図3は、作製した本発明電池BA1を模式
的に示す断面図であり、同図に示す本発明電池BA1
は、正極1、負極2、これら両電極1,2を互いに離間
するセパレータ3、正極缶4、負極缶5、正極集電体
6、負極集電体7及びポリプロピレン製の絶縁パッキン
グ8などからなる。FIG. 3 is a cross-sectional view schematically showing the produced battery BA1 of the present invention. The battery BA1 of the present invention shown in the same figure.
Is composed of a positive electrode 1, a negative electrode 2, a separator 3 for separating the electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7 and an insulating packing 8 made of polypropylene. .
【0037】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極集
電体6を介して正極缶4に、また負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other with a separator 3 impregnated with a non-aqueous electrolytic solution interposed therebetween. The positive electrode 1 is a positive electrode current collector. 6 to the positive electrode can 4 and the negative electrode 2 to the negative electrode current collector 7
It is connected to the negative electrode can 5 via the so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.
【0038】(実施例2〜6)コバルト原料として、C
o3 O4 とCo(OH)2 とのモル比が1:2の混合
物、Co3 O4 とCo(OH)2 とCoCO3 とのモル
比が1:1:1の混合物、Co(OH)2 とCoCO3
とのモル比が1:1の混合物、Co(OH)2 とCoC
O3 とのモル比が1:2の混合物、又はCoCO3 を単
独用いたこと以外は上記実施例1と同様にして、正極を
作製した。次いで、これらの正極を用いたこと以外は実
施例1と同様にして、本発明電池BA2〜BA6を作製
した。(Examples 2 to 6) As a cobalt raw material, C was used.
o 3 O 4 and Co (OH) molar ratio of 2 is 1: mixture of 2, the mole ratio of Co 3 O 4 and Co (OH) 2 and CoCO 3 1: 1: a mixture of 1, Co (OH ) 2 and CoCO 3
A 1: 1 molar ratio of Co (OH) 2 and CoC
A positive electrode was produced in the same manner as in Example 1 except that a mixture having a molar ratio of O 3 to 1: 2 or CoCO 3 was used alone. Next, batteries of the present invention BA2 to BA6 were produced in the same manner as in Example 1 except that these positive electrodes were used.
【0039】(比較例1)コバルト原料として、Co3
O4 を単独用いたこと以外は上記実施例1と同様にし
て、正極を作製した。次いで、この正極を用いたこと以
外は実施例1と同様にして、比較電池BC1を作製し
た。Comparative Example 1 Co 3 was used as a cobalt raw material.
A positive electrode was produced in the same manner as in Example 1 except that O 4 was used alone. Then, a comparative battery BC1 was produced in the same manner as in Example 1 except that this positive electrode was used.
【0040】本発明電池BA1〜BA6及び比較電池B
C1の各正極活物質の作製において用いたCoの原料の
種類とその割合とを、次の表1にまとめて示す。Inventive batteries BA1 to BA6 and comparative battery B
Table 1 below shows the types of Co raw materials used in the production of each C1 positive electrode active material and their ratios.
【0041】[0041]
【表1】 [Table 1]
【0042】〔正極の充放電効率Ep の測定〕本発明電
池BA1〜BA6の正極及び比較電池BC1の正極につ
いて、それらの充放電効率Ep を調べた。結果を上記表
1に示す。なお、実験は、正極と、この正極より容量の
大きいリチウム極とを、上記本発明電池BA1の作製に
おいて使用した非水電解液中に浸漬し、3mAで充電終
止電圧4.2Vまで充電した後、3mAで放電終止電圧
2Vまで放電することにより行った。[0042] The positive electrode and the positive electrode of the comparison battery BC1 of Charge-discharge efficiency measurement of E p of Positive Electrode present battery BA1~BA6, were examined their charge and discharge efficiency E p. The results are shown in Table 1 above. In the experiment, a positive electrode and a lithium electrode having a capacity larger than that of the positive electrode were immersed in the non-aqueous electrolytic solution used in the production of the battery BA1 of the present invention, and charged at 3 mA to a charge end voltage of 4.2 V. It was performed by discharging at 3 mA to a discharge end voltage of 2V.
【0043】表1に示すように本発明電池BA1〜BA
6の正極では正極の充放電効率Epが60〜90%であ
り、負極の充放電効率EN (92%)より低くなってい
るのに対して、比較電池BC1の正極では正極の充放電
効率Ep が93%であり、負極の充放電効率EN より高
くなっている。As shown in Table 1, the batteries BA1 to BA of the present invention
In the positive electrode of No. 6, the charge / discharge efficiency E p of the positive electrode is 60 to 90%, which is lower than the charge / discharge efficiency E N (92%) of the negative electrode, whereas in the positive electrode of Comparative Battery BC1, the charge / discharge of the positive electrode is The efficiency E p is 93%, which is higher than the charge / discharge efficiency E N of the negative electrode.
【0044】〔サイクル特性〕本発明電池BA1〜〜B
A6及び比較電池BC1について、3mAで充電終止電
圧4.2Vまで充電した後、3mAで放電終止電圧2V
まで放電する工程を1サイクルとする充放電サイクル試
験を300サイクル行い、各電池のサイクル特性を調べ
た。結果を上記表1に示す。[Cycle Characteristics] Batteries BA1 to B of the present invention
Regarding A6 and comparative battery BC1, after charging to a cut-off voltage of 4.2 V at 3 mA, a discharge-stop voltage of 2 V at 3 mA
A charging / discharging cycle test in which the process of discharging up to 1 cycle was performed for 300 cycles, and the cycle characteristics of each battery were examined. The results are shown in Table 1 above.
【0045】表1に示すように本発明電池BA1〜〜B
A6の容量劣化率は0.08〜0.11%/サイクルと
小さいのに対して、比較電池BC1の容量劣化率は0.
30%/サイクルと大きい。このことから、充放電サイ
クル時の非水電解液の分解に起因するサイクル劣化が、
正極の充放電効率EP を負極の充放電効率EN より低く
規制することにより顕著に抑制されることが分かる。As shown in Table 1, batteries BA1 to B of the present invention
The capacity deterioration rate of A6 is as small as 0.08 to 0.11% / cycle, whereas the capacity deterioration rate of the comparative battery BC1 is 0.
It is as large as 30% / cycle. From this, the cycle deterioration due to the decomposition of the non-aqueous electrolyte during the charge-discharge cycle,
It can be seen that the charge / discharge efficiency E P of the positive electrode is controlled to be lower than the charge / discharge efficiency E N of the negative electrode, whereby it is significantly suppressed.
【0046】〔初回放電容量〕本発明電池BA1〜〜B
A6及び比較電池BC1について、上記サイクル特性に
おける充放電条件と同様の条件で1回だけ充放電を行
い、各電池の初回放電容量を調べた。結果を上記表1に
示す。[Initial discharge capacity] Batteries BA1 to BA of the present invention
A6 and comparative battery BC1 were charged and discharged only once under the same conditions as the charging and discharging conditions in the above cycle characteristics, and the initial discharge capacity of each battery was examined. The results are shown in Table 1 above.
【0047】表1に示すように本発明電池BA1〜〜B
A5では初回放電容量が17〜22mAhと大きいが、
本発明電池BA6では初回放電容量が14mAhと小さ
い。これは、正極の充放電効率Ep が低くなり過ぎたこ
とに起因して、放電が正極支配でなされる本発明電池に
おける正極の放電容量が小さくなり過ぎたことによるも
のである。したがって、正極の充放電効率Ep は70%
以上に規制するのが望ましい。As shown in Table 1, batteries BA1 to B of the present invention
In A5, the initial discharge capacity is as large as 17-22 mAh,
The battery BA6 of the present invention has a small initial discharge capacity of 14 mAh. This is because the charge and discharge efficiency E p of the positive electrode was too low, and the discharge capacity of the positive electrode in the battery of the present invention in which discharge was dominated by the positive electrode was too small. Therefore, the charge / discharge efficiency E p of the positive electrode is 70%.
It is desirable to regulate above.
【0048】叙上の実施例では、本発明を扁平型電池に
適用する場合を例に挙げて説明したが、本発明は電池形
状に特に制限はなく、円筒型、角型など、他の種々の形
状の非水系二次電池に適用し得るものである。In the above embodiments, the case where the present invention is applied to the flat type battery has been described as an example, but the present invention is not particularly limited in the shape of the battery, and various other types such as a cylindrical type and a square type are also possible. It can be applied to a non-aqueous secondary battery having the above shape.
【0049】また、上記実施例では非水電解液二次電池
に適用する場合を例に挙げて説明したが、固体電解質二
次電池であっても電解質の分解が生じる場合がある。こ
のような場合には、本発明を固体電解質電池にも適用し
得るものである。Further, in the above embodiment, the case of applying to the non-aqueous electrolyte secondary battery has been described as an example, but the electrolyte may be decomposed even in the solid electrolyte secondary battery. In such a case, the present invention can be applied to a solid electrolyte battery.
【0050】[0050]
【発明の効果】負極の炭素材料の表面における非水電解
液の分解が抑制されるので、本発明電池は充放電サイク
ルの進行に伴う容量劣化率が小さく、サイクル特性に優
れる。Since the decomposition of the non-aqueous electrolyte on the surface of the carbon material of the negative electrode is suppressed, the battery of the present invention has a small capacity deterioration rate with the progress of charge / discharge cycles and is excellent in cycle characteristics.
【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.
【図2】本発明の原理説明図である。FIG. 2 is a diagram illustrating the principle of the present invention.
【図3】本発明に係る非水系二次電池の断面図である。FIG. 3 is a cross-sectional view of a non-aqueous secondary battery according to the present invention.
BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Inventive battery 1 Positive electrode 2 Negative electrode 3 Separator
フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Front page continuation (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-5-5 Keihan-hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.
Claims (5)
な炭素材料を負極材料とする負極と、式:LiX MOY
(但し、Xは、充放電時のリチウムの吸蔵放出に伴い変
動する値;1.8≦Y≦2.2;Mは、ニッケル及び/
又はコバルト、又は、ニッケル及び/又はコバルトを主
成分とする遷移金属である。)で表されるリチウム−遷
移金属複合酸化物を正極活物質とする正極とを備える非
水系二次電池において、下式(A)にて定義される前記
正極の充放電効率Ep を下式(B)にて定義される前記
負極の充放電効率EN よりも低くしてあることを特徴と
する非水系二次電池。 Ep =(P1 −P2 )×100/(P3 −P2 )…(A) 〔但し、式(A)中、P1 、P2 及びP3 は、前記正極
と当該正極に比し容量が大きいリチウム極とを用いて、
前記正極を満充電した後、前記正極の電位が2V(vs.
Li/Li+ )に降下するまで放電した場合の上式:L
iX MOY 中のXの、それぞれ放電後の値、満充電後の
値、及び、充電前の値である。〕 EN =(N1 −N2 )×100/N1 …(B) 〔但し、式(B)中、N1 及びN2 は、前記負極と当該
負極に比し容量が大きいリチウム極とを用いて前記負極
を満充電した後、前記負極の電位が1V(vs. Li/L
i+ )に上昇するまで放電した場合の、生成せるリチウ
ム含有炭素材料を表す式:CLiw (但し、Wは、充放
電時のリチウムの吸蔵放出に伴い変動する値)中のW
の、それぞれ満充電後の値、及び、放電後の値であ
る。〕1. A negative electrode using a carbon material capable of inserting and extracting lithium ions as a negative electrode material, and a formula: Li X MO Y.
(However, X is a value that varies with occlusion and release of lithium during charge and discharge; 1.8 ≦ Y ≦ 2.2; M is nickel and / or
Alternatively, it is a transition metal containing cobalt or nickel and / or cobalt as a main component. In a non-aqueous secondary battery comprising a positive electrode having a lithium-transition metal composite oxide represented by the formula (4) as a positive electrode active material, the charge / discharge efficiency E p of the positive electrode defined by the following formula (A) is expressed by the following formula: A non-aqueous secondary battery, which has a charging / discharging efficiency E N of the negative electrode defined in (B). E p = (P 1 −P 2 ) × 100 / (P 3 −P 2 ) ... (A) [In the formula (A), P 1 , P 2 and P 3 are in proportion to the positive electrode and the positive electrode. Using a lithium electrode with a large capacity,
After the positive electrode is fully charged, the potential of the positive electrode is 2V ( vs.
The above formula when discharged until it drops to Li / Li + ): L
The values of X in i X MO Y are the value after discharging, the value after fully charging, and the value before charging. E N = (N 1 −N 2 ) × 100 / N 1 (B) [In the formula (B), N 1 and N 2 are a lithium electrode having a larger capacity than the negative electrode and the negative electrode. After the negative electrode was fully charged using a battery, the potential of the negative electrode was 1 V ( vs. Li / L
W in the formula: CLi w (where W is a value that varies with the occlusion and release of lithium at the time of charging and discharging) when the lithium-containing carbon material is generated when it is discharged up to i + ).
, Respectively, the value after full charge and the value after discharge. ]
るd値(d002 )及びc軸方向の結晶子の大きさ(L
c)が、それぞれ3.35〜3.37Å及び200Å以
上である請求項1記載の非水系二次電池。2. The d value (d 002 ) on the lattice plane (002) plane of the carbon material and the crystallite size (L in the c-axis direction).
The non-aqueous secondary battery according to claim 1, wherein c) is 3.35 to 3.37 Å and 200 Å or more, respectively.
るd値(d002 )及びc軸方向の結晶子の大きさ(L
c)が、それぞれ3.35〜3.37Å及び200Å以
上であり、且つ、前記正極の充放電効率Ep が90%以
下である請求項1記載の非水系二次電池。3. The d value (d 002 ) on the lattice plane (002) plane of the carbon material and the crystallite size (L in the c-axis direction).
The non-aqueous secondary battery according to claim 1, wherein c) is 3.35 to 3.37Å and 200Å or more, respectively, and the charge / discharge efficiency E p of the positive electrode is 90% or less.
るd値(d002 )及びc軸方向の結晶子の大きさ(L
c)が、それぞれ3.35〜3.37Å及び200Å以
上であり、且つ、前記正極の充放電効率Ep が85%以
下である請求項1記載の非水系二次電池。4. The d value (d 002 ) in the lattice plane (002) plane of the carbon material and the crystallite size (L in the c-axis direction).
The non-aqueous secondary battery according to claim 1, wherein c) is 3.35 to 3.37Å and 200Å or more, respectively, and the charge / discharge efficiency E p of the positive electrode is 85% or less.
るd値(d002 )及びc軸方向の結晶子の大きさ(L
c)が、それぞれ3.35〜3.37Å及び200Å以
上であり、且つ、前記正極の充放電効率Ep が70%以
上85%以下である請求項1記載の非水系二次電池。5. The d value (d 002 ) in the lattice plane (002) plane of the carbon material and the crystallite size (L in the c-axis direction).
The non-aqueous secondary battery according to claim 1, wherein c) is 3.35 to 3.37Å and 200Å or more, respectively, and the charge / discharge efficiency E p of the positive electrode is 70% to 85%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32132693A JP3519766B2 (en) | 1993-11-26 | 1993-11-26 | Non-aqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32132693A JP3519766B2 (en) | 1993-11-26 | 1993-11-26 | Non-aqueous secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07153494A true JPH07153494A (en) | 1995-06-16 |
JP3519766B2 JP3519766B2 (en) | 2004-04-19 |
Family
ID=18131348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32132693A Expired - Lifetime JP3519766B2 (en) | 1993-11-26 | 1993-11-26 | Non-aqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3519766B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001067536A1 (en) * | 2000-03-07 | 2001-09-13 | Teijin Limited | Lithium ion secondary cell, separator, cell pack, and charging method |
US6514638B2 (en) * | 1997-05-27 | 2003-02-04 | Tdk Corporation | Non-aqueous electrolyte secondary battery including positive and negative electrodes |
US6881438B2 (en) | 2000-03-07 | 2005-04-19 | Teijin Limited | Process for production of composite porous film |
US7094497B2 (en) | 2000-03-07 | 2006-08-22 | Teijin Limited | Separator for lithium ion secondary battery |
WO2008056791A1 (en) * | 2006-11-10 | 2008-05-15 | Fuji Jukogyo Kabushiki Kaisha | Lithium-ion secondary battery |
US8253386B2 (en) | 2003-09-08 | 2012-08-28 | Sanyo Electric, Co., Ltd. | Method of controlling charge and discharge of non-aqueous electrolyte secondary cell |
CN118040014A (en) * | 2024-04-10 | 2024-05-14 | 瑞浦兰钧能源股份有限公司 | Secondary battery and preparation method and application thereof |
-
1993
- 1993-11-26 JP JP32132693A patent/JP3519766B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6514638B2 (en) * | 1997-05-27 | 2003-02-04 | Tdk Corporation | Non-aqueous electrolyte secondary battery including positive and negative electrodes |
US6818352B2 (en) | 1999-03-07 | 2004-11-16 | Teijin Limited | Lithium secondary cell, separator, cell pack, and charging method |
WO2001067536A1 (en) * | 2000-03-07 | 2001-09-13 | Teijin Limited | Lithium ion secondary cell, separator, cell pack, and charging method |
US6881438B2 (en) | 2000-03-07 | 2005-04-19 | Teijin Limited | Process for production of composite porous film |
US7094497B2 (en) | 2000-03-07 | 2006-08-22 | Teijin Limited | Separator for lithium ion secondary battery |
US8253386B2 (en) | 2003-09-08 | 2012-08-28 | Sanyo Electric, Co., Ltd. | Method of controlling charge and discharge of non-aqueous electrolyte secondary cell |
WO2008056791A1 (en) * | 2006-11-10 | 2008-05-15 | Fuji Jukogyo Kabushiki Kaisha | Lithium-ion secondary battery |
CN118040014A (en) * | 2024-04-10 | 2024-05-14 | 瑞浦兰钧能源股份有限公司 | Secondary battery and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3519766B2 (en) | 2004-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3172388B2 (en) | Lithium secondary battery | |
JP2000195516A (en) | Lithium secondary battery | |
JPH07122296A (en) | Non-aqueous electrolyte secondary battery | |
JPH06243871A (en) | Nonaqueous secondary battery | |
JP3188033B2 (en) | Non-aqueous secondary battery | |
JPH09147863A (en) | Nonaqueous electrolyte battery | |
JPH05290844A (en) | Lithium secondary battery | |
JP3768046B2 (en) | Lithium secondary battery | |
JP3519766B2 (en) | Non-aqueous secondary battery | |
US6482546B1 (en) | Rechargeable lithium battery | |
JP3188032B2 (en) | Lithium secondary battery | |
JPH08306386A (en) | Manaqueous electrolyte secondary battery | |
JP3268924B2 (en) | Non-aqueous electrolyte battery | |
JPH08171936A (en) | Lithium secondary battery | |
JP4161396B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3670879B2 (en) | Lithium secondary battery | |
JPH09232002A (en) | Nonaqueous electrolyte secondary battery | |
JP2000277111A (en) | Lithium secondary battery | |
JPH06275273A (en) | Nonaqueous secondary battery | |
JPH08171934A (en) | Lithium secondary battery | |
JPH10144291A (en) | Non-aqueous electrolyte battery and manufacture of its positive electrode | |
JPH06243869A (en) | Nonaqueous secondary battery | |
JP3349373B2 (en) | Lithium secondary battery | |
JP2002170569A (en) | Lithium secondary cell | |
JPH09213306A (en) | Secondary battery with non-aqueous electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040130 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090206 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100206 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110206 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140206 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |