JPH09213306A - Secondary battery with non-aqueous electrolyte - Google Patents

Secondary battery with non-aqueous electrolyte

Info

Publication number
JPH09213306A
JPH09213306A JP8045451A JP4545196A JPH09213306A JP H09213306 A JPH09213306 A JP H09213306A JP 8045451 A JP8045451 A JP 8045451A JP 4545196 A JP4545196 A JP 4545196A JP H09213306 A JPH09213306 A JP H09213306A
Authority
JP
Japan
Prior art keywords
negative electrode
binder
carbon material
pvp
pvac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8045451A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shoji
良浩 小路
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8045451A priority Critical patent/JPH09213306A/en
Publication of JPH09213306A publication Critical patent/JPH09213306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent slipping-off of a carbon material from a negative electrode caused by repetitive cycle of charging and discharging operations by specifying the component composition of a binder for negative electrode. SOLUTION: A binder consists of a mixture of polyvinyl acetate(PVAc) and polyvinyl pyrolidone(PVP) in a proportion by weight of 3:7 to 8:2. Accordingly the carbon material is not likely slipping off from the negative electrode when the charging and discharging cycle is repeated, so that the resultant battery is equipped with an excellent charge/discharge cyclic characteristic. The reason therefor is as follows; PVAc of soft nature is suitable for binding together of particles of carbon material and also binding of the carbon material with a negative electrode electricity collector but is likely to go in structural destruction with application of an external force at the time of rolling, etc., to lead to drop of the binding strength, while the PVP of rigid nature is not likely to make structural destruction even with application of external force but has a small binding force. If the two sorts of polymers are used in combination in the specified mix proportion, they complement each other, so that a bond strength greater than a conventional binder can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素材料を負極材
料とする非水電解液二次電池に係わり、詳しくはその充
放電サイクル特性を改善することを目的とした、負極に
使用する結着剤の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode material, and more specifically to a binder used for a negative electrode for the purpose of improving its charge / discharge cycle characteristics. Regarding improvement of agents.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池に代表される非水電解液二次電池が、
アルカリ二次電池に比べて、高電圧化及び高エネルギー
密度化が可能なことから注目されている。非水電解液二
次電池の負極材料としては、当初、金属材料(金属リチ
ウムなど)が検討されていた。
2. Description of the Related Art In recent years,
A non-aqueous electrolyte secondary battery typified by a lithium secondary battery,
It is attracting attention because it can achieve higher voltage and higher energy density than an alkaline secondary battery. As a negative electrode material for a non-aqueous electrolyte secondary battery, a metallic material (such as metallic lithium) was initially considered.

【0003】しかし、金属材料を負極材料として用いた
場合は、充放電を繰り返すと樹枝状の電析物(デンドラ
イト)が成長して内部短絡を惹起するおそれがある。こ
のため、近年、金属材料に代わる非水電解液二次電池の
負極材料として、内部短絡を惹起する虞れの無いコーク
ス、黒鉛等の炭素材料が提案されている。
However, when a metal material is used as a negative electrode material, repeated charging and discharging may cause dendritic electrodeposits (dendrites) to grow and cause an internal short circuit. For this reason, in recent years, carbon materials such as coke and graphite that have no risk of causing an internal short circuit have been proposed as negative electrode materials for non-aqueous electrolyte secondary batteries that replace metal materials.

【0004】炭素材料を負極材料とする負極は、炭素粉
末を結着剤溶液と混合して負極合剤スラリーを調製し、
この負極合剤スラリーを負極集電体上に塗布し、乾燥す
ることにより作製される。而して、従来は、非水電解液
二次電池の負極の結着剤として、ポリフッ化ビニリデン
(PVdF)等のフッ素樹脂が主に用いられていた。
For a negative electrode using a carbon material as a negative electrode material, carbon powder is mixed with a binder solution to prepare a negative electrode mixture slurry,
This negative electrode mixture slurry is applied on a negative electrode current collector and dried. Thus, conventionally, a fluororesin such as polyvinylidene fluoride (PVdF) has been mainly used as a binder for the negative electrode of the non-aqueous electrolyte secondary battery.

【0005】しかしながら、フッ素樹脂を結着剤として
用いた場合には、炭素材料と負極集電体との結着性が悪
く、充放電を繰り返すと炭素材料が負極から脱落し易い
ために、充放電サイクル特性が総じて良くないという問
題がある。
However, when a fluororesin is used as the binder, the binding property between the carbon material and the negative electrode current collector is poor, and the carbon material easily falls off from the negative electrode after repeated charging and discharging. There is a problem that the discharge cycle characteristics are generally poor.

【0006】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、炭素材料と
負極集電体との結着性が良好な、充放電サイクル特性に
優れた非水電解液二次電池を提供するにある。
The present invention has been made to solve this problem, and an object thereof is to provide a good binding property between a carbon material and a negative electrode current collector and to have excellent charge / discharge cycle characteristics. A non-aqueous electrolyte secondary battery is provided.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水電解液二次電池(本発明電池)は、
正極と、炭素材料及び結着剤を含有する負極合剤層を負
極集電体上に形成してなる負極と、非水電解液とを備え
る非水電解液二次電池であって、前記結着剤が、ポリ酢
酸ビニル(PVAc)とポリビニルピロリドン(PV
P)との重量比3:7〜8:2の混合物からなる。
The non-aqueous electrolyte secondary battery (the battery of the present invention) according to the present invention for achieving the above object is
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode formed by forming a negative electrode mixture layer containing a carbon material and a binder on a negative electrode current collector, and a non-aqueous electrolyte secondary battery comprising: The binder is polyvinyl acetate (PVAc) and polyvinylpyrrolidone (PV
P) in a weight ratio of 3: 7 to 8: 2.

【0008】[0008]

【発明の実施の形態】炭素材料としては、コークス、黒
鉛、有機物焼成体が例示される。高容量化を図る上で、
格子面(002)面におけるd値(d002 )が3.35
〜3.38Å、且つc軸方向の結晶子の大きさ(Lc)
が150Å以上の炭素材料が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the carbon material include coke, graphite, and a fired organic material. For higher capacity,
The d value (d 002 ) on the lattice plane (002) plane is 3.35.
~ 3.38Å, and the crystallite size in the c-axis direction (Lc)
Is preferably a carbon material having a value of 150Å or more.

【0009】負極は、負極集電体と、この負極集電体上
に形成され、炭素材料と、PVAcとPVPとの重量比
3:7〜8:2の混合物からなる結着剤とを含有する負
極合剤層とからなる。負極合剤層は、炭素材料(粉末)
を結着剤溶液(水溶液又は非水溶液)と混合して負極合
剤スラリーを調製し、この負極合剤スラリーを負極集電
体上に塗布し、乾燥することにより形成される。負極集
電体としては、銅箔、ニッケル箔が例示される。PVA
cとPVPとの重量比が3:7〜8:2に限定されるの
は、この範囲を外れると、優れた充放電サイクル特性が
得られなくなるからである。負極合剤層に、増粘剤を含
有せしめてもよい。増粘剤としては、CMC(カルボキ
シメチルセルロース)が代表的なものとして例示され
る。
The negative electrode contains a negative electrode current collector, a binder which is formed on the negative electrode current collector, and which comprises a carbon material and a mixture of PVAc and PVP in a weight ratio of 3: 7 to 8: 2. And a negative electrode mixture layer. The negative electrode mixture layer is a carbon material (powder)
Is mixed with a binder solution (aqueous solution or non-aqueous solution) to prepare a negative electrode mixture slurry, and the negative electrode mixture slurry is applied onto a negative electrode current collector and dried. Examples of the negative electrode current collector include copper foil and nickel foil. PVA
The reason that the weight ratio of c to PVP is limited to 3: 7 to 8: 2 is that if it is out of this range, excellent charge / discharge cycle characteristics cannot be obtained. The negative electrode mixture layer may contain a thickener. A typical example of the thickener is CMC (carboxymethyl cellulose).

【0010】PVAcとPVPとの混合物(結着剤)
は、負極合剤層中に0.75〜10重量%含有せしめる
ことが好ましい。負極合剤層の結着剤含有率がこの範囲
を外れると初期容量が低下する。これは、結着剤含有率
が0.75重量%未満の場合は、炭素材料の粒子同士の
結着及び炭素材料と集電体との結着が不十分になるた
め、一方、結着剤含有率が10重量%を越えた場合は、
炭素材料と非水電解液との接触面積の減少により、負極
の含液性が低下したり、電極反応が不均一化したりする
ためと考えられる。
Mixture of PVAc and PVP (binder)
Is preferably contained in the negative electrode mixture layer in an amount of 0.75 to 10% by weight. If the content of the binder in the negative electrode mixture layer deviates from this range, the initial capacity decreases. This is because when the binder content is less than 0.75% by weight, the binding between the particles of the carbon material and the binding between the carbon material and the current collector become insufficient. If the content exceeds 10% by weight,
It is considered that the decrease in the contact area between the carbon material and the non-aqueous electrolytic solution reduces the liquid content of the negative electrode and makes the electrode reaction non-uniform.

【0011】非水電解液は、特に限定されず、従来公知
のものを使用することができる。溶媒の具体例として
は、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、ビニレンカーボネート、シクロ
ペンタノン、スルホラン、3−メチルスルホラン、2,
4−ジメチルスルホラン、3−メチル−1,3−オキサ
ゾリジン−2−オン、γ−ブチロラクトン、ジメチルカ
ーボネート、ジエチルカーボネート、エチルメチルカー
ボネート、メチルプロピルカーボネート、ブチルメチル
カーボネート、エチルプロピルカーボネート、ブチルエ
チルカーボネート、ジプロピルカーボネート、1,2−
ジメトキシエタン、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、1,3−ジオキソラン、酢酸メチ
ル、酢酸エチル及びこれらの2種以上の混合溶媒が、ま
た溶質の具体例としては、LiPF6、LiBF4 、L
iClO4 、LiCF3 SO3 、LiAsF6 、LiN
(CF3 SO2 2 、LiOSO2 (CF2 3 CF3
が、それぞれ挙げられる。
The non-aqueous electrolyte is not particularly limited, and any conventionally known one can be used. Specific examples of the solvent include ethylene carbonate, propylene carbonate,
Butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,
4-dimethylsulfolane, 3-methyl-1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, di Propyl carbonate, 1,2-
Dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate and a mixed solvent of two or more of these, and specific examples of the solute include LiPF 6 , LiBF 4 , and L.
iClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN
(CF 3 SO 2 ) 2 , LiOSO 2 (CF 2 ) 3 CF 3
, Respectively.

【0012】正極材料も、特に限定されず、従来公知の
ものを使用することができる。具体例としては、LiC
oO2 、LiNiO2 、LiMnO2 、LiVO2 、L
iNbO2 が挙げられる。
The positive electrode material is not particularly limited, and conventionally known materials can be used. As a specific example, LiC
oO 2 , LiNiO 2 , LiMnO 2 , LiVO 2 , L
iNbO 2 .

【0013】本発明は、リチウム二次電池の外、広く炭
素材料を負極材料とする非水電解液二次電池に適用可能
なものである。
INDUSTRIAL APPLICABILITY The present invention can be applied not only to lithium secondary batteries but also to non-aqueous electrolyte secondary batteries having a carbon material as a negative electrode material.

【0014】本発明電池においては、結着剤として、P
VAcとPVPとが所定割合で用いられているので、充
放電を繰り返した際に、炭素材料が負極から脱落しにく
い。このため、本発明電池は充放電サイクル特性に優れ
る。これは、次の理由による。すなわち、柔軟なPVA
cは、炭素材料の粒子同士の結着及び炭素材料と負極集
電体との結着に適しているが、圧延時などに外力が加わ
ると、構造破壊が起きて結着強度が低下するので、単独
では実用上十分な結着強度は得られない。一方、剛直な
PVPは、外力を加わえても、構造破壊は起きにくい
が、結着力が小さいために、単独では結着剤として使用
することはできない。しかし、PVAcとPVPとを所
定の割合で併用すると、上記した一方のポリマーの欠点
が他方のポリマーの利点により互いに補完されて、従来
のフッ素樹脂に比べて遙に大きな結着強度を発現するの
である。
In the battery of the present invention, P is used as the binder.
Since VAc and PVP are used in a predetermined ratio, it is difficult for the carbon material to drop from the negative electrode when charging and discharging are repeated. For this reason, the battery of the present invention is excellent in charge / discharge cycle characteristics. This is for the following reason. That is, flexible PVA
c is suitable for binding the particles of the carbon material to each other and binding the carbon material to the negative electrode current collector, but if external force is applied during rolling, structural destruction occurs and the binding strength decreases. However, by itself, practically sufficient binding strength cannot be obtained. On the other hand, a rigid PVP cannot easily be structurally destroyed even when an external force is applied, but it cannot be used alone as a binder because it has a small binding force. However, when PVAc and PVP are used together in a predetermined ratio, the above-mentioned drawbacks of one polymer are complemented by the advantages of the other polymer, and a binding strength much higher than that of a conventional fluororesin is exhibited. is there.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0016】(実験1) 〔正極の作製〕LiCoO2 粉末(活物質)と人造黒鉛
粉末(導電剤)との重量比9:1の混合物95重量部
と、PVdF5重量部の5重量%N−メチル−2−ピロ
リドン溶液とを混練して正極合剤スラリーを調製し、こ
の正極合剤スラリーを正極集電体としてのアルミニウム
箔の両面にドクターブレード法により塗布し、150°
Cで2時間真空乾燥して、アルミニウム箔の各面に厚さ
50μmの正極合剤層を形成してなる正極を作製した。
(Experiment 1) [Preparation of Positive Electrode] 95 parts by weight of a mixture of LiCoO 2 powder (active material) and artificial graphite powder (conductive agent) in a weight ratio of 9: 1, and 5 parts by weight of PVdF in 5% by weight N-- A methyl-2-pyrrolidone solution is kneaded to prepare a positive electrode mixture slurry, and this positive electrode mixture slurry is applied to both surfaces of an aluminum foil as a positive electrode current collector by a doctor blade method, and then the temperature is 150 °.
It was vacuum dried at C for 2 hours to prepare a positive electrode in which a positive electrode mixture layer having a thickness of 50 μm was formed on each surface of the aluminum foil.

【0017】〔負極の作製〕黒鉛粉末〔c軸方向の結晶
子の大きさ(Lc)>1000Å;格子面(002)面
におけるd値(d002 ):3.35Å〕98重量部を、
結着剤1重量部の水溶液に分散させ、さらにカルボキシ
メチルセルロース(CMC)1重量部を添加混合して、
負極合剤スラリーを調製した。結着剤としては、PVP
若しくはPVAcを一種単独、又は、PVAcとPVP
とを重量比1:9、2:8、3:7、4:6、5:5、
6:4、7:3、8:2、9:1で使用した。次いで、
各負極合剤スラリーを負極集電体としての銅箔の両面に
ドクターブレード法により塗布し、乾燥して、銅箔の各
面に厚さ50μmの負極合剤層を形成してなる負極を作
製した。
[Preparation of Negative Electrode] 98 parts by weight of graphite powder [crystal size in the c-axis direction (Lc)>1000Å; d value (d 002 ): 3.35Å] on the lattice plane (002) plane,
The binder is dispersed in an aqueous solution of 1 part by weight, and further 1 part by weight of carboxymethyl cellulose (CMC) is added and mixed,
A negative electrode mixture slurry was prepared. As a binder, PVP
Or PVAc alone, or PVAc and PVP
And the weight ratio of 1: 9, 2: 8, 3: 7, 4: 6, 5: 5,
Used at 6: 4, 7: 3, 8: 2, 9: 1. Then
Each negative electrode mixture slurry is applied to both surfaces of a copper foil as a negative electrode current collector by the doctor blade method, and dried to form a negative electrode formed by forming a negative electrode mixture layer having a thickness of 50 μm on each surface of the copper foil. did.

【0018】〔非水電解液の調製〕エチレンカーボネー
トとジエチルカーボネートとの体積比2:3の混合溶媒
に、LiPF6 (ヘキサフルオロリン酸リチウム)を1
モル/リットル溶かして非水電解液を調製した。
[Preparation of Non-Aqueous Electrolyte] LiPF 6 (lithium hexafluorophosphate) was added to a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 2: 3.
Mol / liter was dissolved to prepare a non-aqueous electrolytic solution.

【0019】〔電池の組立〕以上の正極、負極及び非水
電解液を用いて、容量が正極支配型の円筒形(AAサイ
ズ)の非水電解液二次電池(本発明電池)A1(PVA
c:PVP=3:7),A2(PVAc:PVP=4:
6),A3(PVAc:PVP=5:5),A4(PV
Ac:PVP=6:4),A5(PVAc:PVP=
7:3),A6(PVAc:PVP=8:2)及び非水
電解液二次電池(比較電池)B1(PVP一種単独),
B2(PVAc:PVP=1:9),B3(PVAc:
PVP=2:8),B4(PVAc:PVP=9:
1),B5(PVAc一種単独)を組み立てた。なお、
セパレータとして、ポリプロピレン製の微多孔膜を用い
た。
[Battery Assembly] A cylindrical (AA size) non-aqueous electrolyte secondary battery (invention battery) A1 (PVA) having a positive electrode-dominated capacity using the above positive electrode, negative electrode and non-aqueous electrolytic solution.
c: PVP = 3: 7), A2 (PVAc: PVP = 4:
6), A3 (PVAc: PVP = 5: 5), A4 (PV
Ac: PVP = 6: 4), A5 (PVAc: PVP =
7: 3), A6 (PVAc: PVP = 8: 2) and non-aqueous electrolyte secondary battery (comparative battery) B1 (one PVP alone),
B2 (PVAc: PVP = 1: 9), B3 (PVAc:
PVP = 2: 8), B4 (PVAc: PVP = 9:
1) and B5 (single PVAc alone) were assembled. In addition,
A microporous film made of polypropylene was used as the separator.

【0020】〔PVAcとPVPの重量比と充放電サイ
クル特性の関係〕各電池について、25°Cにて、20
0mAで4.1Vまで充電した後、200mAで2.7
5Vまで放電する工程を1サイクルとする充電サイクル
試験を行い、放電容量が初期容量(1サイクル目の放電
容量)の75%以下に減少するまでの充放電サイクル数
でもって、結着剤のPVAcとPVPの重量比と充放電
サイクル特性の関係を調べた。結果を図1に示す。図1
は、結着剤のPVAcとPVPの重量比と充放電サイク
ル特性の関係を、縦軸に初期容量の75%以下に減少す
るまでの充放電サイクル数を、また横軸に結着剤のPV
AcとPVPとの重量比をとって示したグラフである。
[Relationship between PVAc / PVP Weight Ratio and Charge / Discharge Cycle Characteristic] For each battery, at 20 ° C., 20
After charging to 4.1V at 0mA, 2.7mA at 200mA
A charge cycle test was conducted with one cycle consisting of a step of discharging up to 5 V, and the PVAc of the binder was determined by the number of charge / discharge cycles until the discharge capacity decreased to 75% or less of the initial capacity (discharge capacity in the first cycle). The relationship between the PVP weight ratio and the charge / discharge cycle characteristics was investigated. The results are shown in FIG. FIG.
Is the relationship between the weight ratio of PVAc and PVP of the binder and the charge / discharge cycle characteristics, the vertical axis represents the number of charge / discharge cycles until the initial capacity is reduced to 75% or less, and the horizontal axis represents the PV of the binder.
It is the graph which took and showed the weight ratio of Ac and PVP.

【0021】図1に示すように、電池A1〜A6は、電
池B1〜B5に比べて、充放電サイクル特性に格段優れ
ている。この事実から、充放電サイクル特性に優れた非
水電解液二次電池を得るためには、結着剤のPVAcと
PVPとの重量比を3:7〜8:2に規制する必要があ
ることが分かる。
As shown in FIG. 1, the batteries A1 to A6 are far superior to the batteries B1 to B5 in charge / discharge cycle characteristics. From this fact, in order to obtain a non-aqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics, it is necessary to regulate the weight ratio of PVAc and PVP of the binder to 3: 7 to 8: 2. I understand.

【0022】(実験2)黒鉛粉末(実験1で使用したも
のと同じのもの)95重量部を、PVdF5重量部のN
MP溶液に分散させて負極合剤スラリーを調製した。次
いで、この負極合剤スラリーを使用して負極を作製した
こと以外は実験1と同様にして、非水電解液二次電池
(従来電池)Cを組み立てた。
(Experiment 2) 95 parts by weight of graphite powder (the same as that used in Experiment 1) and 5 parts by weight of PVdF in N were added.
It was dispersed in an MP solution to prepare a negative electrode mixture slurry. Next, a non-aqueous electrolyte secondary battery (conventional battery) C was assembled in the same manner as in Experiment 1 except that a negative electrode was produced using this negative electrode mixture slurry.

【0023】〔本発明電池と従来電池との充放電サイク
ル特性の比較〕従来電池Cについて、25°Cにて、2
00mAで4.1Vまで充電した後、200mAで2.
75Vまで放電する工程を1サイクルとする充放電サイ
クル試験を行い、充放電サイクル特性を調べた。図2
は、本発明電池A3及び従来電池Cの充放電サイクル特
性を、縦軸に各サイクルに於ける放電容量(mAh)
を、また横軸に充放電サイクル数をとって示したグラフ
である。
[Comparison of Charging / Discharging Cycle Characteristics of Battery of Present Invention and Conventional Battery] Conventional battery C was 2 ° C. at 25 ° C.
After charging to 4.1V at 00mA, 2. Charge at 200mA.
A charging / discharging cycle test in which the step of discharging up to 75 V was defined as one cycle was conducted to examine the charging / discharging cycle characteristics. FIG.
Is the charging / discharging cycle characteristics of the battery A3 of the invention and the conventional battery C, and the vertical axis shows the discharge capacity (mAh) in each cycle.
Is a graph showing the number of charge / discharge cycles on the horizontal axis.

【0024】図2より、本発明電池A3は、従来電池C
に比べて、充放電サイクル特性に格段優れていることが
分かる。
From FIG. 2, the battery A3 of the present invention is the conventional battery C3.
It is understood that the charging / discharging cycle characteristics are remarkably excellent as compared with.

【0025】(実験3)黒鉛粉末(実験1で使用したも
のと同じのもの)99−X重量部(X=0.5、0.7
5、1、3、5、7.5、10、12、15、17.5
又は20)を、結着剤X重量部の水溶液に分散させ、さ
らにカルボキシメチルセルロース(CMC)1重量部を
添加混合して、負極合剤スラリーを調製した。結着剤と
しては、PVAcとPVPとを重量比5:5で使用し
た。次いで、各負極合剤スラリーを使用して負極を作製
したこと以外は実験1と同様にして、非水電解液二次電
池(本発明電池)A7(X=0.75),A8(X=
1),A9(X=3),A10(X=5),A11(X
=7.5),A12(X=10)及び非水電解液二次電
池(比較電池)B6(X=0.5),B7(X=1
2),B8(X=15),B9(X=17.5),B1
0(X=20)を組み立てた。Xは負極合剤層の結着剤
含有率(重量%)に相当する。
(Experiment 3) Graphite powder (the same as that used in Experiment 1) 99-X parts by weight (X = 0.5, 0.7)
5,1,3,5,7.5,10,12,15,17.5
Or 20) was dispersed in an aqueous solution of X part by weight of a binder, and 1 part by weight of carboxymethyl cellulose (CMC) was further added and mixed to prepare a negative electrode mixture slurry. As a binder, PVAc and PVP were used at a weight ratio of 5: 5. Then, in the same manner as in Experiment 1 except that each negative electrode mixture slurry was used to manufacture a negative electrode, nonaqueous electrolyte secondary batteries (cells of the present invention) A7 (X = 0.75), A8 (X = X
1), A9 (X = 3), A10 (X = 5), A11 (X
= 7.5), A12 (X = 10) and non-aqueous electrolyte secondary battery (comparative battery) B6 (X = 0.5), B7 (X = 1)
2), B8 (X = 15), B9 (X = 17.5), B1
0 (X = 20) was assembled. X corresponds to the binder content (% by weight) of the negative electrode mixture layer.

【0026】〔結着剤量Xと初期容量の関係〕各電池
を、25°Cにて、200mAで4.1Vまで充電した
後、200mAで2.75Vまで放電して、負極合剤層
の結着剤量Xと初期容量の関係を調べた。結果を図3に
示す。図3は、結着剤量Xと初期容量の関係を、縦軸に
初期容量(mAh)を、また横軸に結着剤量Xをとって
示したグラフである。
[Relationship between Binder Amount X and Initial Capacity] Each battery was charged at 25 ° C. to 200 V at 4.1 V and then discharged at 200 mA to 2.75 V to form a negative electrode mixture layer. The relationship between the binder amount X and the initial capacity was examined. The results are shown in FIG. FIG. 3 is a graph showing the relationship between the binder amount X and the initial capacity, with the vertical axis representing the initial capacity (mAh) and the horizontal axis representing the binder amount X.

【0027】図3に示すように、電池A7〜A12は、
電池B6〜B10に比べて、初期容量が格段大きい。こ
の事実から、初期容量の大きい非水電解液二次電池を得
るためには、負極合剤層の結着剤含有率を0.75〜1
0重量%に規制することが好ましいことが分かる。
As shown in FIG. 3, the batteries A7 to A12 are
The initial capacity is much larger than the batteries B6 to B10. From this fact, in order to obtain a non-aqueous electrolyte secondary battery having a large initial capacity, the binder content of the negative electrode mixture layer is 0.75 to 1
It can be seen that it is preferable to regulate to 0% by weight.

【0028】[0028]

【発明の効果】本発明電池は、負極の結着剤として、ポ
リ酢酸ビニルとポリビニルピロリドンとの所定割合の混
合物を使用しているので、充放電を繰り返しても炭素材
料が負極から脱落しにくく、充放電サイクル特性に優れ
る。
The battery of the present invention uses a mixture of polyvinyl acetate and polyvinylpyrrolidone in a predetermined ratio as a binder for the negative electrode, so that the carbon material is unlikely to fall off from the negative electrode even after repeated charging and discharging. Excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】PVAc及びPVPの重量比と充放電サイクル
特性の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the weight ratio of PVAc and PVP and the charge / discharge cycle characteristics.

【図2】本発明電池及び従来電池の充放電サイクル特性
を示したグラフである。
FIG. 2 is a graph showing charge / discharge cycle characteristics of a battery of the present invention and a conventional battery.

【図3】負極合剤層の結着剤含有率(重量%)と初期容
量の関係を示したグラフである。
FIG. 3 is a graph showing the relationship between the binder content (% by weight) of the negative electrode mixture layer and the initial capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、炭素材料及び結着剤を含有する負
極合剤層を負極集電体上に形成してなる負極と、非水電
解液とを備える非水電解液二次電池であって、前記結着
剤が、ポリ酢酸ビニルとポリビニルピロリドンとの重量
比3:7〜8:2の混合物からなることを特徴とする非
水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode formed by forming a negative electrode mixture layer containing a carbon material and a binder on a negative electrode current collector, and a non-aqueous electrolytic solution. A non-aqueous electrolyte secondary battery, wherein the binder comprises a mixture of polyvinyl acetate and polyvinylpyrrolidone in a weight ratio of 3: 7 to 8: 2.
【請求項2】前記負極合剤層が前記混合物を0.75〜
10重量%含有する請求項1記載の非水電解液二次電
池。
2. The negative electrode material mixture layer comprises 0.75 to 5% of the mixture.
The non-aqueous electrolyte secondary battery according to claim 1, containing 10% by weight.
JP8045451A 1996-02-06 1996-02-06 Secondary battery with non-aqueous electrolyte Pending JPH09213306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8045451A JPH09213306A (en) 1996-02-06 1996-02-06 Secondary battery with non-aqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8045451A JPH09213306A (en) 1996-02-06 1996-02-06 Secondary battery with non-aqueous electrolyte

Publications (1)

Publication Number Publication Date
JPH09213306A true JPH09213306A (en) 1997-08-15

Family

ID=12719719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8045451A Pending JPH09213306A (en) 1996-02-06 1996-02-06 Secondary battery with non-aqueous electrolyte

Country Status (1)

Country Link
JP (1) JPH09213306A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176519A (en) * 2008-01-23 2009-08-06 Sony Corp Nonaqueous electrolyte battery, electrode, and method of manufacturing them
JP2009301862A (en) * 2008-06-13 2009-12-24 Sanyo Electric Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery equipped with the same, and method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2010238464A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Lithium secondary battery
JP2011134575A (en) * 2009-12-24 2011-07-07 Sanyo Electric Co Ltd Composition for electrode of nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery using the same, and nonaqueous electrolyte secondary battery
US9893357B2 (en) 2007-06-21 2018-02-13 Murata Manufacturing Co., Ltd. Cathode mix and nonaqueous electrolyte battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893357B2 (en) 2007-06-21 2018-02-13 Murata Manufacturing Co., Ltd. Cathode mix and nonaqueous electrolyte battery
JP2009176519A (en) * 2008-01-23 2009-08-06 Sony Corp Nonaqueous electrolyte battery, electrode, and method of manufacturing them
JP4561839B2 (en) * 2008-01-23 2010-10-13 ソニー株式会社 Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and method for producing the same
JP2009301862A (en) * 2008-06-13 2009-12-24 Sanyo Electric Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery equipped with the same, and method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP2010238464A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Lithium secondary battery
JP2011134575A (en) * 2009-12-24 2011-07-07 Sanyo Electric Co Ltd Composition for electrode of nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery using the same, and nonaqueous electrolyte secondary battery
US8603674B2 (en) 2009-12-24 2013-12-10 Sanyo Electric Co., Ltd. Composition for electrode of nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery using the same and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3316412B2 (en) Lithium secondary battery
JP5166356B2 (en) Lithium battery
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP3286516B2 (en) Non-aqueous electrolyte secondary battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
WO2013099279A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries
JPH08236155A (en) Lithium secondary battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JP3823712B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3332834B2 (en) Lithium ion battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPH11312518A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP3244389B2 (en) Lithium secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JPH07114940A (en) Non-aqueous electrolyte secondary battery
JP2001307735A (en) Lithium secondary battery
JP2004087284A (en) Lithium secondary cell
JP2003017038A (en) Negative electrode for lithium battery, and lithium battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH09213306A (en) Secondary battery with non-aqueous electrolyte
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPH07105977A (en) Non-aqueous electrolyte secondary battery
JP2001351690A (en) Nonaqueous electrolyte cell