JP3332834B2 - Lithium ion battery - Google Patents

Lithium ion battery

Info

Publication number
JP3332834B2
JP3332834B2 JP34777897A JP34777897A JP3332834B2 JP 3332834 B2 JP3332834 B2 JP 3332834B2 JP 34777897 A JP34777897 A JP 34777897A JP 34777897 A JP34777897 A JP 34777897A JP 3332834 B2 JP3332834 B2 JP 3332834B2
Authority
JP
Japan
Prior art keywords
battery
carbonate
lithium ion
ion battery
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34777897A
Other languages
Japanese (ja)
Other versions
JPH11185806A (en
Inventor
昌利 高橋
善作 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18392519&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3332834(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34777897A priority Critical patent/JP3332834B2/en
Publication of JPH11185806A publication Critical patent/JPH11185806A/en
Application granted granted Critical
Publication of JP3332834B2 publication Critical patent/JP3332834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウムイオン電池に
係わり、詳しくは保存特性及びサイクル特性の改善を目
的とした、有機電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion battery, and more particularly to an improvement in an organic electrolyte for the purpose of improving storage characteristics and cycle characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
コークス、黒鉛等の炭素材料が、可撓性に優れること、
樹枝状の電析リチウムの成長に因る内部短絡の虞れが無
いことなどの理由から、従前の金属リチウムに代わるリ
チウムイオン電池の新しい負極材料として提案されてい
る。
2. Description of the Related Art In recent years,
Coke, carbon material such as graphite, excellent in flexibility,
It has been proposed as a new negative electrode material for lithium ion batteries in place of conventional metal lithium because there is no risk of internal short circuit due to the growth of dendritic lithium.

【0003】このように、負極材料として炭素材料を用
いた電池では、有機電解液の種類により電池特性が大き
く変化することが知られている。この場合、有機電解液
にメチルエチルカーボネート等の非対称鎖状カーボネー
トを用いると、初期特性を向上させることができる。
As described above, it is known that battery characteristics using a carbon material as a negative electrode material greatly change depending on the type of organic electrolyte. In this case, when an asymmetric chain carbonate such as methyl ethyl carbonate is used as the organic electrolyte, the initial characteristics can be improved.

【0004】しかしながら、炭素材料〔特に、格子面
(002)面におけるd値(d002 )が3.40Å未満
の黒鉛系炭素材料〕を負極材料として用い、且つ、メチ
ルエチルカーボネートを有機電解液の溶媒として用いた
場合には、長期保存或いは充放電サイクルを繰り返した
際、メチルエチルカーボネートが炭素材料から成る負極
表面上でエステル交換反応を起こすため、負極表面上に
不動態皮膜が形成される。このため、保存特性やサイク
ル特性が低下するという課題を有していた。
However, a carbon material (particularly, a graphite-based carbon material having a d value (d 002 ) of less than 3.40 ° on a lattice plane (002) plane) is used as a negative electrode material, and methyl ethyl carbonate is used as an organic electrolyte solution. When used as a solvent, when a long-term storage or charge / discharge cycle is repeated, a passivation film is formed on the negative electrode surface because methyl ethyl carbonate causes a transesterification reaction on the negative electrode surface made of a carbon material. For this reason, there was a problem that storage characteristics and cycle characteristics were deteriorated.

【0005】本発明は、以上の事情に鑑みなされたもの
であって、初期特性を低下させることなく、保存特性と
サイクル特性とを向上させることができるリチウムイオ
ン電池を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lithium ion battery capable of improving storage characteristics and cycle characteristics without deteriorating initial characteristics. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウムイオン電池は、正極と、格子面
(002)面におけるd値(d002 )が3.40Å未満
の黒鉛系炭素材料を負極材料とする負極と、有機電解液
とを備えるリチウムイオン電池において、前記有機電解
液の溶媒(プロピレンカーボネートを除く)として、下
記化3に示す非対称鎖状カーボネートと、下記化4に示
す二重結合を有する環状カーボネートと、エチレンカー
ボネートとが含まれており、且つ、前記二重結合を有す
る環状カーボネートを除く前記有機電解液に対する前記
二重結合を有する環状カーボネートの割合が0.1〜5
重量%であることを特徴とする。
According to the present invention, there is provided a lithium-ion battery comprising a positive electrode and a graphite-based carbon having a d value (d 002 ) of less than 3.40 ° on a lattice plane (002) plane. In a lithium ion battery including a negative electrode using a material as a negative electrode material and an organic electrolyte, as a solvent (excluding propylene carbonate) of the organic electrolyte, an asymmetric chain carbonate represented by the following chemical formula 3 and a chemical formula represented by the following chemical formula 4 are used. A cyclic carbonate having a double bond and ethylene carbonate are included, and a ratio of the cyclic carbonate having a double bond to the organic electrolytic solution excluding the cyclic carbonate having the double bond is 0.1 to 0.1. 5
% By weight.

【0007】[0007]

【化3】 〔但し、R1 及びR2 はアルキル基を表し、且つR1
2 である。〕
Embedded image Wherein R 1 and R 2 represent an alkyl group, and R 1
R 2 . ]

【0008】[0008]

【化4】 Embedded image

【0009】上記構成の如く、非対称鎖状カーボネート
の他に二重結合を有する環状カーボネートが有機電解液
に含まれていれば、二重結合を有する環状カーボネート
と炭素材料から成る負極とが優先的に反応して、負極表
面に良質の皮膜(Li2 CO3 )が生成される。したが
って、非対称鎖状カーボネートの存在に起因する負極表
面上の不動態皮膜の形成が抑制されるので、保存特性や
サイクル特性を向上させることができる。また、二重結
合を有する環状カーボネートを除く前記有機電解液に対
する前記二重結合を有する環状カーボネートの割合が
0.1〜5重量%に規制されているので、二重結合を有
する環状カーボネートの割合が少な過ぎることによる保
存特性やサイクル特性の低下を招来せず、且つ、二重結
合を有する環状カーボネートの割合が多過ぎる(非対称
鎖状カーボネートが少な過ぎる)ことによる初期容量の
低下を招来しない。
As described above, if the organic electrolyte contains a cyclic carbonate having a double bond in addition to the asymmetric chain carbonate, the cyclic carbonate having a double bond and the negative electrode made of a carbon material have priority. , A good-quality film (Li 2 CO 3 ) is formed on the surface of the negative electrode. Therefore, the formation of a passive film on the negative electrode surface due to the presence of the asymmetric chain carbonate is suppressed, so that storage characteristics and cycle characteristics can be improved. Further, since the ratio of the cyclic carbonate having a double bond to the organic electrolytic solution excluding the cyclic carbonate having a double bond is regulated to 0.1 to 5% by weight, the proportion of the cyclic carbonate having a double bond is controlled. Does not lead to a decrease in storage characteristics and cycle characteristics due to an excessively small amount, and does not lead to a decrease in the initial capacity due to an excessively large proportion of the cyclic carbonate having a double bond (too little asymmetric chain carbonate).

【0010】更に、炭素材料のd002 が3.40Å未満
の結晶性の高い高容量の炭素材料を用いた場合には、エ
ステル交換反応が特に生じ易くなるので、本発明の効果
が十分に発揮される。かかる結晶性の高い炭素材料とし
ては、天然黒鉛及び人造黒鉛等が例示される。
Further, when a high-capacity carbon material having a d 002 of less than 3.40 ° and high crystallinity is used, a transesterification reaction is particularly likely to occur, so that the effect of the present invention is sufficiently exhibited. Is done. Examples of such a highly crystalline carbon material include natural graphite and artificial graphite.

【0011】また、請求項2記載の発明は、請求項1記
載の発明において、前記化1におけるR1 及びR2 は、
炭素数1〜3のアルキル基であることを特徴とする。こ
のように、化1におけるR1 及びR2 が炭素数1〜3の
アルキル基であれば、上記効果が一層発揮される。
Further, the invention according to claim 2 is the invention according to claim 1, wherein R 1 and R 2 in the chemical formula 1 are:
It is an alkyl group having 1 to 3 carbon atoms. As described above, when R 1 and R 2 in Chemical Formula 1 are alkyl groups having 1 to 3 carbon atoms, the above-described effect is further exhibited.

【0012】また、請求項3記載の発明は、請求項1又
は2記載の発明において、前記非対称鎖状カーボネート
の前記有機電解液中に占める割合が10〜80体積%で
あることを特徴とする。このように規制するのは、非対
称鎖状カーボネートの有機電解液中に占める割合が10
体積%未満では、添加効果が不十分であるため初期容量
の低下を招来する一方、80体積%を超えた場合にも、
やはり初期容量の低下を招来するからである。
According to a third aspect of the present invention, in the first or second aspect, the ratio of the asymmetric chain carbonate in the organic electrolyte is 10 to 80% by volume. . The reason for this restriction is that the ratio of the asymmetric chain carbonate in the organic electrolyte is 10%.
If the amount is less than volume%, the effect of the addition is insufficient, leading to a decrease in the initial capacity.
This is also because the initial capacity is reduced.

【0013】[0013]

【0014】[0014]

【0015】また、請求項4記載の発明は、請求項1、
2又は3記載の発明において、前記非対称鎖状カーボネ
ートがメチルエチルカーボネート又はメチルプロピルカ
ーボネートであり、前記二重結合を有する環状カーボネ
ートがビニレンカーボネートであることを特徴とする。
但し、これらに限定するものではなく、その他、非対称
鎖状カーボネートとしてはエチルプロピルカーボネート
等が例示され、二重結合を有する環状カーボネートとし
てはプロペンカーボネート等が例示される。
[0015] The invention described in claim 4 is based on claim 1,
4. The invention according to 2 or 3, wherein the asymmetric chain carbonate is methyl ethyl carbonate or methyl propyl carbonate, and the cyclic carbonate having a double bond is vinylene carbonate.
However, the present invention is not limited to these. In addition, examples of the asymmetric chain carbonate include ethyl propyl carbonate, and examples of the cyclic carbonate having a double bond include propene carbonate.

【0016】また、請求項5記載の発明は、請求項1、
2、3、又は4記載の発明において、前記二重結合を有
する環状カーボネートを除く前記有機電解液中の前記エ
チレンカーボネートの割合が20〜90体積%であるこ
とを特徴とする。このように規制するのは、有機電解液
中のエチレンカーボネートの割合が上記範囲を逸脱する
と、高温保存後の電池容量や充放電サイクル後の電池容
量が小さくなるからである。
[0016] Further, the invention according to claim 5 is based on claim 1,
5. The invention according to 2, 3, or 4, wherein the proportion of the ethylene carbonate in the organic electrolyte solution excluding the cyclic carbonate having a double bond is 20 to 90% by volume. The reason for this restriction is that if the proportion of ethylene carbonate in the organic electrolyte deviates from the above range, the battery capacity after high-temperature storage and the battery capacity after charge / discharge cycles are reduced.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を、図1に基
づいて、以下に説明する。 〔正極〕正極活物質としてのLiCoO2 と導電剤とし
ての炭素とを重量比9:1で混合して得た混合物を、ポ
リフッ化ビニリデンの5重量%N−メチルピロリドン
(NMP)溶液に分散させてスラリーを調製し、このス
ラリーをドクターブレード法にて正極集電体としてのア
ルミニウム箔の両面に塗布した後、150°Cで2時間
真空乾燥して正極を作製した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. [Positive electrode] A mixture obtained by mixing LiCoO 2 as a positive electrode active material and carbon as a conductive agent at a weight ratio of 9: 1 was dispersed in a 5% by weight N-methylpyrrolidone (NMP) solution of polyvinylidene fluoride. A slurry was prepared by applying the slurry to both surfaces of an aluminum foil as a positive electrode current collector by a doctor blade method, and then vacuum-dried at 150 ° C. for 2 hours to produce a positive electrode.

【0018】〔負極〕黒鉛粉末(d002 =3.37Å)
を結着剤としてのポリフッ化ビニリデンの5重量%NM
P溶液に分散させてスラリーを調製し、このスラリーを
ドクターブレード法にて負極集電体としての銅箔の両面
に塗布した後、150°Cで2時間真空乾燥して負極を
作製した。
[Anode] Graphite powder (d 002 = 3.37 °)
5% by weight of polyvinylidene fluoride as binder
A slurry was prepared by dispersing the slurry in a P solution, and this slurry was applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, and then dried under vacuum at 150 ° C. for 2 hours to prepare a negative electrode.

【0019】〔有機電解液〕体積混合比率が30:70
の割合で混合したエチレンカーボネート(EC)とメチ
ルエチルカーボネート(MEC)に、エチレンカーボネ
ートとメチルエチルカーボネートとの総重量に対してビ
ニレンカーボネート(VC)を1重量%の割合で添加し
て混合溶媒を作製し、更に、LiPF6 を1M(モル/
リットル)の割合で溶かして有機電解液を調製した。
[Organic electrolyte solution] The volume mixing ratio is 30:70.
To ethylene carbonate (EC) and methyl ethyl carbonate (MEC) mixed at a ratio of 1% by weight of vinylene carbonate (VC) with respect to the total weight of ethylene carbonate and methyl ethyl carbonate, and the mixed solvent was added. Then, LiPF 6 was added at 1 M (mol / mol).
Liter) to prepare an organic electrolyte solution.

【0020】〔電池の作製〕以上の正負両極及び有機電
解液を用いて本発明電池(円筒形で、直径:18mm、
高さ:65mm)を作製した。なお、セパレータとして
は、ポリプロピレン製の微多孔膜を使用し、これに先の
有機電解液を含浸させた。
[Preparation of Battery] The battery of the present invention (cylindrical, diameter: 18 mm,
(Height: 65 mm). In addition, as a separator, a microporous film made of polypropylene was used, and this was impregnated with the organic electrolytic solution.

【0021】図1は作製した本発明電池を模式的に示す
断面図であり、図示の本発明電池は、正極1、負極2、
これら両電極を離間するセパレータ3、正極リード4、
負極リード5、正極外部端子6、負極缶7などからな
る。正極1及び負極2は、非水系電解液を注入されたセ
パレータ3を介して渦巻き状に巻き取られた状態で負極
缶7内に収容されており、正極1は正極リード4を介し
て正極外部端子6に、また負極2は負極リード5を介し
て負極缶7に接続され、電池内部で生じた化学エネルギ
ーを電気エネルギーとして外部へ取り出し得るようにな
っている。
FIG. 1 is a cross-sectional view schematically showing a manufactured battery of the present invention.
Separator 3, positive electrode lead 4, separating these two electrodes,
It comprises a negative electrode lead 5, a positive electrode external terminal 6, a negative electrode can 7, and the like. The positive electrode 1 and the negative electrode 2 are housed in a negative electrode can 7 in a state of being spirally wound through a separator 3 into which a non-aqueous electrolyte is injected. The terminal 6 and the negative electrode 2 are connected to a negative electrode can 7 via a negative electrode lead 5, so that chemical energy generated inside the battery can be taken out as electric energy.

【0022】尚、本発明は、炭素材料を負極材料として
用いた場合に問題となっていた負極表面上でのエステル
交換反応を、当該有機電解液に二重結合を有する環状カ
ーボネートを含有せしめることによって抑制し、もって
保存特性及びサイクル特性の改善を実現したものであ
る。それゆえ、正極材料、有機電解液の溶質などについ
ては従来リチウムイオン電池用として提案され、或いは
実用されている種々の材料を特に制限なく用いることが
可能である。
In the present invention, the transesterification reaction on the surface of the negative electrode, which has been a problem when a carbon material is used as the negative electrode material, comprises causing the organic electrolytic solution to contain a cyclic carbonate having a double bond. Thus, the storage characteristics and the cycle characteristics are improved. Therefore, as for the positive electrode material, the solute of the organic electrolyte, and the like, it is possible to use various materials that have been conventionally proposed or practically used for lithium ion batteries without any particular limitation.

【0023】正極材料(活物質)としては、上記LiC
oO2 の他に、LiNiO2 、LiMnO2 、LiFe
2 が例示され、また非水系電解液の溶質としては、上
記LiPF6 の他に、LiClO4 、LiCF3 SO3
が例示される。
As the positive electrode material (active material), the above LiC
In addition to oO 2 , LiNiO 2 , LiMnO 2 , LiFe
O 2 is exemplified. In addition to the above-mentioned LiPF 6 , LiClO 4 , LiCF 3 SO 3
Is exemplified.

【0024】[0024]

【実施例】〔第1実施例〕 (実施例1)実施例1としては、上記発明の実施の形態
に示す電池を用いた。このようにして作製した電池を、
以下、本発明電池A1と称する。
EXAMPLES [First Example] (Example 1) As Example 1, the battery described in the embodiment of the present invention was used. The battery fabricated in this way is
Hereinafter, the battery is referred to as Battery A1 of the invention.

【0025】(実施例2〜5)ビニレンカーボネートの
添加割合を、各々0.05重量%、0.1重量%、5重
量%及び10重量%とする他は、上記実施例1と同様に
して電池を作製した。このようにして作製した電池を、
以下、それぞれ本発明電池A2〜A5と称する。
(Examples 2 to 5) Except that the addition ratio of vinylene carbonate was 0.05% by weight, 0.1% by weight, 5% by weight and 10% by weight, respectively, in the same manner as in Example 1 above. A battery was manufactured. The battery fabricated in this way is
Hereinafter, these batteries are referred to as present invention batteries A2 to A5, respectively.

【0026】(比較例1)ビニレンカーボネートを添加
しない他は、上記実施例1と同様にして電池を作製し
た。このようにして作製した電池を、以下、比較電池X
1と称する。
Comparative Example 1 A battery was manufactured in the same manner as in Example 1 except that vinylene carbonate was not added. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X
No. 1.

【0027】(実験1)本発明電池A1〜A5及び比較
電池X1について、初期の電池容量、高温保存後(60
℃で20日間)の電池容量、及び500サイクル充放電
した後の電池容量を調べたので、それらの結果を表1に
示す。尚、充放電条件を下記に示す。 充電条件:所定の電流で充電終止電圧4.1Vまで充電
した後、電圧を4.1Vに維持しつつ電流値を徐々に低
下させ、電流値が27mAになった時点で充電を終了し
た。但し、3時間経過しても電流値が27mAを超えて
いる場合には3時間で充電を終了した。 放電条件:所定の電流で放電終止電圧2.75Vまで放
電した。
(Experiment 1) For the batteries A1 to A5 of the present invention and the comparative battery X1, the initial battery capacity and after storage at high temperatures (60
(For 20 days at 20 ° C.) and the battery capacity after 500 cycles of charging and discharging. The results are shown in Table 1. The charge and discharge conditions are shown below. Charging conditions: After charging to a charge end voltage of 4.1 V with a predetermined current, the current value was gradually reduced while maintaining the voltage at 4.1 V, and charging was terminated when the current value reached 27 mA. However, if the current value exceeded 27 mA even after 3 hours, charging was completed in 3 hours. Discharge conditions: Discharge was performed at a predetermined current to a discharge end voltage of 2.75V.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、本発明電池A1
〜A5は比較電池X1に比べて、初期容量は略同等であ
るが、高温保存後の電池容量、及び500サイクル充放
電した後の電池容量は格段に大きくなっていることが認
められる。したがって、有機電解液の溶媒にビニレンカ
ーボネートを含有させることが望ましいことを確認でき
る。
As is clear from Table 1, the battery A1 of the present invention
A5 has substantially the same initial capacity as the comparative battery X1, but it is recognized that the battery capacity after high-temperature storage and the battery capacity after charging and discharging for 500 cycles are significantly larger. Therefore, it can be confirmed that it is desirable that vinylene carbonate be contained in the solvent of the organic electrolyte.

【0030】ただし、ビニレンカーボネートを除く有機
電解液に対するビニレンカーボネートの割合(以下、単
にビニレンカーボネートの割合と略する)が0.1重量
%未満の本発明電池A2及びビニレンカーボネートの割
合が5重量%を超える本発明電池A5は、ビニレンカー
ボネートの割合が0.1〜5重量%の本発明電池A1、
A3、A4に比べて高温保存後の電池容量、及び500
サイクル充放電した後の電池容量が若干小さくなること
が認められる。したがって、ビニレンカーボネートの割
合は、0.1〜5重量%であることが望ましい。
However, the battery A2 of the present invention in which the ratio of vinylene carbonate to the organic electrolytic solution excluding vinylene carbonate (hereinafter, simply referred to as the ratio of vinylene carbonate) is less than 0.1% by weight, and the ratio of vinylene carbonate is 5% by weight. The battery A5 of the present invention has a vinylene carbonate content of 0.1 to 5% by weight.
Battery capacity after high-temperature storage compared to A3 and A4, and 500
It is recognized that the battery capacity after cycle charge / discharge is slightly reduced. Therefore, the ratio of vinylene carbonate is desirably 0.1 to 5% by weight.

【0031】(比較例2)メチルエチルカーボネートの
代わりにジメチルカーボネート(DMC)を用いる他
は、上記実施例1と同様にして電池を作製した。このよ
うにして作製した電池を、以下、比較電池X2と称す
る。
Comparative Example 2 A battery was manufactured in the same manner as in Example 1 except that dimethyl carbonate (DMC) was used instead of methyl ethyl carbonate. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X2.

【0032】(比較例3)ビニレンカーボネートを添加
しない他は、上記比較例2と同様にして電池を作製し
た。このようにして作製した電池を、以下、比較電池X
3と称する。
Comparative Example 3 A battery was prepared in the same manner as in Comparative Example 2 except that vinylene carbonate was not added. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X
No. 3.

【0033】(比較例4)メチルエチルカーボネートの
代わりにジエチルカーボネート(DEC)を用いる他
は、上記実施例1と同様にして電池を作製した。このよ
うにして作製した電池を、以下、比較電池X4と称す
る。
Comparative Example 4 A battery was produced in the same manner as in Example 1 except that diethyl carbonate (DEC) was used instead of methyl ethyl carbonate. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X4.

【0034】(比較例5)ビニレンカーボネートを添加
しない他は、上記比較例4と同様にして電池を作製し
た。このようにして作製した電池を、以下、比較電池X
5と称する。
Comparative Example 5 A battery was prepared in the same manner as in Comparative Example 4 except that vinylene carbonate was not added. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X
No. 5.

【0035】(実験2)上記比較電池X2〜X5につい
て、初期の電池容量、高温保存後の電池容量、及び50
0サイクル充放電した後の電池容量を調べたので、それ
らの結果を表2に示す。尚、充放電条件は前記実験1と
同様の条件である。また、比較の容易のために、本発明
電池A1の結果についても表2に併せて示す。
(Experiment 2) For the comparative batteries X2 to X5, the initial battery capacity, the battery capacity after high-temperature storage, and 50
Table 2 shows the results of examining the battery capacity after 0 cycles of charging and discharging. The charge and discharge conditions were the same as those in Experiment 1. Table 2 also shows the results of the battery A1 of the present invention for easy comparison.

【0036】[0036]

【表2】 [Table 2]

【0037】表2から明らかなように、比較電池X2、
X4は、比較電池X3、X5に比べれば、高温保存後の
電池容量、及び500サイクル充放電した後の電池容量
が大きくなっているが、本発明電池A1に比べると両電
池容量とも小さいことが認められる。したがって、メチ
ルエチルカーボネート等の非対称鎖状カーボネートの代
わりにジメチルカーボネート、ジエチルカーボネート等
の対称鎖状カーボネートを用いた場合には、本発明の効
果は十分に発揮されないことが確認できる。
As is clear from Table 2, the comparative battery X2,
X4 has a larger battery capacity after high-temperature storage and a larger battery capacity after 500 cycles of charging and discharging than the comparative batteries X3 and X5, but both battery capacities are smaller than the battery A1 of the present invention. Is recognized. Therefore, it can be confirmed that the effect of the present invention is not sufficiently exhibited when a symmetric chain carbonate such as dimethyl carbonate or diethyl carbonate is used in place of an asymmetric chain carbonate such as methyl ethyl carbonate.

【0038】(実施例6)有機電解液として、体積混合
比率が30:40:30の割合で混合したエチレンカー
ボネートとメチルエチルカーボネートとジメチルカーボ
ネートに、これらの総重量に対してビニレンカーボネー
トを1重量%の割合で添加したものを用いる他は、前記
実施例1と同様にして電池を作製した。このようにして
作製した電池を、以下、本発明電池A6と称する。
Example 6 As an organic electrolytic solution, ethylene carbonate, methyl ethyl carbonate and dimethyl carbonate mixed at a volume mixing ratio of 30:40:30, and vinylene carbonate in an amount of 1 wt. A battery was fabricated in the same manner as in Example 1, except that the battery was added at a ratio of 0.1%. The battery fabricated in this manner is hereinafter referred to as Battery A6 of the invention.

【0039】(比較例6)ビニレンカーボネートを添加
しない他は、上記実施例6と同様にして電池を作製し
た。このようにして作製した電池を、以下、比較電池X
6と称する。
Comparative Example 6 A battery was manufactured in the same manner as in Example 6 except that vinylene carbonate was not added. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X
No. 6.

【0040】(実験3)上記本発明電池A6及び比較電
池X6について、初期の電池容量、高温保存後の電池容
量、及び500サイクル充放電した後の電池容量を調べ
たので、それらの結果を表3に示す。尚、充放電条件は
前記実験1と同様の条件である。また、比較の容易のた
めに、本発明電池A1の結果についても表3に併せて示
す。
(Experiment 3) For the battery A6 of the present invention and the comparative battery X6, the initial battery capacity, the battery capacity after high-temperature storage, and the battery capacity after charging and discharging for 500 cycles were examined. 3 is shown. The charge and discharge conditions were the same as those in Experiment 1. Table 3 also shows the results of the battery A1 of the present invention for easy comparison.

【0041】[0041]

【表3】 [Table 3]

【0042】表3から明らかなように、本発明電池A6
は、比較電池X6に比べて、高温保存後の電池容量、及
び500サイクル充放電した後の電池容量が大きくなっ
ており、本発明電池A1と略同等の性能を有することが
認められる。したがって、有機電解液にジメチルカーボ
ネート等の対称鎖状カーボネートを含んでいても、メチ
ルエチルカーボネート等の非対称鎖状カーボネートを含
んでいれば、本発明の効果は十分に発揮されることが確
認できる。
As is clear from Table 3, the battery A6 of the present invention
Indicates that the battery capacity after high-temperature storage and the battery capacity after 500 cycles of charge / discharge are larger than the comparative battery X6, and it is recognized that the battery has substantially the same performance as the battery A1 of the present invention. Therefore, it can be confirmed that the effects of the present invention can be sufficiently exerted when the organic electrolyte solution contains a symmetric chain carbonate such as dimethyl carbonate, but also contains an asymmetric chain carbonate such as methyl ethyl carbonate.

【0043】(実施例7〜13)エチレンカーボネート
とメチルエチルカーボネートとの体積比率を、それぞれ
10:90、20:80、50:50、70:30、8
0:20、90:10、95:5とする他は、上記実施
例1と同様にして電池を作製した。このようにして作製
した電池を、以下、それぞれ本発明電池A7〜A13と
称する。
Examples 7 to 13 The volume ratios of ethylene carbonate and methyl ethyl carbonate were 10:90, 20:80, 50:50, 70:30 and 8 respectively.
A battery was fabricated in the same manner as in Example 1 except that 0:20, 90:10, and 95: 5 were set. The batteries fabricated in this manner are hereinafter referred to as Batteries A7 to A13 of the invention, respectively.

【0044】(実験4)上記本発明電池A7〜A13に
ついて、初期の電池容量、高温保存後の電池容量、及び
500サイクル充放電した後の電池容量を調べたので、
それらの結果を表4に示す。尚、充放電条件は前記実験
1と同様の条件である。また、本発明電池A1の結果に
ついても表4に併せて示す。
(Experiment 4) For the batteries A7 to A13 of the present invention, the initial battery capacity, the battery capacity after high-temperature storage, and the battery capacity after 500 charge / discharge cycles were examined.
Table 4 shows the results. The charge and discharge conditions were the same as those in Experiment 1. Table 4 also shows the results of the battery A1 of the present invention.

【0045】[0045]

【表4】 [Table 4]

【0046】表4から明らかなように、本発明電池A
1、A8〜A12は、本発明電池A7、A13に比べ
て、高温保存後の電池容量、及び500サイクル充放電
した後の電池容量が大きくなっていることが認められ
る。したがって、エチレンカーボネートとメチルエチル
カーボネートとの体積比率は、20:80〜90:10
であることが望ましいことを確認できる。
As is clear from Table 4, the battery A of the present invention
1 and A8 to A12 show that the battery capacity after high-temperature storage and the battery capacity after 500 cycles of charge / discharge were larger than those of the batteries A7 and A13 of the present invention. Therefore, the volume ratio between ethylene carbonate and methyl ethyl carbonate is from 20:80 to 90:10.
Can be confirmed to be desirable.

【0047】(実施例14)負極材料として、格子面
(002)面におけるd値(d002 )が3.35Åの黒
鉛系炭素材料を用いた他は、上記実施例1と同様にして
電池を作製した。このようにして作製した電池を、以
下、本発明電池A14と称する。
Example 14 A battery was fabricated in the same manner as in Example 1 except that a graphite-based carbon material having a d value (d 002 ) of 3.35 ° in the lattice plane (002) was used as a negative electrode material. Produced. The battery fabricated in this manner is hereinafter referred to as Battery A14 of the invention.

【0048】(比較例7、8)負極材料として、格子面
(002)面におけるd値(d002 )がそれぞれ3.4
0Å、3.45Åの黒鉛系炭素材料を用いた他は、上記
実施例1と同様にして電池を作製した。このようにして
作製した電池を、以下、それぞれ比較電池X7、X8と
称する。
(Comparative Examples 7 and 8) As the negative electrode material, the d value (d 002 ) on the lattice plane (002) plane was 3.4, respectively.
A battery was manufactured in the same manner as in Example 1 except that a graphite-based carbon material of 0 ° and 3.45 ° was used. The batteries fabricated in this manner are hereinafter referred to as comparative batteries X7 and X8, respectively.

【0049】(実験5)上記本発明電池A14及び比較
電池X7、X8について、初期の電池容量、高温保存後
の電池容量、及び500サイクル充放電した後の電池容
量を調べたので、それらの結果を表5に示す。尚、充放
電条件は前記実験1と同様の条件である。また、本発明
電池A1の結果についても表5に併せて示す。
(Experiment 5) The initial battery capacity, the battery capacity after high-temperature storage, and the battery capacity after 500 cycles of charging and discharging were examined for the battery A14 of the present invention and the comparative batteries X7 and X8. Are shown in Table 5. The charge and discharge conditions were the same as those in Experiment 1. Table 5 also shows the results of the battery A1 of the present invention.

【0050】[0050]

【表5】 [Table 5]

【0051】表5から明らかなように、本発明電池A
1、A13は、比較電池X7、X8に比べて、高温保存
後の電池容量、及び500サイクル充放電した後の電池
容量が大きくなっていることが認められる。したがっ
て、格子面(002)面におけるd値(d002 )は、
3.40Å未満であることが望ましいことを確認でき
る。
As is clear from Table 5, the battery A of the present invention
1 and A13, the battery capacity after high-temperature storage and the battery capacity after 500 cycles of charging and discharging are larger than those of the comparative batteries X7 and X8. Therefore, the d value (d 002 ) on the lattice plane (002) plane is
It can be confirmed that it is desirable that the angle is less than 3.40 °.

【0052】〔第2実施例〕 (実施例1)メチルエチルカーボネートの代わりに、メ
チルプロピルカーボネート(MPC)を用いる他は、前
記第1実施例の実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、本発明電池B1
と称する。
[Second Embodiment] (Example 1) A battery was manufactured in the same manner as in Example 1 of the first embodiment except that methylpropyl carbonate (MPC) was used instead of methyl ethyl carbonate.
The battery fabricated in this manner is hereinafter referred to as Battery B1 of the invention.
Called.

【0053】(実施例2〜5)ビニレンカーボネートの
添加割合を、各々0.05重量%、0.1重量%、5重
量%及び10重量%とする他は、上記実施例1と同様に
して電池を作製した。このようにして作製した電池を、
以下、それぞれ本発明電池B2〜B5と称する。
(Examples 2 to 5) Except that the addition ratio of vinylene carbonate was 0.05% by weight, 0.1% by weight, 5% by weight and 10% by weight, respectively, in the same manner as in Example 1 above. A battery was manufactured. The battery fabricated in this way is
Hereinafter, these batteries are referred to as present invention batteries B2 to B5, respectively.

【0054】(比較例1)ビニレンカーボネートを添加
しない他は、上記実施例1と同様にして電池を作製し
た。このようにして作製した電池を、以下、比較電池Y
1と称する。
Comparative Example 1 A battery was manufactured in the same manner as in Example 1 except that vinylene carbonate was not added. The battery fabricated in this manner is hereinafter referred to as Comparative Battery Y.
No. 1.

【0055】(実験1)本発明電池B1〜B5及び比較
電池Y1について、初期の電池容量、高温保存後の電池
容量、及び500サイクル充放電した後の電池容量を調
べたので、それらの結果を表6に示す。尚、充放電条件
は前記第1実施例の実験1と同様の条件である。
(Experiment 1) For the batteries B1 to B5 of the present invention and the comparative battery Y1, the initial battery capacity, the battery capacity after high-temperature storage, and the battery capacity after 500 charge / discharge cycles were examined. It is shown in Table 6. The charging and discharging conditions are the same as those in Experiment 1 of the first embodiment.

【0056】[0056]

【表6】 [Table 6]

【0057】表6から明らかなように、本発明電池B1
〜B5は比較電池Y1に比べて、初期容量は略同等であ
るが、高温保存後の電池容量、及び500サイクル充放
電した後の電池容量は格段に大きくなっていることが認
められる。したがって、有機電解液の溶媒にビニレンカ
ーボネートを含有させることが望ましいことが確認でき
る。
As is clear from Table 6, the battery B1 of the present invention
B5 has substantially the same initial capacity as the comparative battery Y1, but it is recognized that the battery capacity after high-temperature storage and the battery capacity after 500 cycles of charge / discharge are significantly larger. Therefore, it can be confirmed that it is desirable to include vinylene carbonate in the solvent of the organic electrolyte.

【0058】ただし、ビニレンカーボネートを除く有機
電解液に対するビニレンカーボネートの割合(以下、単
にビニレンカーボネートの割合と略する)が0.1重量
%未満の本発明電池B2及びビニレンカーボネートの割
合が5重量%を超える本発明電池B5は、ビニレンカー
ボネートの割合が0.1〜5重量%の本発明電池B1、
B3、B4に比べて高温保存後の電池容量、及び500
サイクル充放電した後の電池容量が若干小さくなること
が認められる。したがって、ビニレンカーボネートの割
合は、0.1〜5重量%であることが望ましい。
However, when the ratio of vinylene carbonate to the organic electrolyte solution excluding vinylene carbonate (hereinafter, simply referred to as the ratio of vinylene carbonate) is less than 0.1% by weight, the battery B2 of the present invention and the ratio of vinylene carbonate are 5% by weight. Inventive battery B5 having a vinylene carbonate ratio of 0.1 to 5% by weight,
Battery capacity after high temperature storage compared to B3 and B4, and 500
It is recognized that the battery capacity after cycle charge / discharge is slightly reduced. Therefore, the ratio of vinylene carbonate is desirably 0.1 to 5% by weight.

【0059】(実施例6)有機電解液として、体積混合
比率が30:40:30の割合で混合したエチレンカー
ボネートとメチルプロピルカーボネートとジメチルカー
ボネートに、これらの総重量に対してビニレンカーボネ
ートを1重量%の割合で添加したものを用いる他は、前
記実施例1と同様にして電池を作製した。このようにし
て作製した電池を、以下、本発明電池B6と称する。
Example 6 As an organic electrolytic solution, ethylene carbonate, methyl propyl carbonate and dimethyl carbonate mixed at a volume mixing ratio of 30:40:30, and vinylene carbonate in an amount of 1 wt. A battery was fabricated in the same manner as in Example 1, except that the battery was added at a ratio of 0.1%. The battery fabricated in this manner is hereinafter referred to as Battery B6 of the invention.

【0060】(比較例2)ビニレンカーボネートを添加
しない他は、上記実施例6と同様にして電池を作製し
た。このようにして作製した電池を、以下、比較電池Y
2と称する。
Comparative Example 2 A battery was fabricated in the same manner as in Example 6 except that vinylene carbonate was not added. The battery fabricated in this manner is hereinafter referred to as Comparative Battery Y.
No. 2.

【0061】(実験3)上記本発明電池B6及び比較電
池Y2について、初期の電池容量、高温保存後の電池容
量、及び500サイクル充放電した後の電池容量を調べ
たので、それらの結果を表7に示す。尚、充放電条件は
前記実験1と同様の条件である。また、比較の容易のた
めに、本発明電池B1の結果についても表3に併せて示
す。
(Experiment 3) With respect to the battery B6 of the present invention and the comparative battery Y2, the initial battery capacity, the battery capacity after high-temperature storage, and the battery capacity after 500 charge / discharge cycles were examined. FIG. The charge and discharge conditions were the same as those in Experiment 1. Table 3 also shows the results of the battery B1 of the present invention for easy comparison.

【0062】[0062]

【表7】 [Table 7]

【0063】表7から明らかなように、本発明電池B6
は、比較電池Y6に比べて、高温保存後の電池容量、及
び500サイクル充放電した後の電池容量が大きくなっ
ており、本発明電池B1と略同等の性能を有することが
認められる。したがって、有機電解液にジメチルカーボ
ネート等の対称鎖状カーボネートを含んでいても、メチ
ルプロピルカーボネート等の非対称鎖状カーボネートを
含んでいれば、本発明の効果は十分に発揮されることが
確認できる。
As is clear from Table 7, the battery B6 of the present invention
Indicates that the battery capacity after high-temperature storage and the battery capacity after 500 cycles of charging and discharging are larger than those of the comparative battery Y6, and it is recognized that the battery has substantially the same performance as the battery B1 of the present invention. Therefore, it can be confirmed that the effects of the present invention can be sufficiently exerted even if the organic electrolyte solution contains a symmetric chain carbonate such as dimethyl carbonate, but also contains an asymmetric chain carbonate such as methyl propyl carbonate.

【0064】(実施例7〜13)エチレンカーボネート
とメチルプロピルカーボネートとの体積比率を、それぞ
れ10:90、20:80、50:50、70:30、
80:20、90:10、95:5とする他は、上記実
施例1と同様にして電池を作製した。このようにして作
製した電池を、以下、それぞれ本発明電池B7〜B13
と称する。
Examples 7 to 13 The volume ratios of ethylene carbonate and methyl propyl carbonate were 10:90, 20:80, 50:50, 70:30,
A battery was fabricated in the same manner as in Example 1 except that the batteries were 80:20, 90:10, and 95: 5. The batteries fabricated in this manner are hereinafter referred to as Batteries B7 to B13 of the invention, respectively.
Called.

【0065】(実験4)上記本発明電池B7〜B13に
ついて、初期の電池容量、高温保存後の電池容量、及び
500サイクル充放電した後の電池容量を調べたので、
それらの結果を表8に示す。尚、充放電条件は前記実験
1と同様の条件である。また、本発明電池B1の結果に
ついても表8に併せて示す。
(Experiment 4) For the batteries B7 to B13 of the present invention, the initial battery capacity, the battery capacity after high-temperature storage, and the battery capacity after 500 charge / discharge cycles were examined.
Table 8 shows the results. The charge and discharge conditions were the same as those in Experiment 1. Table 8 also shows the results of the battery B1 of the present invention.

【0066】[0066]

【表8】 [Table 8]

【0067】表8から明らかなように、本発明電池B
1、B8〜B12は、本発明電池B7、B13に比べ
て、高温保存後の電池容量、及び500サイクル充放電
した後の電池容量が大きくなっていることが認められ
る。したがって、エチレンカーボネートとメチルプロピ
ルカーボネートとの体積比率は、20:80〜90:1
0であることが望ましいことを確認できる。
As is clear from Table 8, the battery B of the present invention
1 and B8 to B12 show that the battery capacity after high-temperature storage and the battery capacity after 500 cycles of charging and discharging are larger than those of the batteries B7 and B13 of the present invention. Therefore, the volume ratio of ethylene carbonate to methyl propyl carbonate is from 20:80 to 90: 1.
It can be confirmed that 0 is desirable.

【0068】(実施例14)負極材料として、格子面
(002)面におけるd値(d002 )が3.35Åの黒
鉛系炭素材料を用いた他は、上記実施例1と同様にして
電池を作製した。このようにして作製した電池を、以
下、本発明電池B14と称する。
Example 14 A battery was fabricated in the same manner as in Example 1 except that a graphite-based carbon material having a d-value (d 002 ) of 3.35 ° in the lattice plane (002) was used as a negative electrode material. Produced. The battery fabricated in this manner is hereinafter referred to as Battery B14 of the invention.

【0069】(比較例3、4)負極材料として、格子面
(002)面におけるd値(d002 )がそれぞれ3.4
0Å、3.45Åの黒鉛系炭素材料を用いた他は、上記
実施例1と同様にして電池を作製した。このようにして
作製した電池を、以下、それぞれ比較電池Y3、Y4と
称する。
(Comparative Examples 3 and 4) As the negative electrode material, the d value (d 002 ) on the lattice plane (002) plane was 3.4, respectively.
A battery was manufactured in the same manner as in Example 1 except that a graphite-based carbon material of 0 ° and 3.45 ° was used. The batteries fabricated in this manner are hereinafter referred to as comparative batteries Y3 and Y4, respectively.

【0070】(実験5)上記本発明電池B14及び比較
電池Y3、Y4について、初期の電池容量、高温保存後
の電池容量、及び500サイクル充放電した後の電池容
量を調べたので、それらの結果を表9に示す。尚、充放
電条件は前記実験1と同様の条件である。また、本発明
電池B1の結果についても表9に併せて示す。
(Experiment 5) With respect to the battery B14 of the present invention and the comparative batteries Y3 and Y4, the initial battery capacity, the battery capacity after high-temperature storage, and the battery capacity after 500 cycles of charging and discharging were examined. Are shown in Table 9. The charge and discharge conditions were the same as those in Experiment 1. Table 9 also shows the results of the battery B1 of the present invention.

【0071】[0071]

【表9】 [Table 9]

【0072】表9から明らかなように、本発明電池B
1、B13は、比較電池Y7、Y8に比べて、高温保存
後の電池容量、及び500サイクル充放電した後の電池
容量が大きくなっていることが認められる。したがっ
て、格子面(002)面におけるd値(d002 )は、
3.40Å未満であることが望ましいことを確認でき
る。
As is clear from Table 9, the battery B of the present invention
1 and B13, it is recognized that the battery capacity after high-temperature storage and the battery capacity after 500 cycles of charging and discharging are larger than those of the comparative batteries Y7 and Y8. Therefore, the d value (d 002 ) on the lattice plane (002) plane is
It can be confirmed that it is desirable that the angle is less than 3.40 °.

【0073】[0073]

【発明の効果】以上説明したように本発明によれば、負
極表面上に不動態皮膜が形成されるのを抑制することが
できるので、初期特性を低下させることなく、保存特性
とサイクル特性とを飛躍的に向上させることができると
いった優れた効果を奏する。
As described above, according to the present invention, the formation of a passivation film on the surface of the negative electrode can be suppressed, so that the storage characteristics and the cycle characteristics can be improved without lowering the initial characteristics. It has an excellent effect that it can be dramatically improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の断面図である。FIG. 1 is a sectional view of a battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 negative electrode 3 separator

フロントページの続き (56)参考文献 特開 平9−147910(JP,A) 特開 平8−22839(JP,A) 特開 平8−96852(JP,A) 特開 平11−67266(JP,A) 特開 平11−162510(JP,A) 特開 平7−220756(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 Continuation of the front page (56) References JP-A-9-147910 (JP, A) JP-A-8-22839 (JP, A) JP-A-8-96852 (JP, A) JP-A-11-67266 (JP) JP-A-11-162510 (JP, A) JP-A-7-220756 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極と、格子面(002)面におけるd
値(d002 )が3.40Å未満の黒鉛系炭素材料を負極
材料とする負極と、有機電解液とを備えるリチウムイオ
ン電池において、 前記有機電解液の溶媒(プロピレンカーボネートを除
く)として、下記化1に示す非対称鎖状カーボネート
と、下記化2に示す二重結合を有する環状カーボネート
と、エチレンカーボネートとが含まれており、且つ、前
記二重結合を有する環状カーボネートを除く前記有機電
解液に対する前記二重結合を有する環状カーボネートの
割合が0.1〜5重量%であることを特徴とするリチウ
ムイオン電池。 【化1】 〔但し、R1 及びR2 はアルキル基を表し、且つR1
2 である。〕 【化2】
1. A positive electrode and d in a lattice plane (002) plane
In a lithium ion battery including a negative electrode using a graphite-based carbon material having a value (d 002 ) of less than 3.40 ° as a negative electrode material and an organic electrolyte, the solvent (excluding propylene carbonate) of the organic electrolyte is as follows: The asymmetric chain carbonate shown in FIG. 1, the cyclic carbonate having a double bond shown in the following chemical formula 2, and ethylene carbonate are included, and the organic electrolyte solution except for the cyclic carbonate having the double bond is used. A lithium ion battery, wherein the proportion of the cyclic carbonate having a double bond is 0.1 to 5% by weight. Embedded image Wherein R 1 and R 2 represent an alkyl group, and R 1
R 2 . [Chemical formula 2]
【請求項2】 前記化1におけるR1 及びR2 は、炭素
数1〜3のアルキル基である、請求項1記載のリチウム
イオン電池。
2. The lithium ion battery according to claim 1, wherein R 1 and R 2 in Chemical Formula 1 are alkyl groups having 1 to 3 carbon atoms.
【請求項3】 前記非対称鎖状カーボネートの前記有機
電解液中に占める割合が10〜80体積%である、請求
項1又は2記載のリチウムイオン電池。
3. The lithium ion battery according to claim 1, wherein the proportion of the asymmetric chain carbonate in the organic electrolyte is 10 to 80% by volume.
【請求項4】 前記非対称鎖状カーボネートがメチルエ
チルカーボネート又はメチルプロピルカーボネートであ
り、前記二重結合を有する環状カーボネートがビニレン
カーボネートである、請求項1、2又は3記載のリチウ
ムイオン電池。
4. The lithium ion battery according to claim 1, wherein the asymmetric chain carbonate is methyl ethyl carbonate or methyl propyl carbonate, and the cyclic carbonate having a double bond is vinylene carbonate.
【請求項5】 前記二重結合を有する環状カーボネート
を除く前記有機電解液中の前記エチレンカーボネートの
割合が20〜90体積%である、請求項1、2、3又は
4記載のリチウムイオン電池。
5. The lithium ion battery according to claim 1, wherein the proportion of the ethylene carbonate in the organic electrolyte except for the cyclic carbonate having a double bond is 20 to 90% by volume.
JP34777897A 1997-12-17 1997-12-17 Lithium ion battery Expired - Lifetime JP3332834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34777897A JP3332834B2 (en) 1997-12-17 1997-12-17 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34777897A JP3332834B2 (en) 1997-12-17 1997-12-17 Lithium ion battery

Publications (2)

Publication Number Publication Date
JPH11185806A JPH11185806A (en) 1999-07-09
JP3332834B2 true JP3332834B2 (en) 2002-10-07

Family

ID=18392519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34777897A Expired - Lifetime JP3332834B2 (en) 1997-12-17 1997-12-17 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP3332834B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915025B2 (en) * 1999-11-19 2012-04-11 住友化学株式会社 Nonaqueous electrolyte and lithium secondary battery
JP2001307771A (en) * 2000-04-21 2001-11-02 Asahi Kasei Corp Nonaqueous secondary battery
JP4604317B2 (en) * 2000-07-17 2011-01-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR101111365B1 (en) 2002-07-15 2012-03-09 우베 고산 가부시키가이샤 Non-aqueous electrolytic solution and lithium battery
EP1598895B1 (en) 2003-02-27 2011-01-19 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and lithium secondary battery
US7083878B2 (en) 2003-02-27 2006-08-01 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and lithium secondary battery
JP4608932B2 (en) * 2004-04-20 2011-01-12 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
EP1744394A4 (en) 2004-04-20 2014-07-23 Mitsubishi Chem Corp Nonaqueous electrolyte solution and lithium secondary battery using same
CN105186038B (en) 2005-10-20 2017-07-28 三菱化学株式会社 Lithium secondary battery and the nonaqueous electrolytic solution wherein used
JP2010062164A (en) * 2005-11-16 2010-03-18 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery, nonaqueous electrolyte for the nonaqueous electrolyte secondary battery
JP5109288B2 (en) * 2006-05-10 2012-12-26 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
KR20140020334A (en) 2006-06-02 2014-02-18 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery
CN102780038A (en) 2007-03-19 2012-11-14 三菱化学株式会社 Nonaqueous electrolyte battery
EP1978587B1 (en) * 2007-03-27 2011-06-22 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
JP2010198922A (en) 2009-02-25 2010-09-09 Sony Corp Secondary battery

Also Published As

Publication number Publication date
JPH11185806A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
US11183711B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP3059832B2 (en) Lithium secondary battery
JP5220850B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
JP4412778B2 (en) Polymer electrolyte battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
US20080138713A1 (en) Rechargeable lithium battery
JP3332834B2 (en) Lithium ion battery
US20130017439A1 (en) Nonaqueous secondary battery
US20070207389A1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4056117B2 (en) Lithium secondary battery
JP5235405B2 (en) Nonaqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JPH11329494A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JPH11283667A (en) Lithium ion battery
JP3172445B2 (en) Non-aqueous electrolyte battery
JPH11273723A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP4204281B2 (en) Nonaqueous electrolyte secondary battery
JPH117977A (en) Non-aqueous electrolyte battery
JP3691714B2 (en) Lithium secondary battery
JP4237531B2 (en) Lithium secondary battery and method for producing lithium secondary battery
JPH07105977A (en) Non-aqueous electrolyte secondary battery
JP3239068B2 (en) Non-aqueous electrolyte battery
JP3349373B2 (en) Lithium secondary battery
JPH09213306A (en) Secondary battery with non-aqueous electrolyte
JP4518821B2 (en) Nonaqueous electrolyte secondary battery electrode and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term