JPH07152006A - Method for adjusting initial operation point of waveguide type optical element - Google Patents
Method for adjusting initial operation point of waveguide type optical elementInfo
- Publication number
- JPH07152006A JPH07152006A JP29998193A JP29998193A JPH07152006A JP H07152006 A JPH07152006 A JP H07152006A JP 29998193 A JP29998193 A JP 29998193A JP 29998193 A JP29998193 A JP 29998193A JP H07152006 A JPH07152006 A JP H07152006A
- Authority
- JP
- Japan
- Prior art keywords
- electric field
- optical element
- voltage
- waveguide type
- type optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0121—Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
- G02F1/0123—Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は導波路型光素子の初期動
作点調整方法に係るものである。更に詳しく述べるなら
ば、本発明は、例えばニオブ酸リチウム(LiNbO3)
などからなる電気光学基板の所望部分に、例えばチタン
(Ti)を拡散させて形成した光導波路を有する光素子
の初期動作点を、所望値に不可逆に調整する方法に関す
るものである。このような調整により、導波路型光素子
の光導波路中を伝播する光信号の出力光の位相を不可逆
に調整設定することができる。このように初期動作点を
所望値に不可逆に調整・設定された光素子、例えばニオ
ブ酸リチウム導波路型光素子は、出力光の位相変化によ
り外部電界を検知する電界センサなどに有利なものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting an initial operating point of a waveguide type optical element. More specifically, the present invention relates to, for example, lithium niobate (LiNbO 3 ).
The present invention relates to a method of irreversibly adjusting an initial operating point of an optical element having an optical waveguide formed by diffusing titanium (Ti) to a desired portion of an electro-optical substrate made of, for example. By such adjustment, the phase of the output light of the optical signal propagating in the optical waveguide of the waveguide type optical element can be irreversibly adjusted and set. In this way, an optical element whose initial operating point is irreversibly adjusted and set to a desired value, for example, a lithium niobate waveguide type optical element is advantageous for an electric field sensor or the like that detects an external electric field by a phase change of output light. is there.
【0002】[0002]
【従来の技術】強誘電体材料、特にニオブ酸リチウム
(LiNbO3)、およびタンタル酸リチウム(LiTa
O3)などは、顕著な電気光学効果を示すものであって、
外部から電界が印加されたとき、その屈折率が微小変化
する。この現象を利用して、上記材料により光導波路を
形成し、その近傍に設けられた電極から電界を印加して
光導波路中を伝播する信号光の位相を制御することがで
きる。2. Description of the Related Art Ferroelectric materials, especially lithium niobate (LiNbO 3 ), and lithium tantalate (LiTa).
O 3 ), etc. exhibit a remarkable electro-optical effect,
When an electric field is applied from the outside, its refractive index slightly changes. By utilizing this phenomenon, an optical waveguide can be formed from the above material, and an electric field can be applied from an electrode provided in the vicinity thereof to control the phase of signal light propagating in the optical waveguide.
【0003】上述のような光導波路を有する光素子を電
界センサなどに利用する場合、当該センサの感度を向上
させるためには、この光導波路から出射する出射光の強
度が、この光導波路に外部から印加される電界の強さに
対応して、ほぼ線形に変化することが好ましい。従っ
て、光導波路から出射される信号光が、印加される外部
電界に対応して適当な位相を示すように初期動作点を調
整することが必要である。つまり出射光強度をcos2θと
すれば、外部電界の強さがゼロのとき、θ=π/2であ
ることが必要である。When an optical element having an optical waveguide as described above is used in an electric field sensor or the like, in order to improve the sensitivity of the sensor, the intensity of outgoing light emitted from this optical waveguide is external to this optical waveguide. It is preferable that the voltage changes substantially linearly according to the strength of the electric field applied from the. Therefore, it is necessary to adjust the initial operating point so that the signal light emitted from the optical waveguide exhibits an appropriate phase corresponding to the applied external electric field. That is, if the intensity of emitted light is cos 2 θ, it is necessary that θ = π / 2 when the intensity of the external electric field is zero.
【0004】光導波路の初期動作点を調整する従来方法
としては、光導波路の有する電気光学効果を利用し、光
導波路に直流(DC)電界を連続的に印加(バイアス)
し、この印加する直流電界の強さを適宜に調整すること
によって、光導波路の屈折率を変化させ、それにより当
該光導波路からの出射光の位相および光素子の初期動作
点を調整する方法が知られている。この従来方法は、外
部変調器などに応用することができる。しかし、信号光
の強度(位相)変化によって微小な外部電界を検知する
目的に用いられる電界センサにおいては、上述のよう
な、光射光位相制御用電界を用いることは許されない。As a conventional method for adjusting the initial operating point of the optical waveguide, a direct current (DC) electric field is continuously applied (biased) to the optical waveguide by utilizing the electro-optic effect of the optical waveguide.
However, by appropriately adjusting the strength of the applied DC electric field, the refractive index of the optical waveguide is changed, thereby adjusting the phase of the light emitted from the optical waveguide and the initial operating point of the optical element. Are known. This conventional method can be applied to an external modulator or the like. However, in the electric field sensor used for the purpose of detecting a minute external electric field by changing the intensity (phase) of the signal light, it is not allowed to use the above-mentioned electric field for controlling the emitted light phase.
【0005】光導波路の初期動作点を調整する他の従来
方法としては、二分岐した光導波路の長さを、互いにわ
ずかに異なるように形成し、この二分岐光導波路に、使
用される光の波長のオーダー程度の行路長差が生ずるよ
うにする。例えば2本の導波路を、互いに半径の長さが
異なる同心円弧状に形成し、この2本の導波路から出射
される信号光を合波して、出射光の位相を調整する方法
が知られている。As another conventional method for adjusting the initial operating point of the optical waveguide, the lengths of the bifurcated optical waveguides are formed so as to be slightly different from each other, and the light used for the bifurcated optical waveguide is adjusted. A path length difference of the order of wavelength should be generated. For example, a method is known in which two waveguides are formed in a concentric circular arc shape having different radius lengths, the signal lights emitted from the two waveguides are combined, and the phase of the emitted light is adjusted. ing.
【0006】光導波路の初期動作点を調整する更に他の
従来方法としては、左右2本の導波路の幅を、部分的に
変化させて非対称形状に形成し、それによって実行屈折
率に差異を発生させて、初期動作点をシフトさせる方法
(土屋、久保田、清野、1992年、電子通信学会秋期
大会、発明C−171)が知られている。Yet another conventional method of adjusting the initial operating point of the optical waveguide is to form the asymmetric shape by partially changing the widths of the two waveguides on the left and right sides, thereby changing the effective refractive index. A method of generating and shifting the initial operating point (Tsuchiya, Kubota, Kiyono, 1992, Autumn Meeting of the Institute of Electronics and Communication Engineers, Invention C-171) is known.
【0007】光導波路の初期動作点を調整する更に他の
既知方法としては、左右2本に分岐させた光導波路の
上、又はその近傍に力学的圧力を印加し、当該光導波路
の有する光弾性効果を利用して当該光導波路の屈折率を
微小変化させ、それにより初期動作点をシフトさせる方
法(特開平4−34,516号公報)が知られている。Still another known method for adjusting the initial operating point of the optical waveguide is to apply a mechanical pressure on or near the optical waveguide that is branched into two left and right parts to obtain the photoelasticity of the optical waveguide. A method (Japanese Patent Laid-Open No. 4-34,516) is known in which the effect is used to slightly change the refractive index of the optical waveguide to shift the initial operating point.
【0008】上述の従来方法は、位相制御用直流電界を
必要としないため、電界センサの動作点調整に利用する
ことができるが、しかし、所望性能の光素子を再現性よ
く作製するためには光素子の製造プロセスを、精密に制
御する必要がある。実際には、電気光学的光素子に用い
られるニオブ酸リチウムのような電気光学結晶基板は、
本質的に多くの結晶欠陥を有しているため、現在の技術
水準では、得られる光素子基板の面内特性分布が必ずし
も均一ではなく、このため、上記従来方法を適用する
と、得られる光素子個体間の初期動作点のばらつきが大
きいという問題を生ずることがある。このため、光導波
路のパターンの設計によりその初期動作点を調整しよう
とする従来方法では、製品の製造歩留りが低くなるとい
う問題点がある。Since the above-mentioned conventional method does not require a DC electric field for phase control, it can be used for adjusting the operating point of an electric field sensor. However, in order to manufacture an optical element with desired performance with good reproducibility. It is necessary to precisely control the optical element manufacturing process. In practice, electro-optic crystal substrates such as lithium niobate used for electro-optic optical devices are
Since there are essentially many crystal defects, the in-plane characteristic distribution of the obtained optical element substrate is not necessarily uniform at the current state of the art. Therefore, when the above-mentioned conventional method is applied, the obtained optical element is obtained. This may cause a problem that there is a large variation in the initial operating point between individuals. Therefore, in the conventional method in which the initial operating point is adjusted by designing the pattern of the optical waveguide, there is a problem that the manufacturing yield of the product is lowered.
【0009】[0009]
【発明が解決しようとする課題】本発明は、制御用直流
電界を用いることなく、光導波路型光素子の初期動作点
を調整する方法を提供しようとするものである。また、
本発明は光導波路型光素子の初期動作点を、光素子個体
毎に、異なる調整量をもって、調整し得る方法を提供し
ようとするものである。さらに、本発明は、例えばニオ
ブ酸リチウムなどのような電気光学効果を示す材料から
形成された光導波路を有する光素子について、それを例
えばマッハツェンダ型強度変調器をベースとする電界セ
ンサを利用する場合に必要な、出射信号光の位相調整、
すなわち初期動作点の調整を行う方法を提供しようとす
るものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for adjusting the initial operating point of an optical waveguide type optical element without using a controlling DC electric field. Also,
The present invention is intended to provide a method capable of adjusting the initial operating point of an optical waveguide type optical element with a different adjustment amount for each optical element. Furthermore, the present invention relates to an optical element having an optical waveguide formed of a material exhibiting an electro-optical effect such as lithium niobate, when using the electric field sensor based on, for example, a Mach-Zehnder type intensity modulator. Phase adjustment of the outgoing signal light required for
That is, it is intended to provide a method for adjusting the initial operating point.
【0010】[0010]
【課題を解決するための手段】本発明者らは、外部電界
が印加されたことのない導波路型光素子に、外部から直
流電圧を印加すると、その光変調特性が不可逆的に変化
する現象を利用し、導波路型光素子の初期動作点を調整
し得ることを見出し、本発明を完成した。SUMMARY OF THE INVENTION The present inventors have found that when a DC voltage is externally applied to a waveguide type optical element to which an external electric field has not been applied, its optical modulation characteristics are irreversibly changed. The inventors have found that the initial operating point of the waveguide type optical element can be adjusted by utilizing the above, and have completed the present invention.
【0011】本発明の導波路型光素子の初期動作点調整
方法は、外部電界を印加された経歴を有していない導波
路型光素子に対し、直流電圧を印加する操作と、前記電
圧印加を解除する操作とを施して、前記導波路型光素子
の初期動作点を不可逆に設定することを特徴とするもの
である。The method of adjusting the initial operating point of a waveguide type optical element according to the present invention comprises an operation of applying a DC voltage to a waveguide type optical element which has no history of being applied with an external electric field, and the voltage application. Is performed to set the initial operating point of the waveguide type optical element to be irreversible.
【0012】本発明方法において、前記直流電圧印加操
作を、20℃〜100℃の温度下において施すことが好
ましい。In the method of the present invention, it is preferable that the DC voltage application operation is performed at a temperature of 20 ° C to 100 ° C.
【0013】また、本発明方法において、前記導波路型
光素子がニオブ酸リチウムからなる基板を有し、この基
板が水素含有量を減少させるための処理を施されたもの
である場合、前記直流電圧印加処理が、前記基板の水素
含有量減少処理雰囲気の露点よりも高い露点を有する雰
囲気中で施されることが好ましい。In the method of the present invention, when the waveguide type optical element has a substrate made of lithium niobate and the substrate has been subjected to a treatment for reducing the hydrogen content, the direct current It is preferable that the voltage application process is performed in an atmosphere having a dew point higher than the dew point of the atmosphere for reducing the hydrogen content of the substrate.
【0014】前記本発明の方法により初期動作点を調整
して製造された導波路型光素子は、出力光の位相変化に
より外部電界を検知する電界センサとして有効なもので
ある。The waveguide type optical element manufactured by adjusting the initial operating point by the method of the present invention is effective as an electric field sensor for detecting the external electric field by the phase change of the output light.
【0015】[0015]
【作用】光導波路型電子光学素子は、外部電界により、
出力光の位相を変調し得るものであるが、外部電界を印
加された経歴を有していない(製造直後)光素子は、最
初の外部電界印加により、外部電界に対する位相変調な
どの特性が不可逆変化するという特性を有している。つ
まり、外部電界印加を受ける前の出力光の変調状態と、
外部電界印加を受けた後の出力光の変調状態とは、互い
に異なっており、最初の外部電界印加により、当該光素
子の出力光の変調状態、つまり初期動作点は不可逆的に
設定される。[Function] The optical waveguide type electro-optical element is
An optical element that can modulate the phase of output light but has no history of being applied with an external electric field (immediately after manufacturing) has irreversible characteristics such as phase modulation with respect to the external electric field when the first external electric field is applied. It has the property of changing. That is, the modulation state of the output light before the external electric field is applied,
The modulation state of the output light after receiving the external electric field application is different from each other, and the modulation state of the output light of the optical element, that is, the initial operating point is set irreversibly by the first external electric field application.
【0016】比較的高い外部電界の印加による光素子の
特性の不可逆変化は、光素子内部の不純物の分布、イオ
ンおよび原子の配置状態などが、電界の印加により、よ
り安定な(エネルギー)状態に遷移する現象に基づくも
のであり、この不可逆変化は、化学反応と同様に、加熱
によりその進行が加速される。そして電界印加が解除さ
れると、光素子の内部状態は、上記変化した状態におい
て、ほぼ凍結される。The irreversible change in the characteristics of the optical element due to the application of a relatively high external electric field is such that the distribution of impurities inside the optical element and the arrangement state of ions and atoms become more stable (energy) state by the application of the electric field. It is based on a transition phenomenon, and this irreversible change is accelerated by heating as in a chemical reaction. Then, when the application of the electric field is released, the internal state of the optical element is almost frozen in the changed state.
【0017】従って、光素子に対する直流電圧印加操作
を、加熱雰囲気中において施すことにより、上記不可逆
変化を促進し、所要処理時間を短縮することが可能にな
る。しかし、実用的には、光素子は、光ファイバなどを
接着剤により固定する組立工程に供されるから、直流電
圧印加処理は、接着剤が劣化しない温度、すなわち、一
般には、20〜100℃の温度で施されることが好まし
く、より好ましい印加温度は常温(25℃)〜100℃
である。Therefore, by applying the DC voltage to the optical element in the heating atmosphere, the irreversible change can be promoted and the required processing time can be shortened. However, practically, the optical element is subjected to an assembly process for fixing an optical fiber or the like with an adhesive, and therefore the DC voltage application process is performed at a temperature at which the adhesive does not deteriorate, that is, generally 20 to 100 ° C. Is preferably applied at a temperature of from 0 to 100 ° C., more preferably from room temperature (25 ° C.) to 100 ° C.
Is.
【0018】本発明方法が適用される導波路型光素子と
しては、ニオブ酸リチウムを基板とする光導波路を有す
るものが好ましく、また、このニオブ酸リチウム基板
は、光素子の製造段階において、その中に含有される水
素(不純物)の含有量を強制的に減少させる処理が施さ
れたものであることが好ましい。上記のように、水素含
有量減少処理を施されたニオブ酸リチウム基板を有する
導波路型光素子に、本発明方法を適用する場合、外部電
界印加操作を施す雰囲気の露点が、上記基板の水素含有
量減少処理の雰囲気の露点よりも高いことが好ましい。
このようにすると、外部電界印加操作用に、雰囲気中の
水分(水素)が電気化学反応を介して電極から光素子中
に、水素イオンとして注入され易いという利点がある。The waveguide type optical element to which the method of the present invention is applied preferably has an optical waveguide using lithium niobate as a substrate, and this lithium niobate substrate is used at the stage of manufacturing the optical element. It is preferable that a treatment for forcibly reducing the content of hydrogen (impurity) contained therein is performed. As described above, when the method of the present invention is applied to the waveguide type optical element having the lithium niobate substrate subjected to the hydrogen content reduction treatment, the dew point of the atmosphere in which the external electric field is applied is the hydrogen of the substrate. It is preferably higher than the dew point of the atmosphere for the content reduction treatment.
This has the advantage that moisture (hydrogen) in the atmosphere is easily injected as hydrogen ions from the electrode into the optical element through an electrochemical reaction for the operation of applying an external electric field.
【0019】次に、z−カットLiNbO3 基板上に、
チタン(Ti)を熱拡散させて作製した光導波路を有す
る光素子を例にとって本発明をさらに説明する。上記の
導波路を用いた光素子、例えばマッハツェンダ型強度変
調器は、例えば直径3インチ、厚さ0.5mmのz−Li
NbO3 ウエハに、所望のパターンにTiを熱拡散させ
導波路を形成した後、その上にSiO2 膜を、気相堆積
法、例えばスパッタリング法により堆積し、さらに電極
を堆積して作製することができる。Next, on the z-cut LiNbO 3 substrate,
The present invention will be further described by taking an optical element having an optical waveguide manufactured by thermally diffusing titanium (Ti) as an example. An optical element using the above-mentioned waveguide, for example, a Mach-Zehnder type intensity modulator is, for example, a z-Li having a diameter of 3 inches and a thickness of 0.5 mm.
After forming a waveguide by thermally diffusing Ti into a desired pattern on an NbO 3 wafer, a SiO 2 film is deposited thereon by a vapor deposition method, for example, a sputtering method, and electrodes are further deposited. You can
【0020】上記のTiの熱拡散は、Liの外拡散を防
ぐために、水蒸気を含むガス雰囲気中で行われるのが一
般的である。このような湿潤雰囲気中で熱処理されたニ
オブ酸リチウム基板中には、水素(イオン)が、−OH
の形で、ニオブ酸リチウム結晶の酸素面(z軸に垂直な
面の一つ)内に取り込まれる。水素イオンは、他にも、
結晶引き上げ過程や、分極処理中にも結晶中取り込まれ
る。つまり、ニオブ酸リチウム結晶は、水素イオンが含
有された状態が、エネルギー的に、より安定な状態と考
えることができる。The above-mentioned thermal diffusion of Ti is generally performed in a gas atmosphere containing water vapor in order to prevent out-diffusion of Li. In the lithium niobate substrate heat-treated in such a humid atmosphere, hydrogen (ions) are
In the form of, it is taken into the oxygen plane of the lithium niobate crystal (one of the planes perpendicular to the z-axis). In addition to hydrogen ions,
It is also taken into the crystal during the crystal pulling process and the polarization treatment. That is, the lithium niobate crystal can be considered to be energetically more stable when it contains hydrogen ions.
【0021】一方、ニオブ酸リチウム基板の熱処理を乾
燥雰囲気中で行うと、基板内の水素量は、処理条件の熱
力学的平衡状態に対応して減少する。基板中の水素量
は、赤外分光法により測定することができる。例えば、
純水をバブリングさせた酸素を炉内に導入して行われる
通常の湿潤雰囲気中において熱処理(980℃)を施さ
れた基板について測定したOH伸縮モード(〜3500
cm-1) の吸収係数は2.6cm-1であるが、これに対し、
露点約−70℃の酸素を導入し雰囲気中において熱処理
した基板の吸収係数は0.70cm-1であって、乾燥雰囲
気熱処理により、基板中に含まれる水素量は約1/3に
減少する。On the other hand, when the heat treatment of the lithium niobate substrate is performed in a dry atmosphere, the amount of hydrogen in the substrate decreases corresponding to the thermodynamic equilibrium state of the processing conditions. The amount of hydrogen in the substrate can be measured by infrared spectroscopy. For example,
OH expansion / contraction mode (up to 3500) measured on a substrate that has been subjected to heat treatment (980 ° C.) in a normal wet atmosphere in which oxygen bubbling pure water is introduced into the furnace.
The absorption coefficient of cm -1 ) is 2.6 cm -1 .
The absorption coefficient of a substrate heat-treated in an atmosphere with oxygen introduced at a dew point of about −70 ° C. is 0.70 cm −1 , and the heat treatment in a dry atmosphere reduces the amount of hydrogen contained in the substrate to about ⅓.
【0022】図1(a)および(b)において実線は、
乾燥雰囲気熱処理により、ニオブ酸リチウム基板中の含
有水素量を強制的に減少させた状態で作製した2台の導
波路型光素子(電極長40mm、電極間距離約10μm)
に、温度80℃で直流電圧5Vを印加した場合のdcド
リフト、つまり変調波形の動作点位置が時間経過ととも
に変移していく様子を示したものである。このようなド
リフト現象は、誘電体で構成される光素子ではしばしば
観察される現象であり、これは、電界印加により誘電体
中に分極が発生し、印加電界が打ち消されるなどの理由
によるものである。上記分極は、誘電体中でのイオンの
変位に基づいて発生するため、数時間程度の緩和時間を
有する現象として観察される。The solid line in FIGS. 1A and 1B is
Two waveguide type optical devices (electrode length 40 mm, distance between electrodes about 10 μm) fabricated with the amount of hydrogen contained in the lithium niobate substrate forcibly reduced by heat treatment in a dry atmosphere
FIG. 4 shows how the dc drift when a DC voltage of 5 V is applied at a temperature of 80 ° C., that is, the operating point position of the modulation waveform changes over time. Such a drift phenomenon is a phenomenon often observed in an optical element composed of a dielectric material. This is because a polarization is generated in the dielectric material by applying an electric field and the applied electric field is canceled. is there. Since the above-mentioned polarization occurs based on the displacement of ions in the dielectric, it is observed as a phenomenon having a relaxation time of about several hours.
【0023】図1(a),(b)において、実線により
示された例では、ドリフトは約2Vにおいて飽和値を示
す。つまり印加している5Vの電圧のうち、ちょうど2
V分が打ち消されている。次に、印加していた電圧を取
り除くと、分極が上記と同程度の緩和時間を要して消滅
し、ちょうど分極による打ち消し分に相当するドリフト
が逆方向に発生する筈である。すなわち図1の例では、
−2Vの電圧において飽和するドリフトが観察されるは
ずである。しかし、図1において破線により示されてい
るように、印加電圧5Vを解除すると、飽和値が約−5
Vのドリフト、つまり絶対値が印加電圧に相当するドリ
フトが観察された。このサンプルとは対照的に、湿潤雰
囲気熱処理を経て作製した光素子では、同条件での測定
において、5V印加によるドリフトは4〜5V(図1の
サンプル(a)より大きい)、電圧オフ(解除)による
ドリフトは−4〜−5Vであった。本発明では、図1に
おいて、直線と破線とにより示されるような、電圧印加
による変調特性の不可逆変化が利用される。In the example shown by the solid line in FIGS. 1A and 1B, the drift shows a saturation value at about 2V. In other words, of the applied 5V voltage, just 2
V minutes have been canceled. Next, when the applied voltage is removed, the polarization should disappear with a relaxation time comparable to the above, and a drift corresponding to the cancellation due to the polarization should occur in the opposite direction. That is, in the example of FIG.
Saturating drift at a voltage of -2V should be observed. However, as shown by the broken line in FIG. 1, when the applied voltage of 5 V is released, the saturation value becomes about −5.
A drift of V, that is, a drift whose absolute value corresponds to the applied voltage, was observed. In contrast to this sample, in the optical device manufactured through the heat treatment in a wet atmosphere, the drift due to the application of 5 V was 4 to 5 V (larger than the sample (a) in FIG. 1) and the voltage was turned off (released) in the measurement under the same conditions. ), The drift was -4 to -5V. In the present invention, the irreversible change of the modulation characteristic due to the voltage application as shown by the straight line and the broken line in FIG. 1 is utilized.
【0024】上記の、水素を減量した基板を用いた光水
素の特性における不可逆変化の原因は、およそ下記のよ
うに説明できる。すなわち、基板結晶中の水素は、酸素
面内に−OHの形で存在している。このため、酸素面と
交差する方向に電界が印加されると、水素イオンが酸素
面内から離れる方向に変位し分極する。このような分極
による印加電界の打ち消しは、当然、含有される水素イ
オンの量が少ないほど小さい。つまり、乾燥雰囲気熱処
理により製作されたサンプルのドリフト量は、湿潤雰囲
気熱処理により作製されたサンプルのそれに比べて小さ
い。しかし、電界を印加している環境における平衡状態
は、むしろ水素を多く含む状態が好ましく、あるいは、
電界による基板内での水素(イオン)拡散により、基板
(導波路)表面付近での水素量は増加する傾向にある。The cause of the above irreversible change in the characteristics of photohydrogen using the substrate with reduced hydrogen can be explained as follows. That is, hydrogen in the substrate crystal exists in the form of —OH in the oxygen plane. Therefore, when an electric field is applied in a direction intersecting the oxygen surface, hydrogen ions are displaced and polarized in a direction away from the oxygen surface. The cancellation of the applied electric field due to such polarization is naturally smaller as the amount of contained hydrogen ions is smaller. That is, the amount of drift of the sample manufactured by the dry atmosphere heat treatment is smaller than that of the sample manufactured by the wet atmosphere heat treatment. However, it is preferable that the equilibrium state in the environment in which the electric field is applied contains a large amount of hydrogen, or
Hydrogen (ion) diffusion in the substrate due to the electric field tends to increase the amount of hydrogen near the surface of the substrate (waveguide).
【0025】図1(a),(b)のそれぞれにおいて、
5Vの電圧印加において、ドリフトが約2Vに飽和して
いる状態は、前記の酸素面内の水素イオンによる分極
と、外部からの水素(イオン)の移動(例えばイオン電
導)により釣り合っている状態であると考えられる。こ
の状態で印加電圧を解除すると、分極していた水素イオ
ンが酸素面内に戻ると同時に、初期状態では水素イオン
が存在しなかった(酸素面内)位置においても、移動し
てきた水素が−OHの状態で取り込まれるため、逆方向
へのドリフト量が大きくなる。つまり終末状態における
水素イオン量が、湿潤雰囲気熱処理サンプルのそれと同
程度であれば、−4〜−5Vのドリフトが発生すること
になる。結果として基板中(少なくとも電界の進入深さ
に相当する領域)の水素含有量は増加しているため、再
度電圧を印加しても、ほぼ印加電圧分に相当する大きな
「ドリフト」(4〜5V)が観察され、また電圧オフ
(解除)による不可逆変化は発生しない。In each of FIGS. 1 (a) and 1 (b),
When a voltage of 5 V is applied, the drift is saturated to about 2 V when the polarization due to hydrogen ions in the oxygen surface is balanced with the movement of hydrogen (ions) from the outside (for example, ion conduction). It is believed that there is. When the applied voltage is released in this state, the polarized hydrogen ions return to the oxygen surface, and at the same time, even when hydrogen ions do not exist in the initial state (in the oxygen surface), the migrated hydrogen is -OH. Since it is taken in in the state of, the drift amount in the opposite direction becomes large. That is, if the amount of hydrogen ions in the final state is about the same as that of the heat treatment sample in the wet atmosphere, a drift of -4 to -5 V will occur. As a result, the hydrogen content in the substrate (at least in the region corresponding to the penetration depth of the electric field) is increased, and even if the voltage is applied again, a large “drift” (4 to 5 V) corresponding to the applied voltage is obtained. ) Is observed, and irreversible change due to voltage off (release) does not occur.
【0026】上記の理由により、初期状態において一度
高電界を印加して生じた変調特性の変化は、基板中の水
素量を変化(減少)させない限り不可逆であり、その後
の電界印加により元の状態に戻るようなことはない(ド
リフトがヒステリシスを示す)。したがって、本発明方
法により、光素子の初期動作点を調整することが可能で
ある。調整量は、電界印加により不可逆的に変化(増
加)する水素量が充分に多い限りにおいては、印加電界
の強さにより調整することができる。For the above reason, the change in the modulation characteristic caused by once applying the high electric field in the initial state is irreversible unless the amount of hydrogen in the substrate is changed (decreased), and the original state is applied by the subsequent application of the electric field. There is no return to (drift shows hysteresis). Therefore, the initial operating point of the optical element can be adjusted by the method of the present invention. The adjustment amount can be adjusted by the strength of the applied electric field, as long as the amount of hydrogen that is irreversibly changed (increased) by application of the electric field is sufficiently large.
【0027】一般に、本発明方法における電界の印加操
作において、電界印加の経歴のない光素子に−10〜+
10ボルトの直流電圧を、10〜100時間印加するこ
とが好ましい。また、電界印加の解除後は、当該光素子
を、電界印加操作温度と同一温度の雰囲気中に、10〜
100時間程度放置することが好ましい。Generally, in the operation of applying an electric field in the method of the present invention, an optical element having no history of application of an electric field is -10 to +.
It is preferable to apply a DC voltage of 10 V for 10 to 100 hours. After releasing the electric field application, the optical element is placed in an atmosphere at the same temperature as the electric field application operating temperature for 10 to 10 minutes.
It is preferable to leave it for about 100 hours.
【0028】[0028]
【実施例】本発明を下記実施例によりさらに説明する。実施例1 乾燥酸素気流中(980℃)で作製したz−カットT
i:LiNbO3 導波路基板上に、SiO2 バッファ層
をスパッタリング法により形成し、乾燥酸素気流中、6
00℃の温度で熱処理する工程を経て、マッハツェンダ
型変調器タイプの電界センサ用光素子を作製した。The present invention will be further described by the following examples. Example 1 z-cut T produced in a stream of dry oxygen (980 ° C.)
i: An SiO 2 buffer layer was formed on a LiNbO 3 waveguide substrate by a sputtering method, and the SiO 2 buffer layer was formed in a dry oxygen stream,
An optical element for a Mach-Zehnder modulator type electric field sensor was produced through a step of heat treatment at a temperature of 00 ° C.
【0029】作製直後(電界未印加)の光素子の変調特
性(波長1.55μm)を図2(a)に示す。この状態
では、変調波形のピーク位置がほぼゼロ電圧の位置にあ
り、微小な外部電界(電圧)の変化を光出力強度の変化
として検出するには、対応する光強度の変化が小さく、
また、外部電界が正負いずれに変化した場合も出力光強
度は減少する方向に変化する。このような光素子は、外
部電界を検出するための電界センサには不適当である。FIG. 2A shows the modulation characteristic (wavelength: 1.55 μm) of the optical element immediately after fabrication (no electric field applied). In this state, the peak position of the modulation waveform is almost at the zero voltage position, and to detect a minute change in the external electric field (voltage) as a change in the optical output intensity, the corresponding change in the optical intensity is small,
In addition, the output light intensity changes in the decreasing direction regardless of whether the external electric field changes positively or negatively. Such an optical element is unsuitable for an electric field sensor for detecting an external electric field.
【0030】上記光素子に、温度80℃で直流電圧5V
を印加し、約1日間放置した後、印加電圧を解除して1
日間以上放置した。すると、ヒステリシスを有するドリ
フト現象が発生し、光素子の初期動作点(ゼロ電圧にお
ける位相)は、図2(b)に示されているように、変調
波形の山と谷とのほぼ中点に移動した。このような状態
は、外部電界の微小変化に依存して大きな光強度変化が
得られるため、電界センサとして好ましい初期状態であ
る。A DC voltage of 5 V was applied to the above optical element at a temperature of 80.degree.
Is applied and left for about 1 day, then the applied voltage is released
I left it for more than a day. Then, a drift phenomenon having hysteresis occurs, and the initial operating point (phase at zero voltage) of the optical element is almost at the midpoint between the peak and the valley of the modulation waveform as shown in FIG. 2B. moved. Such a state is a preferable initial state as an electric field sensor because a large change in light intensity can be obtained depending on a minute change in the external electric field.
【0031】[0031]
【発明の効果】本発明により、制御用の電圧を定常的に
印加することなく、光導波路型素子の初期動作点の調整
を行うことが可能になった。According to the present invention, it becomes possible to adjust the initial operating point of an optical waveguide device without constantly applying a control voltage.
【図面の簡単な説明】[Brief description of drawings]
【図1】図1(a)および(b)は、電界印加の経歴を
有していない2台の導波路型光素子の、直流電圧5Vを
印加したときの動作点のドリフトと、動作時間(電圧印
加時間)との関係(実線)、および上記電圧印加を解除
した後のドリフトと、動作時間(放置時間)との関係
(破線)を示すグラフ。1A and 1B are drifts of operating points and operating time of two waveguide type optical elements having no history of application of an electric field when a DC voltage of 5V is applied. The graph which shows the relationship (solid line) with (voltage application time), and the relationship (dashed line) with the drift after releasing the said voltage application, and operating time (standing time).
【図2】図2(a)は、電界印加の経歴を有していない
導波路型光素子の一例の、出力光の強度と、印加電圧と
の関係を示すグラフ。図2(b)は、上記光素子に、本
発明方法による初期動作点調整処理を施した後の、当該
光素子の出力光の強度と、印加電圧との関係を示すグラ
フ。FIG. 2A is a graph showing the relationship between the intensity of output light and the applied voltage in an example of a waveguide-type optical element that has no history of application of an electric field. FIG. 2B is a graph showing the relationship between the intensity of the output light of the optical element and the applied voltage after the optical element is subjected to the initial operating point adjustment processing by the method of the present invention.
Claims (4)
い導波路型光素子に対し、直流電圧を印加する操作と、
前記電圧印加を解除する操作とを施して、前記導波路型
光素子の初期動作点を不可逆に設定することを特徴とす
る、導波路型光素子の初期動作点調整方法。1. An operation of applying a DC voltage to a waveguide type optical element having no history of being applied with an external electric field,
A method for adjusting an initial operating point of a waveguide type optical element, characterized in that the initial operating point of the waveguide type optical element is set irreversibly by performing an operation of releasing the voltage application.
0℃の温度下において施す、請求項1に記載の方法。2. The DC voltage applying operation is performed at 20 ° C. to 10 ° C.
The method according to claim 1, which is performed at a temperature of 0 ° C.
からなる基板を有し、この基板が水素含有量を減少させ
るための処理を施されたものであり、前記直流電圧印加
処理が、前記基板の水素含有量減少処理雰囲気の露点よ
りも高い露点を有する雰囲気中で施される、請求項1又
は2に記載の方法。3. The waveguide type optical element has a substrate made of lithium niobate, and the substrate has been subjected to a treatment for reducing a hydrogen content, and the direct current voltage applying treatment includes: The method according to claim 1, wherein the method is performed in an atmosphere having a dew point higher than the dew point of the atmosphere for reducing the hydrogen content of the substrate.
を調整して製造された導波路型光素子を含み、出力光の
位相変化により外部電界を検知する電界センサ。4. An electric field sensor including a waveguide type optical element manufactured by adjusting the initial operating point by the method according to claim 1, and detecting an external electric field by a phase change of output light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29998193A JP3415898B2 (en) | 1993-11-30 | 1993-11-30 | Method for adjusting initial operating point of waveguide optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29998193A JP3415898B2 (en) | 1993-11-30 | 1993-11-30 | Method for adjusting initial operating point of waveguide optical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07152006A true JPH07152006A (en) | 1995-06-16 |
JP3415898B2 JP3415898B2 (en) | 2003-06-09 |
Family
ID=17879316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29998193A Expired - Fee Related JP3415898B2 (en) | 1993-11-30 | 1993-11-30 | Method for adjusting initial operating point of waveguide optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3415898B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012073366A (en) * | 2010-09-28 | 2012-04-12 | Nippon Telegr & Teleph Corp <Ntt> | Optical modulator |
JP2019174746A (en) * | 2018-03-29 | 2019-10-10 | 住友大阪セメント株式会社 | Light control element |
-
1993
- 1993-11-30 JP JP29998193A patent/JP3415898B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012073366A (en) * | 2010-09-28 | 2012-04-12 | Nippon Telegr & Teleph Corp <Ntt> | Optical modulator |
JP2019174746A (en) * | 2018-03-29 | 2019-10-10 | 住友大阪セメント株式会社 | Light control element |
Also Published As
Publication number | Publication date |
---|---|
JP3415898B2 (en) | 2003-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0652457B1 (en) | Optical waveguide device | |
US5638468A (en) | Optical modulation system | |
JP2873203B2 (en) | Waveguide type optical device | |
JP4642356B2 (en) | Buffer layer structure for stabilizing lithium niobate devices | |
JP3415898B2 (en) | Method for adjusting initial operating point of waveguide optical device | |
JP2005515485A6 (en) | Buffer layer structure for stabilizing lithium niobate devices | |
JP2005515499A6 (en) | Buffer layer structure for stabilizing lithium niobate devices | |
US20030133638A1 (en) | Ion implanted lithium niobate modulator with reduced drift | |
JP2963989B1 (en) | Light modulator | |
JP3090176B2 (en) | Optical phase-adjusted optical device chip with warpage and optical phase adjustment | |
CA2369673C (en) | A method for fabricating an optical waveguide device | |
JP2812652B2 (en) | Manufacturing method of waveguide type optical element | |
JP2739405B2 (en) | Electric field sensor | |
JPS62187310A (en) | Production of diffraction grating type optical coupler | |
JPH0588125A (en) | Optical waveguide and its manufacture | |
JP3602928B2 (en) | Manufacturing method of optical functional device | |
JP3969756B2 (en) | Optical functional device | |
JP3398191B2 (en) | Waveguide type optical control device | |
JP5282809B2 (en) | Optical waveguide device and manufacturing method thereof | |
JPH05113513A (en) | Waveguide-type optical device and its production | |
JPH11258440A (en) | Optical waveguide channel element and its manufacture | |
JPS60258504A (en) | Formation of optical waveguide | |
JPH09269468A (en) | Optical waveguide device | |
JP2001228448A (en) | Forming method of optical waveguide device | |
JPH063710A (en) | Optical control device and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080404 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090404 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090404 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100404 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |