JP3602928B2 - Manufacturing method of optical functional device - Google Patents

Manufacturing method of optical functional device Download PDF

Info

Publication number
JP3602928B2
JP3602928B2 JP34826196A JP34826196A JP3602928B2 JP 3602928 B2 JP3602928 B2 JP 3602928B2 JP 34826196 A JP34826196 A JP 34826196A JP 34826196 A JP34826196 A JP 34826196A JP 3602928 B2 JP3602928 B2 JP 3602928B2
Authority
JP
Japan
Prior art keywords
optical
substrate
waveguide
manufacturing
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34826196A
Other languages
Japanese (ja)
Other versions
JPH10186295A (en
Inventor
竜司 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP34826196A priority Critical patent/JP3602928B2/en
Publication of JPH10186295A publication Critical patent/JPH10186295A/en
Application granted granted Critical
Publication of JP3602928B2 publication Critical patent/JP3602928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光通信および光情報処理の各分野で使用される光導波路型の光制御デバイスとしての光機能素子の製造方法に関するものである。
【0002】
【従来の技術】
近年、光通信システムや光情報処理システムの実用化が進められているが、さらに大容量の光信号が処理できるシステムについて開発研究されている。
【0003】
これらシステムは、光機能素子を集積した光集積回路が不可欠であり、たとえばプレーナ技術を用いて、ニオブ酸リチウムLiNbO3 (ニオブ酸リチウムを以下、LNと略記する)などの単結晶材料の基板上に、直線導波路、曲がり導波路、分岐導波路および制御電極などを集積化(光集積回路)させることにより実現される。
【0004】
このような光集積回路に機能性をもたせるために、一般には電気光学効果を有する基板表層に、屈折率の大きい領域をもたせて光を閉じ込めた路、すなわち光導波路を形成し、上部には制御電極を設け、そして、印加電界により出射光の強度または位相を制御するようにした技術がさらに研究されている。
【0005】
たとえば、一方端より光を入射させるY分岐導波路でもって分波し、そして、平行導波路に非対称電界を印加することで各導波路の屈折率を変化させ、他方端に設けられたY分岐導波路で再び合波させた場合、光の位相差を制御することで出射光強度を制御して、光変調を行なうことができ、そのための制御電極を設けて成る光変調器、所謂、干渉型LN強度光変調器が提案されている。
【0006】
かかる干渉型LN強度光変調器においては、導波路上に直に制御電極を設けると、導波光のエネルギーは制御電極内に漏洩し、導波光が有効に導波路内で伝播されないという問題点がある。
【0007】
そこで、この問題点を解決するため、通常、光導波路が形成された表層の上に薄膜形成技術を使ってSiOから成る薄膜絶縁体(以下、この薄膜絶縁体をバッファ層と呼ぶ)を設けて、その上に制御電極を形成するという技術が採用されている。
【0008】
しかしながら、制御電極に印加する電気信号に直流成分が含まれている場合、バッファ層内に電気分極が生じ、この電気分極は、普通数十秒もしくはそれ以上という長時間にわたって経時的に変化するものであるために、制御電極による電界を効果的に印加することがむずかしくなるという問題点がある。このような現象はDCドリフトと呼ばれる。
【0009】
上記DCドリフトについて干渉型LN強度変調器を例に挙げて説明する。図6は干渉型LN強度変調器に正弦波電圧信号を印加したときの光出力特性を示し、理想的には印加電圧が零の時に光出力強度は極大値に到るが、実際上は印加電圧に対する光出力極大値は若干シフトしており、そのために実用上DCバイアス電圧を入力電気信号に加えて補完させることで光変調動作を実現している。しかしながら、DCドリフト現象により経時的に印加DCバイアスの効果が相殺されるので、効果的なDCバイアス印加がむずかしくなる。
【0010】
ところで、DCドリフトの明確なメカニズムは未だ議論されているが、バッファ層を成すSiOの膜質と強い相関があることはわかっており、また、バッファ層内のイオン伝導が原因であるといわれている。このバッファ層はスパッタリング法、プラズマCVD法などによって作製するが、いずれの方法を用いてもDCドリフトを抑制することができない。
【0011】
そこで、本発明は上記事情に鑑みて完成されたものであり、その目的はDCドリフトを極力抑制することのできる光機能素子の製造方法を提供することある。
【0012】
【課題を解決するための手段】
本発明の光機能素子の製造方法は、ニオブ酸リチウム単結晶またはタンタル酸リチウム単結晶からなる基体の表層に屈折率を高めた光導波路を形成し、前記基体の表層上にペエルヒドロポリシラザンを塗布形成し、該ペエルヒドロポリシラザンを焼結させて電気的絶縁層を形成し、この電気的絶縁層上に前記基体内の電界を制御する電極を形成することを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明を図1〜図5により説明する。図1は本発明の光機能素子としての干渉型LN光強度変調器の斜視図、図2は図1中の切断線A−A’による横断面図、図3はペエルヒドロポリシラザンの化学式、図4は前記電気的絶縁層としてのバッファ層の耐エッチング性能を示す線図、図5はDCドリフト量を表す線図である。
【0014】
図1と図2の干渉型LN光強度変調器1については、電気光学基板を有するLN基板2の表層に、直線導波路3、Y分岐導波路4、平行導波路5、Y分岐導波路6および直線導波路7が順次並んで形成され、かかる表層の上にSiOから成るバッファ層8、および前記電極としての制御電極9が設けられている。
【0015】
上記構成の干渉型LN光強度変調器1の製造方法を説明する。LN基板2については両主面が光学研磨されたオプティカルグレードのLN単結晶基板(厚さ1.0mm程度)であって、さらに主面がZカット(カット面が(0,0,1)面)を成す。そして、LN基板2の主面上にリフトオフ法やエッチング法でもって拡散源となるTi薄膜を被着形成し、そして、熱拡散法を用いてTi濃度の高い各導波路3〜7を形成する。しかる後にバッファ層8および制御電極9を順次積層する。制御電極9についてもTi薄膜パターン形成と同様にリフトオフ法やエッチング法で設ける。
【0016】
バッファ層8を作製するには、前駆体無機ポリマーとしてのペエルヒドロポリシラザン(以下、ペエルヒドロポリシラザンをポリシラザンと呼ぶ)を焼結させる。これにより、緻密性の高いSiO薄膜を得ることができる。ポリシラザンは、図3に示す化学式の無機ポリマーであって、大気中でポリシラザンを焼成すると、大気中の酸素による酸化および水蒸気による加水分解の反応が進行し、非晶質Siが生成され、緻密性の高いSiO薄膜が得られる。
【0017】
すなわち、各導波路3〜7が表層に形成されたLN基板2の上に、スピンコーティング法を用いてポリシラザンを厚さ5μm程度で塗布形成し、その後に、オーブンにて約100℃の温度で、1時間程度加熱し、これによって溶媒である有機系溶剤を除去し、そして、約500℃の温度でもって1時間程度大気雰囲気中で加熱焼結することで、SiO薄膜が得られる。
【0018】
かくして得られた本発明の干渉型LN光強度変調器1によれば、バッファ層8をポリシラザンを酸化させながら焼成して非晶質Siを生成しているので、従来のものと比べて緻密性の高いSiO薄膜が得られた。
【0019】
次に本発明に係るポリシラザン焼結によるSiO膜と、熱酸化膜と、従来のスパッタリング法により得られたSiO2 膜とを対比するために、バッファ弗酸浸漬によるエッチングレートでもって比較評価を行なったところ、図4に示すような結果が得られた。同図において、横軸はエッチング時間(分)であり、縦軸はエッチング量(μm)である。
【0020】
上記熱酸化膜はシリコン単結晶の表面を熱酸化して得られるもっとも良質なる層であって、本例では指標としてあげた。
【0021】
また、膜の緻密性に対する評価についてはエッチング法が用いた。エッチングがされにくいという現象は、物理的にもしくは化学的にポテンシャルが低く安定していることを示す(すなわち、膜が緻密であり、良質な膜であるといえる)。
【0022】
図4の結果から明らかなとおり、本発明に係るポリシラザン焼結により得られたSiO2 膜は緻密性に優れていることがわかる。
【0023】
つぎに本発明の干渉型LN光強度変調器と、従来の干渉型LN光強度変調器とのDCドリフト量を測定したところ、図5に示すような結果が得られた。同図によれば、DCドリフト測定のためには、5VのDC電圧を印加しており、そのために5Vで飽和するが、DCドリフトは長期信頼性に関する特性であるために、曲線の時間に対する勾配が小さい方が良好であることを示す。したがって、図5に示すとおり、本発明の干渉型LN光強度変調器はDCドリフトが良好に抑制されていることがわかる。
【0024】
なお、本発明の実施形態においては、電気光学効果を有する基体としてLN単結晶材を使用したが、これに代えてタンタル酸リチウム単結晶材料を使用してもよい。
【0025】
【発明の効果】
以上のとおり、本発明の光機能素子の製造方法によれば、ニオブ酸リチウム単結晶またはタンタル酸リチウム単結晶からなる基体の表層に屈折率を高めた光導波路を形成し、基体の表層上にペエルヒドロポリシラザンを塗布形成し、このペエルヒドロポリシラザンを焼結させて電気的絶縁層を形成し、この電気的絶縁層上に前記基体内の電界を制御する電極を形成するようにした。これによってDCドリフトの極めて小さい良好な光機能素子を提供できた。
【図面の簡単な説明】
【図1】本発明の干渉型LN光強度変調器の斜視図である。
【図2】図1中の切断線A−A’による横断面図である。
【図3】ペエルヒドロポリシラザンの化学式である。
【図4】バッファ層の耐エッチング性能を示す線図である。
【図5】DCドリフト量を表す線図である。
【図6】干渉型LN強度変調器の光出力特性を示す線図である。
【符号の説明】
1:干渉型LN光強度変調器
2:LN基板
3:直線導波路
4:Y分岐導波路
5:平行導波路
6:Y分岐導波路
7:直線導波路
8:バッファ層(電気的絶縁層)
9:制御電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an optical functional element as an optical waveguide type optical control device used in various fields of optical communication and optical information processing.
[0002]
[Prior art]
In recent years, optical communication systems and optical information processing systems have been put into practical use, and systems capable of processing even larger optical signals have been developed and studied.
[0003]
In these systems, an optical integrated circuit in which optical functional elements are integrated is indispensable. For example, using a planar technology, a substrate of a single crystal material such as lithium niobate LiNbO 3 (lithium niobate is abbreviated as LN) is used. This is realized by integrating (optical integrated circuit) a straight waveguide, a bent waveguide, a branch waveguide, a control electrode, and the like.
[0004]
In order to provide such an optical integrated circuit with functionality, a path in which light is confined by forming a region having a large refractive index, that is, an optical waveguide, is generally formed on the surface layer of the substrate having an electro-optical effect, and a control section is formed on the upper part. Techniques for providing electrodes and controlling the intensity or phase of emitted light by an applied electric field have been further studied.
[0005]
For example, the light is split by a Y-branch waveguide in which light is incident from one end, and the refractive index of each waveguide is changed by applying an asymmetric electric field to the parallel waveguide. When the light is multiplexed again by the waveguide, the output light intensity can be controlled by controlling the phase difference of the light, and the light can be modulated. An optical modulator provided with a control electrode therefor, so-called interference Type LN intensity light modulators have been proposed.
[0006]
In such an interferometric LN intensity optical modulator, if the control electrode is provided directly on the waveguide, the energy of the guided light leaks into the control electrode, and the guided light is not effectively propagated in the waveguide. is there.
[0007]
Therefore, in order to solve this problem, a thin-film insulator made of SiO 2 (hereinafter, this thin-film insulator is called a buffer layer) is usually provided on the surface layer on which the optical waveguide is formed by using a thin-film forming technique. In addition, a technique of forming a control electrode thereon is employed.
[0008]
However, when a DC component is included in the electric signal applied to the control electrode, electric polarization occurs in the buffer layer, and the electric polarization changes with time over a long period of time, usually several tens of seconds or more. Therefore, there is a problem that it is difficult to effectively apply an electric field by the control electrode. Such a phenomenon is called DC drift.
[0009]
The DC drift will be described using an interferometric LN intensity modulator as an example. FIG. 6 shows an optical output characteristic when a sine wave voltage signal is applied to the interferometric LN intensity modulator. Ideally, when the applied voltage is zero, the optical output intensity reaches a maximum value. The optical output maximum value with respect to the voltage is slightly shifted. Therefore, in practice, the optical modulation operation is realized by complementing the input electric signal by adding the DC bias voltage. However, since the effect of the applied DC bias is offset with time by the DC drift phenomenon, it becomes difficult to effectively apply the DC bias.
[0010]
By the way, although the clear mechanism of DC drift is still discussed, it is known that there is a strong correlation with the film quality of SiO 2 forming the buffer layer, and it is said that the cause is ion conduction in the buffer layer. I have. This buffer layer is formed by a sputtering method, a plasma CVD method, or the like, but DC drift cannot be suppressed by any of these methods.
[0011]
Therefore, the present invention has been completed in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing an optical functional device capable of suppressing DC drift as much as possible.
[0012]
[Means for Solving the Problems]
The method of manufacturing an optical functional device of the present invention is to form an optical waveguide having an increased refractive index on a surface layer of a substrate made of lithium niobate single crystal or lithium tantalate single crystal, and to form a perhydropolysilazane on the surface layer of the substrate. Coating and sintering the perhydropolysilazane to form an electrical insulating layer; and forming an electrode for controlling an electric field in the substrate on the electrical insulating layer.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of an interferometric LN light intensity modulator as an optical functional device of the present invention, FIG. 2 is a cross-sectional view taken along a cutting line AA ′ in FIG. 1, FIG. 3 is a chemical formula of perhydropolysilazane, FIG. 4 is a diagram showing the etching resistance of the buffer layer as the electrical insulating layer, and FIG. 5 is a diagram showing the amount of DC drift.
[0014]
1 and 2, the linear waveguide 3, the Y-branch waveguide 4, the parallel waveguide 5, and the Y-branch waveguide 6 are provided on the surface of the LN substrate 2 having the electro-optical substrate. And a linear waveguide 7 are sequentially formed, and a buffer layer 8 made of SiO 2 and a control electrode 9 as the electrode are provided on the surface layer.
[0015]
A method of manufacturing the interference type LN light intensity modulator 1 having the above configuration will be described. The LN substrate 2 is an optical-grade LN single-crystal substrate (thickness: about 1.0 mm) whose both main surfaces are optically polished, and further has a Z-cut (the cut surface is (0, 0, 1) plane). ). Then, a Ti thin film serving as a diffusion source is formed on the main surface of the LN substrate 2 by a lift-off method or an etching method, and each of the waveguides 3 to 7 having a high Ti concentration is formed by using a thermal diffusion method. . Thereafter, the buffer layer 8 and the control electrode 9 are sequentially laminated. The control electrode 9 is also provided by a lift-off method or an etching method as in the case of forming the Ti thin film pattern.
[0016]
In order to produce the buffer layer 8, perhydropolysilazane as a precursor inorganic polymer (hereinafter, perhydropolysilazane is referred to as polysilazane) is sintered. Thereby, a dense SiO 2 thin film can be obtained. Polysilazane is an inorganic polymer having the chemical formula shown in FIG. 3. When polysilazane is fired in the air, the reaction of oxidation by oxygen and hydrolysis by water vapor in the air proceeds, and amorphous Si is generated, and A SiO 2 thin film having a high density can be obtained.
[0017]
That is, on the LN substrate 2 on which the respective waveguides 3 to 7 are formed on the surface layer, polysilazane is applied and formed with a thickness of about 5 μm by using a spin coating method, and then, in an oven at a temperature of about 100 ° C. Heating for about 1 hour, thereby removing the organic solvent as a solvent, and then heating and sintering at a temperature of about 500 ° C. in an atmosphere for about 1 hour to obtain a SiO 2 thin film.
[0018]
According to the interference type LN light intensity modulator 1 of the present invention thus obtained, since the buffer layer 8 is baked while oxidizing the polysilazane to produce amorphous Si, the buffer layer 8 is more dense than the conventional one. An SiO 2 thin film having a high density was obtained.
[0019]
Next, in order to compare the SiO 2 film formed by the polysilazane sintering according to the present invention, the thermal oxide film, and the SiO 2 film obtained by the conventional sputtering method, a comparative evaluation was performed using an etching rate by buffer hydrofluoric acid immersion. As a result, the result as shown in FIG. 4 was obtained. In the figure, the horizontal axis is the etching time (minute), and the vertical axis is the etching amount (μm).
[0020]
The thermal oxide film is the highest quality layer obtained by thermally oxidizing the surface of a silicon single crystal, and is used as an index in this example.
[0021]
The etching method was used to evaluate the denseness of the film. The phenomenon that etching is difficult indicates that the potential is physically low or chemically low and stable (that is, the film is dense and can be said to be a good film).
[0022]
As is clear from the results in FIG. 4, it is understood that the SiO 2 film obtained by the polysilazane sintering according to the present invention has excellent denseness.
[0023]
Next, when the DC drift amounts of the interferometric LN light intensity modulator of the present invention and the conventional interferometric LN light intensity modulator were measured, the results shown in FIG. 5 were obtained. According to the figure, a DC voltage of 5 V is applied for DC drift measurement, and the voltage is saturated at 5 V. However, since DC drift is a characteristic relating to long-term reliability, the slope of the curve with respect to time is measured. Indicates that the smaller is, the better. Therefore, as shown in FIG. 5, it can be seen that the DC drift of the interferometric LN light intensity modulator of the present invention is well suppressed.
[0024]
In the embodiment of the present invention, the LN single crystal material is used as the substrate having the electro-optical effect. However, a lithium tantalate single crystal material may be used instead.
[0025]
【The invention's effect】
As described above, according to the method for manufacturing an optical functional device of the present invention, an optical waveguide having an increased refractive index is formed on the surface layer of a substrate made of lithium niobate single crystal or lithium tantalate single crystal, and the light waveguide is formed on the surface layer of the substrate. Peel hydropolysilazane was applied and formed, and the hydrohydropolysilazane was sintered to form an electrical insulating layer, and an electrode for controlling an electric field in the base was formed on the electrical insulating layer. As a result, a good optical functional element with extremely small DC drift could be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of an interferometric LN light intensity modulator of the present invention.
FIG. 2 is a cross-sectional view taken along a cutting line AA ′ in FIG.
FIG. 3 is a chemical formula of perhydropolysilazane.
FIG. 4 is a diagram showing the etching resistance of a buffer layer.
FIG. 5 is a diagram illustrating a DC drift amount.
FIG. 6 is a diagram illustrating optical output characteristics of an interference type LN intensity modulator.
[Explanation of symbols]
1: Interferometric LN light intensity modulator 2: LN substrate 3: linear waveguide 4: Y branch waveguide 5: parallel waveguide 6: Y branch waveguide 7: linear waveguide 8: buffer layer (electrically insulating layer)
9: Control electrode

Claims (1)

ニオブ酸リチウム単結晶またはタンタル酸リチウム単結晶からなる基体の表層に屈折率を高めた光導波路を形成し記基体の表層上にペエルヒドロポリシラザンを塗布形成し、該ペエルヒドロポリシラザンを焼結させて電気的絶縁層を形成し、この電気的絶縁層上に前記基体内の電界を制御する電極を形成することを特徴とする光機能素子の製造方法 Forming an optical waveguide having an increased refractive index in the table layer substrate ing from lithium niobate single crystal or lithium tantalate single crystal, a pair El perhydropolysilazane coating formed on the front layer before Symbol substrate, said Peeru the perhydropolysilazane form an air insulation layer conductive by sintering, a method of manufacturing an optical functional device and forming an electrode for controlling an electric field in said substrate in the electrically insulating layer.
JP34826196A 1996-12-26 1996-12-26 Manufacturing method of optical functional device Expired - Fee Related JP3602928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34826196A JP3602928B2 (en) 1996-12-26 1996-12-26 Manufacturing method of optical functional device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34826196A JP3602928B2 (en) 1996-12-26 1996-12-26 Manufacturing method of optical functional device

Publications (2)

Publication Number Publication Date
JPH10186295A JPH10186295A (en) 1998-07-14
JP3602928B2 true JP3602928B2 (en) 2004-12-15

Family

ID=18395848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34826196A Expired - Fee Related JP3602928B2 (en) 1996-12-26 1996-12-26 Manufacturing method of optical functional device

Country Status (1)

Country Link
JP (1) JP3602928B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7228046B1 (en) * 2005-11-23 2007-06-05 Honeywell International, Inc. Environmentally stable electro-optic device and method for making same

Also Published As

Publication number Publication date
JPH10186295A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
EP1463974B1 (en) Buffer layer structures for stabilization of a lithium niobate device
JP3602928B2 (en) Manufacturing method of optical functional device
US6195191B1 (en) Optical devices having improved temperature stability
Song et al. Analysis and demonstration of Mach–Zehnder polymer modulators using in-plane coplanar waveguide structure
EP1791015B1 (en) Method for making an environmentally stable electro-optic device
JP2005515485A6 (en) Buffer layer structure for stabilizing lithium niobate devices
EP1224491B1 (en) Titanium-indiffusion waveguides and methods of fabrication
Greenblatt et al. Thermal stability of bias point of packaged linear modulators in lithium niobate
US20030133638A1 (en) Ion implanted lithium niobate modulator with reduced drift
EP1174753B1 (en) Method for forming an optical waveguide device
JP3710686B2 (en) Electro-optic element
JP3153110B2 (en) Method of manufacturing waveguide type low DC drift optical modulator
CN105074545B (en) The manufacturing method of optical waveguide components and optical waveguide components
JP3228823B2 (en) Waveguide type optical element and method of manufacturing the same
JPH11326853A (en) Optical modulator
JP4137680B2 (en) Manufacturing method of light control element
JPH09269469A (en) Optical waveguide device
JPH02114243A (en) Optical control device and its manufacture
JPH07128624A (en) Production of waveguide optical element
JPH1152315A (en) Operation point control method for waveguide light modulator and waveguide light modulator
JPH07152006A (en) Method for adjusting initial operation point of waveguide type optical element
JPH05113513A (en) Waveguide-type optical device and its production
JPH116932A (en) Manufacture of ridge structural optical waveguide
JPH09269468A (en) Optical waveguide device
JPH07234422A (en) Optical waveguide element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees