JPH09269468A - Optical waveguide device - Google Patents

Optical waveguide device

Info

Publication number
JPH09269468A
JPH09269468A JP1719497A JP1719497A JPH09269468A JP H09269468 A JPH09269468 A JP H09269468A JP 1719497 A JP1719497 A JP 1719497A JP 1719497 A JP1719497 A JP 1719497A JP H09269468 A JPH09269468 A JP H09269468A
Authority
JP
Japan
Prior art keywords
optical waveguide
control electrode
region
dielectric layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1719497A
Other languages
Japanese (ja)
Inventor
Koji Takemura
浩二 竹村
Yuji Kishida
裕司 岸田
Ryuji Yoneda
竜司 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1719497A priority Critical patent/JPH09269468A/en
Publication of JPH09269468A publication Critical patent/JPH09269468A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide device which is less affected by surface charges accompanying a temp. change, is decreased in temp. drift and is highly reliable. SOLUTION: This device consists of a pyroelectric substrate 1 formed with optical waveguides 2 on its front layer, a dielectric layer 3 formed on one main surface of this pyroelectric substrate 1 and control electrodes 4 formed in one region on this dielectric substrate 3. In such a case, the dielectric layer 3 is formed to the thickness in the regions where the control electrodes 4 are not formed larger than the thickness of the regions where the control electrodes 4 are formed. The regions of the dielectric layer 3 where the control electrodes 4 are not formed are formed of plural layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ通信シ
ステム,光ファイバセンサ,光計測器等に用いられる光
変調器や光スイッチなどの光導波路デバイスに関する。
さらに詳しくは、温度変動に伴う特性変動を抑制した光
導波路デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide device such as an optical modulator or an optical switch used in an optical fiber communication system, an optical fiber sensor, an optical measuring instrument or the like.
More specifically, the present invention relates to an optical waveguide device that suppresses characteristic fluctuations due to temperature fluctuations.

【0002】[0002]

【従来の技術】従来より、強誘電体基板を用いた光導波
路デバイスでは、基板が焦電性を有することから、周囲
の温度変化により各種特性が変動することが知られてい
る。その一例として、図7に示す、ニオブ酸リチウム
(LiNbO3 )単結晶等から成る焦電性基板を用いた
光変調器J1について説明する。光変調器J1は、基板
1の表層にはY分岐型の光導波路2が形成されており、
基板1の一主面にはSiO2 等のバッファ層3が形成さ
れ、さらに、光導波路2にほぼ沿った状態で光導波路2
に電界を印加する制御電極4が形成されている。
2. Description of the Related Art Conventionally, in an optical waveguide device using a ferroelectric substrate, it is known that various characteristics fluctuate due to ambient temperature changes because the substrate has pyroelectricity. As an example thereof, an optical modulator J1 shown in FIG. 7 using a pyroelectric substrate made of lithium niobate (LiNbO 3 ) single crystal or the like will be described. The optical modulator J1 has a Y-branch type optical waveguide 2 formed on the surface layer of the substrate 1.
A buffer layer 3 made of SiO 2 or the like is formed on one main surface of the substrate 1, and the optical waveguide 2 is provided so as to be substantially along the optical waveguide 2.
A control electrode 4 for applying an electric field is formed on.

【0003】次に、図7におけるA−A線断面図である
図8を用いて、光変調器J1の作製方法について説明す
る。大きな電気光学効果を有するZカットのニオブ酸リ
チウム単結晶等の焦電性を有する基板1上に、チタン等
の金属をパターニングし、約1050℃で熱拡散を行
い、基板1より屈折率の高い光導波路2を形成する。
Next, a method of manufacturing the optical modulator J1 will be described with reference to FIG. 8 which is a sectional view taken along the line AA in FIG. A metal such as titanium is patterned on a substrate 1 having pyroelectricity, such as a Z-cut lithium niobate single crystal having a large electro-optical effect, and a metal such as titanium is patterned, and thermal diffusion is performed at about 1050 ° C. to have a higher refractive index than the substrate 1. The optical waveguide 2 is formed.

【0004】そして、制御電極4による電界吸収を防止
するために、光導波路2を含む基板1の表面上にSiO
2 等のバッファ層3を形成し、最後に制御電極4を形成
する。
In order to prevent electric field absorption by the control electrode 4, SiO is formed on the surface of the substrate 1 including the optical waveguide 2.
A buffer layer 3 such as 2 is formed, and finally a control electrode 4 is formed.

【0005】ここで、基板1は焦電性で自発分極を有し
ているが、周囲温度が一定の場合、基板1の表面は、空
気中の電荷や電極等を通じて供給される外部電荷により
中和され、見かけ上帯電していない。
Here, the substrate 1 is pyroelectric and has spontaneous polarization, but when the ambient temperature is constant, the surface of the substrate 1 is neutralized by electric charges in the air or external electric charges supplied through electrodes or the like. It is harmless and apparently not charged.

【0006】ところが、この基板1の周囲温度が変化す
ると、温度変化に伴い基板1の自発分極の大きさが変化
する。このとき、制御電極4が形成されている領域で
は、誘電分極したバッファ層3を介して制御電極4を通
じて電荷が容易に移動できるため、自発分極の大きさの
変化に応じて電荷が供給される。
However, when the ambient temperature of the substrate 1 changes, the magnitude of the spontaneous polarization of the substrate 1 changes with the temperature change. At this time, in the region where the control electrode 4 is formed, the charge can be easily moved through the control electrode 4 through the buffer layer 3 that is dielectrically polarized, so that the charge is supplied according to the change in the magnitude of the spontaneous polarization. .

【0007】一方、制御電極4が形成されていないバッ
ファ層3の表面領域3aでは、急激な電荷の移動ができ
ないため、見かけ上、正(温度上昇時)または負(温度
下降時)に帯電する。この電荷によって生じる不要電界
が、ニオブ酸リチウムの基板を用いた光変調器の動作点
を変動させる温度ドリフトの原因となる。
On the other hand, in the surface region 3a of the buffer layer 3 in which the control electrode 4 is not formed, abrupt charge movement is not possible, so that the charge is apparently positive (when the temperature rises) or negative (when the temperature falls). . The unnecessary electric field generated by this charge causes a temperature drift that changes the operating point of the optical modulator using the lithium niobate substrate.

【0008】従来、こうした光変調器等の光導波路デバ
イスの温度変化に伴う特性変動を防止する方法として
は、次に示すような方法が用いられてきた。すなわち、
図9に図8と同様な位置における断面図にて示す光変調
器J2のように、基板1上に形成されたバッファ層3の
上に、Si等の半導体膜5を形成し、温度変化によって
生じる表面電荷を基板1の表面(バッファ層3)上で均
一にすることにより、温度ドリフトを低減するものであ
る(例えば、特開昭62−173428号公報を参
照)。なお図9において、図8と同一構成については説
明を省略した。
Conventionally, the following method has been used as a method for preventing the characteristic variation of the optical waveguide device such as the optical modulator due to the temperature variation. That is,
A semiconductor film 5 of Si or the like is formed on the buffer layer 3 formed on the substrate 1 as in an optical modulator J2 shown in a sectional view of FIG. 9 at a position similar to that of FIG. By making the generated surface charges uniform on the surface of the substrate 1 (buffer layer 3), the temperature drift is reduced (see, for example, Japanese Patent Laid-Open No. 62-173428). Note that in FIG. 9, the description of the same configuration as that in FIG. 8 is omitted.

【0009】また、別の方法として、制御電極が形成さ
れていない領域の基板の結晶軸を一定間隔で交互に反転
させ、焦電性効果によって生じる電荷を互いに打ち消さ
せる方法が提案されている(例えば、特開平6−751
96号公報を参照)。
As another method, a method has been proposed in which the crystal axes of the substrate in the region where the control electrode is not formed are alternately inverted at regular intervals so that the charges generated by the pyroelectric effect cancel each other ( For example, JP-A-6-751
96).

【0010】[0010]

【発明が解決しようとする課題】しかしながら、図9に
示すように、バッファ層3上の少なくとも制御電極4を
除く領域に半導体膜5を形成する方法では、半導体膜5
により制御電極4の電極間の抵抗率がある程度小さくな
るため直流駆動ができない。これにより、低速での変調
ができない、作製後の検査等における静特性(駆動電
圧,消光比)の測定ができないなどの問題がある。さら
に、半導体膜5の抵抗率の制御を成膜後の高温アニール
で行うため、再現性が悪い上、工程が煩雑となる等の問
題があった。
However, as shown in FIG. 9, in the method of forming the semiconductor film 5 in at least the region on the buffer layer 3 excluding the control electrode 4, the semiconductor film 5 is formed.
As a result, the resistance between the electrodes of the control electrode 4 is reduced to some extent, so that DC driving cannot be performed. As a result, there are problems that the modulation cannot be performed at a low speed, and the static characteristics (driving voltage, extinction ratio) cannot be measured in the inspection after manufacturing. Furthermore, since the resistivity of the semiconductor film 5 is controlled by high temperature annealing after film formation, there are problems that the reproducibility is poor and the process is complicated.

【0011】また、基板1の結晶軸を一定間隔で交互に
反転させる方法では、直流駆動は可能であるが、微小領
域の結晶軸の反転には電子ビーム等の高価な設備を必要
とするため、やはり生産性に問題があった。
Further, in the method in which the crystal axes of the substrate 1 are alternately inverted at a constant interval, direct current drive is possible, but inversion of the crystal axes in a minute region requires expensive equipment such as an electron beam. There was still a problem with productivity.

【0012】そこで、本発明は上述のような諸問題を解
決し、温度変化に伴う表面電荷の影響を小さくすること
ができ、温度ドリフトを低減した信頼性の優れた光導波
路デバイスを提供することを目的とする。
Therefore, the present invention solves the above-mentioned problems and provides an optical waveguide device which is capable of reducing the influence of surface charges due to temperature changes and which has reduced temperature drift and is highly reliable. With the goal.

【0013】[0013]

【課題を解決するための手段】上記目的を達成させるた
めに、本発明の光導波路デバイスは、表層に光導波路が
形成された焦電性基板と、該焦電性基板の一主面に形成
された誘電体層と、該誘電体層上の一領域に形成された
制御電極とから成る光導波路デバイスであって、前記誘
電体層は前記制御電極の形成されていない領域の厚さが
前記制御電極の形成されている領域の厚さより厚いこと
を特徴とする。また、誘電体層は少なくとも制御電極と
光導波路とが対向している領域で薄く、光導波路の近傍
において制御電極が形成されていない領域が厚く形成さ
れているとよい。また、制御電極が形成されていない誘
電体層の領域を複数層としたことを特徴とする。
In order to achieve the above object, an optical waveguide device of the present invention comprises a pyroelectric substrate having an optical waveguide formed on its surface layer, and a pyroelectric substrate formed on one main surface thereof. And a control electrode formed in one region on the dielectric layer, wherein the dielectric layer has a thickness in a region where the control electrode is not formed. It is characterized in that it is thicker than the region where the control electrode is formed. Further, it is preferable that the dielectric layer is thin at least in a region where the control electrode and the optical waveguide face each other, and thick in a region near the optical waveguide where the control electrode is not formed. Further, it is characterized in that the region of the dielectric layer in which the control electrode is not formed is a plurality of layers.

【0014】上記構成の光導波路デバイスによれば、制
御電極が形成されていない誘電体層の領域を前記制御電
極が形成された誘電体層の一領域より厚く形成せしめた
ので、制御電極が形成されていない領域の、温度変化を
伴う表面電荷の影響を小さくすることができ、温度ドリ
フトを低減させることができる。
According to the optical waveguide device having the above structure, the region of the dielectric layer where the control electrode is not formed is made thicker than the region of the dielectric layer where the control electrode is formed, so that the control electrode is formed. It is possible to reduce the influence of the surface charge that accompanies the temperature change in the unheated region, and it is possible to reduce the temperature drift.

【0015】また、上記制御電極が形成されていない誘
電体層の領域が単層であれば、電界の吸収がないこと
(使用波長に対して透明)、(特に電極間に)絶縁性
があること、高速動作(高周波化)に対しては、比誘
電率εが小さいこと、の3点を満足する材料を誘電体層
として選択する必要があるが、上記制御電極が形成され
ていない誘電体層の領域が複数層であれば、,の条
件が緩和され設計上の自由度が増すのである。
If the region of the dielectric layer where the control electrode is not formed is a single layer, there is no electric field absorption (transparent to the wavelength used) and insulation (especially between the electrodes). However, for high speed operation (higher frequency), it is necessary to select a material for the dielectric layer that satisfies the following three requirements: the relative permittivity ε is small, but the dielectric without the control electrode is formed. If the layer region is a plurality of layers, the condition of, is relaxed and the degree of freedom in design is increased.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る実施形態につ
いて図面に基づき詳細に説明する。なお、図7と同様な
構成については同一符号を付し説明を省略するか簡略に
する。また、図7に示す光変調器と平面的には同様な構
成の光変調器の断面図である図1(c)に基づいて説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. The same components as those in FIG. 7 are designated by the same reference numerals, and the description will be omitted or simplified. Further, description will be given based on FIG. 1C which is a cross-sectional view of an optical modulator having a configuration similar to that of the optical modulator shown in FIG.

【0017】図1(c)は既に説明した図7におけるA
−A線断面図であって、光導波路デバイスの一つである
光変調器H1は、表層に光導波路2が形成された例えば
ニオブ酸リチウム,タンタル酸リチウム,もしくは四ほ
う酸リチウム等から成る基板1と、基板1の光導波路2
を含む領域に形成されたSiO2 ,Al2 3 等の誘電
体層(バッファ層ともいう)3と、誘電体層3上の一領
域に形成されたチタン,白金,金,ニッケル,銅,クロ
ムなどから成る制御電極4とから構成される。
FIG. 1 (c) is a part of FIG.
An optical modulator H1, which is a cross-sectional view taken along the line A, shows a substrate 1 made of, for example, lithium niobate, lithium tantalate, lithium tetraborate, or the like having an optical waveguide 2 formed on its surface layer. And the optical waveguide 2 on the substrate 1
A dielectric layer (also referred to as a buffer layer) 3 made of SiO 2 , Al 2 O 3 or the like formed in a region including a layer, and titanium, platinum, gold, nickel, copper, formed in one region on the dielectric layer 3. The control electrode 4 is made of chromium or the like.

【0018】ここで、制御電極4の電極間距離をDとし
た場合に、誘電体層3は少なくとも光導波路2に沿った
領域(光導波路2が形成されている近傍)において、制
御電極4が形成されていない領域の厚さを制御電極4が
形成されている領域の厚さより厚くしている。より好適
には、制御電極4が形成されていない領域の厚さを1μ
m 以上とし、D/4〜D/2の範囲の厚さで、制御電極
4が形成されている領域の厚さより厚くすると良好な特
性が得られることが判明した。
Here, when the interelectrode distance of the control electrode 4 is D, the dielectric layer 3 has at least a region along the optical waveguide 2 (in the vicinity where the optical waveguide 2 is formed). The thickness of the region not formed is made thicker than the thickness of the region where the control electrode 4 is formed. More preferably, the thickness of the region where the control electrode 4 is not formed is 1 μm.
It was found that good characteristics can be obtained when the thickness is set to m or more and the thickness is in the range of D / 4 to D / 2 and is larger than the thickness of the region where the control electrode 4 is formed.

【0019】以上のように光変調器を構成することによ
り、制御電極が形成されていない領域での温度変化を伴
う表面電荷の影響を極力小さくすることができ、温度ド
リフトを低減させることができる。
By configuring the optical modulator as described above, it is possible to minimize the influence of the surface charge accompanying the temperature change in the region where the control electrode is not formed, and to reduce the temperature drift. .

【0020】[0020]

【実施例】次に、より具体的な実施例について、図8と
同様な位置における断面図に基づいて以下に説明する。
EXAMPLE A more specific example will be described below with reference to a sectional view taken at the same position as in FIG.

【0021】〔実施例1〕まず、図1(a)〜(c)に
基づき実施例1について説明する。大きな電気光学効果
を有するZカットのニオブ酸リチウムの基板1上に、チ
タン等の金属をパターニングし、約1050℃で熱拡散
を行い、基板1より屈折率の高い光導波路2を形成す
る。
[Embodiment 1] First, Embodiment 1 will be described with reference to FIGS. A metal such as titanium is patterned on a Z-cut lithium niobate substrate 1 having a large electro-optic effect, and thermal diffusion is performed at about 1050 ° C. to form an optical waveguide 2 having a higher refractive index than the substrate 1.

【0022】次に、図1(a)に示すように、SiO2
等から成る誘電体層であるバッファ層3を形成する工程
において厚さを5μm 程度に厚くする。次に、図1
(b)に示すように、後記する制御電極4を形成する領
域を、ウエットもしくはドライエッチング法を用いて、
バッファ層3の表面をエッチング除去し、その厚さを1
μm 程度にする。
Next, as shown in FIG. 1A, SiO 2
The thickness is increased to about 5 .mu.m in the step of forming the buffer layer 3 which is a dielectric layer made of, for example. Next, FIG.
As shown in (b), a region for forming a control electrode 4 described later is formed by wet or dry etching.
The surface of the buffer layer 3 is removed by etching and its thickness is reduced to 1
Make it about μm.

【0023】しかる後に、図1(c)に示すように、上
記エッチング領域に金などの金属膜等から成る制御電極
4を所定形状にパターニングして、厚さ5〜10μm 程
度に形成して、最終的に光変調器H1を完成する。
Thereafter, as shown in FIG. 1 (c), a control electrode 4 made of a metal film such as gold is patterned into a predetermined shape in the above-mentioned etching region to form a thickness of about 5 to 10 μm. Finally, the optical modulator H1 is completed.

【0024】この際、バッファ層3のエッチング用マス
クを制御電極4のパターニングマスクと共用できるよう
なマスク材料を選択することにより、パターニングする
工程が増加しないので簡便かつ迅速に本構成の製造を実
現できる。
At this time, by selecting a mask material capable of sharing the etching mask of the buffer layer 3 with the patterning mask of the control electrode 4, the patterning step does not increase, so that the manufacturing of this structure is realized simply and quickly. it can.

【0025】次に、作製した光変調器H1について、温
度変動に伴う特性変化を測定したところ、後記するよう
に温度ドリフトを低減することができ、従来のバッファ
層を均一に形成したものより特性が大幅に改善された。
Next, with respect to the manufactured optical modulator H1, the characteristic change due to temperature fluctuation was measured. As a result, the temperature drift could be reduced, and the characteristic was better than that of a conventional buffer layer formed uniformly. Was greatly improved.

【0026】〔実施例2〕次に、図2(a)〜(c)に
基づき、他の実施例である実施例2について説明する。
図2(a)に示すように、誘電体層であるバッファ層3
を形成するまでの工程は図5と同様であるので説明を省
略する。図2(b)に示すように、後記する制御電極4
を形成する領域の間に、バッファ層3と同じ材料、また
はより抵抗率の大きい誘電体層、例えば窒化珪素、炭化
珪素等の抵抗層6をパターニングし、しかる後に、図2
(c)に示すように制御電極4を形成した。ここで、バ
ッファ層3はSiO2 で形成されており、抵抗率を大き
くするために約700℃,20時間の高温アニールを行
っている。
[Second Embodiment] Next, a second embodiment, which is another embodiment, will be described with reference to FIGS.
As shown in FIG. 2A, the buffer layer 3 which is a dielectric layer
The process up to the formation of is similar to that of FIG. As shown in FIG. 2B, a control electrode 4 described later
2 is patterned between the regions for forming the buffer layer 3 and the same material as the buffer layer 3 or a dielectric layer having a higher resistivity, for example, a resistance layer 6 such as silicon nitride or silicon carbide.
The control electrode 4 was formed as shown in FIG. Here, the buffer layer 3 is formed of SiO 2 , and high temperature annealing is performed at about 700 ° C. for 20 hours to increase the resistivity.

【0027】実施例1のようにバッファ層3を厚くする
と、アニール時間が大きくなり生産性が低下するが、実
施例2においてはこのような問題がなく、また材料の組
み合わせ自由度が高い(必要な条件を満足するための材
料選択の自由度が広がる)ので、DCドリフト特性の改
善に非常に有利となる。
When the buffer layer 3 is thickened as in the first embodiment, the annealing time becomes long and the productivity is lowered. However, in the second embodiment, there is no such problem and the degree of freedom in material combination is high (necessary). Since the degree of freedom in selecting materials for satisfying various conditions is widened), it is very advantageous for improving the DC drift characteristic.

【0028】この実施例において作製した光変調器H2
について、温度変動に伴う特性変化について測定したと
ころ、後記するように実施例1と同様にバッファ層を均
一に形成したものより特性が大幅に改善された。
The optical modulator H2 produced in this example
Regarding the above, when the change in the characteristics due to the temperature change was measured, the characteristics were significantly improved as compared with the case where the buffer layer was uniformly formed as in Example 1 as described later.

【0029】〔実施例3〕次に、図3(a)〜(c)に
基づき、さらに他の実施例について説明する。図3
(a)に示すように、この実施例では導波路2を形成
後、制御電極4を形成する間に高抵抗率の誘電体層であ
る抵抗層6をパターニングし、その後、図3(b)に示
すように誘電体層であるバッファ層3を形成し、しかる
後に図3(c)に示すように制御電極4を形成し、最終
的に光変調器H3を完成させたものである。
[Third Embodiment] Next, still another embodiment will be described with reference to FIGS. FIG.
As shown in FIG. 3A, in this embodiment, after forming the waveguide 2, the resistance layer 6, which is a high-resistivity dielectric layer, is patterned while the control electrode 4 is formed, and then, as shown in FIG. As shown in FIG. 3, the buffer layer 3 which is a dielectric layer is formed, and then the control electrode 4 is formed as shown in FIG. 3C, and finally the optical modulator H3 is completed.

【0030】この実施例によっても、バッファ層を構成
する誘電体層の材料選択の自由度が高く、DCドリフト
特性の改善に有利となる。また、実施例3においても、
温度変動に伴う特性変化について測定したところ、後記
するように実施例1と同様にバッファ層を均一に形成し
たものより特性が大幅に改善された。
Also in this embodiment, the degree of freedom in selecting the material of the dielectric layer forming the buffer layer is high, which is advantageous for improving the DC drift characteristic. Also in the third embodiment,
When the change in the characteristics due to the temperature change was measured, the characteristics were significantly improved as compared with the case where the buffer layer was uniformly formed as in Example 1 as described later.

【0031】〔実施例4〕次に、さらに別の実施例につ
いて説明する。上述した実施例1〜実施例3について
は、誘電体層の厚さのみを変化させる方法であって、表
面の除去を行うわけではないので、温度変化に伴う表面
電荷の影響を完全に無くすことはできなかった。
[Embodiment 4] Next, still another embodiment will be described. In Examples 1 to 3 described above, the method is to change only the thickness of the dielectric layer, and the surface is not removed. Therefore, the influence of surface charge due to temperature change should be completely eliminated. I couldn't.

【0032】そこで、図4(a)または図4(b)に示
すように、半導体膜5を制御電極4の間で部分的に分断
すると直流駆動ができ、表面電荷が存在する面積が小さ
くなる。また、電荷が生じる場所が図4(a)では最も
導波路に遠いため表面電荷の影響が小さい。また図4
(b)では電極近傍で電界が吸収され表面電荷の影響が
小さい。これら実施例においても、実施例1と同様にバ
ッファ層を均一に形成したものより特性が大幅に改善さ
れ、後記するように温度ドリフトをほぼ零にすることが
できた。
Therefore, as shown in FIG. 4 (a) or FIG. 4 (b), if the semiconductor film 5 is partially divided between the control electrodes 4, direct current driving can be performed and the area where surface charges exist becomes small. . Further, in FIG. 4A, the place where the charge is generated is farthest from the waveguide, so that the influence of the surface charge is small. FIG. 4
In (b), the electric field is absorbed in the vicinity of the electrodes, and the influence of surface charges is small. In these examples as well, the characteristics were significantly improved as compared with the case where the buffer layer was uniformly formed as in Example 1, and the temperature drift could be made almost zero as described later.

【0033】次に、上記各実施例と従来例(図8)の光
変調器の温度ドリフトについて測定した結果について説
明する。温度ドリフト△D〔%〕(△Dは図6に示すよ
うに、△D=△V×100/Vπで定義される。ここ
で、△Vはドリフト電圧、Vπは半波長電圧である。)
と温度変化の時間変化は、図5(a),(b)に示す通
りである。ここで、図5(b)は時間と温度変化との関
係を示したものであり、横軸の0時間以前に、周囲温度
50℃の環境下に各光変調器を投入して充分時間が経過
した後に、次いで周囲温度60℃の環境に投入した場合
の温度ドリフトについて測定したものである。
Next, the results of measuring the temperature drift of the optical modulators of the above embodiments and the conventional example (FIG. 8) will be described. Temperature drift ΔD [%] (ΔD is defined by ΔD = ΔV × 100 / Vπ, as shown in FIG. 6, where ΔV is a drift voltage and Vπ is a half-wave voltage.)
The changes with time in temperature change are as shown in FIGS. 5 (a) and 5 (b). Here, FIG. 5B shows the relationship between the time and the temperature change. Before 0 hours on the horizontal axis, each optical modulator is put in an environment of an ambient temperature of 50 ° C. for a sufficient time. After the lapse of time, the temperature drift was measured when the sample was then put into an environment with an ambient temperature of 60 ° C.

【0034】図5から明らかなように、上記いずれの実
施例においても温度ドリフトが従来例に比較して大幅に
改善されることが判明した。特に、いずれの実施例にお
いても、周囲温度変化が生じるような環境に投入してか
ら約10分経過後において温度ドリフトがほとんど零と
なった。
As is apparent from FIG. 5, it has been found that the temperature drift is significantly improved in any of the above-mentioned examples as compared with the conventional example. In particular, in each of the examples, the temperature drift became almost zero after about 10 minutes had passed since the substrate was placed in an environment where the ambient temperature changes.

【0035】なお、本実施例では光変調器を例にとり説
明したが、これに限定されるものではなく、例えば、光
スイッチ等の光導波路デバイスにおいても好適に適用さ
せることが可能である。
Although the optical modulator has been described as an example in the present embodiment, the present invention is not limited to this, and can be suitably applied to an optical waveguide device such as an optical switch.

【0036】[0036]

【発明の効果】以上説明したように、本発明の光導波路
デバイスによれば、直流駆動が可能となり、これにより
表面電荷の影響を極力防止することができ、温度ドリフ
トの低減を実現することができ、信頼性の優れた光導波
路デバイスを提供できる。
As described above, according to the optical waveguide device of the present invention, it is possible to drive the direct current, so that the influence of the surface charge can be prevented as much as possible, and the temperature drift can be reduced. It is possible to provide a highly reliable optical waveguide device.

【0037】また、非常に生産性に優れているので、特
性の優れた光導波路デバイスを安価に且つ迅速・大量に
供給することができる。
Further, since it is extremely excellent in productivity, it is possible to inexpensively and rapidly supply a large amount of optical waveguide devices having excellent characteristics.

【0038】また、特に誘電体層を複数層とすることに
より、高周波化,長期DCドリフト低減化のための設計
上の自由度が大きくなり、これにより種々の手法により
特性の改善を行うことが可能となる。
In particular, by using a plurality of dielectric layers, the degree of freedom in design for increasing the frequency and reducing the long-term DC drift is increased, and the characteristics can be improved by various methods. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(c)は、本発明に係る光導波路デバ
イスの一実施例(実施例1)の製造工程を示す断面図。
1A to 1C are cross-sectional views showing a manufacturing process of an example (Example 1) of an optical waveguide device according to the present invention.

【図2】(a)〜(c)は、本発明に係る光導波路デバ
イスの一実施例(実施例2)の製造工程を示す断面図。
2A to 2C are cross-sectional views showing a manufacturing process of an example (Example 2) of the optical waveguide device according to the present invention.

【図3】(a)〜(c)は、本発明に係る光導波路デバ
イスの一実施例(実施例3)の製造工程を示す断面図。
3A to 3C are cross-sectional views showing a manufacturing process of an example (Example 3) of the optical waveguide device according to the present invention.

【図4】(a)〜(b)は、それぞれ本発明に係る光導
波路デバイスの一実施例(実施例4)を示す断面図。
4A and 4B are cross-sectional views showing an example (Example 4) of an optical waveguide device according to the present invention.

【図5】(a)は光導波路デバイスの周囲温度の温度変
化を説明する図、(b)は光導波路デバイスの温度変化
と温度ドリフトとの関係を説明する図。
5A is a diagram illustrating a temperature change of an ambient temperature of the optical waveguide device, and FIG. 5B is a diagram illustrating a relationship between a temperature change of the optical waveguide device and a temperature drift.

【図6】温度ドリフトの定義を説明する図。FIG. 6 is a diagram illustrating the definition of temperature drift.

【図7】従来例及び本発明に係る光変調器を説明するの
平面図。
FIG. 7 is a plan view illustrating a conventional example and an optical modulator according to the present invention.

【図8】従来の光変調器を説明する断面図。FIG. 8 is a sectional view illustrating a conventional optical modulator.

【図9】従来の他の光変調器を説明する断面図。FIG. 9 is a sectional view illustrating another conventional optical modulator.

【符号の説明】[Explanation of symbols]

1 ・・・ 焦電性基板 2 ・・・ 光導波路 3 ・・・ バッファ層 4 ・・・ 制御電極 5 ・・・ 半導体膜 6 ・・・ 抵抗層 H1,H2,H3,H4 ・・・ 光変調器(本発明) J1,J2 ・・・ 光変調器(従来例) 1 ・ ・ ・ Pyroelectric substrate 2 ・ ・ ・ Optical waveguide 3 ・ ・ ・ Buffer layer 4 ・ ・ ・ Control electrode 5 ・ ・ ・ Semiconductor film 6 ・ ・ ・ Resistive layer H1, H2, H3, H4 ・ ・ ・ Optical modulation Device (present invention) J1, J2 ... Optical modulator (conventional example)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表層に光導波路が形成された焦電性基板
と、該焦電性基板の光導波路を含む領域に形成された誘
電体層と、該誘電体層の一領域上に形成された制御電極
とから成る光導波路デバイスであって、前記誘電体層は
前記制御電極の形成されていない領域の厚さが前記制御
電極の形成されている領域の厚さより厚いことを特徴と
する光導波路デバイス。
1. A pyroelectric substrate having an optical waveguide formed on a surface layer thereof, a dielectric layer formed in a region including the optical waveguide of the pyroelectric substrate, and formed on one region of the dielectric layer. And a control electrode, wherein the dielectric layer is thicker in a region where the control electrode is not formed than in a region where the control electrode is formed. Waveguide device.
【請求項2】 請求項1に記載の光導波路デバイスであ
って、前記制御電極が形成されていない誘電体層の領域
を複数層としたことを特徴とする光導波路デバイス。
2. The optical waveguide device according to claim 1, wherein the region of the dielectric layer where the control electrode is not formed is a plurality of layers.
JP1719497A 1996-01-31 1997-01-30 Optical waveguide device Pending JPH09269468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1719497A JPH09269468A (en) 1996-01-31 1997-01-30 Optical waveguide device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1547096 1996-01-31
JP8-15470 1996-01-31
JP1719497A JPH09269468A (en) 1996-01-31 1997-01-30 Optical waveguide device

Publications (1)

Publication Number Publication Date
JPH09269468A true JPH09269468A (en) 1997-10-14

Family

ID=26351620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1719497A Pending JPH09269468A (en) 1996-01-31 1997-01-30 Optical waveguide device

Country Status (1)

Country Link
JP (1) JPH09269468A (en)

Similar Documents

Publication Publication Date Title
JPH07199134A (en) Structure and method for photoelecton device for reducing temperature effect in lightguide modulator
US5396363A (en) Integrated Electrooptic modulator and process for the production thereof
JPH08146367A (en) Optical control device
JP2873203B2 (en) Waveguide type optical device
EP0576685B1 (en) Waveguide type light directional coupler
US20030031400A1 (en) Integrated optical waveguide device
US6195191B1 (en) Optical devices having improved temperature stability
US5679291A (en) Method of fabricating optical waveguide device
US7088874B2 (en) Electro-optic devices, including modulators and switches
JPS5987B2 (en) Electro-optical switches and modulators
JP2963989B1 (en) Light modulator
JPH09269468A (en) Optical waveguide device
JPH07120631A (en) Optical waveguide type part
EP1271221A1 (en) Integrated optical waveguide device
JPH09258151A (en) Polling method for optical waveguide
US6268949B1 (en) Optical intensity modulator and fabrication method using an optical waveguide having an arc shaped path
US9348156B2 (en) Optical waveguide element and method for manufacturing optical waveguide element
JP3228823B2 (en) Waveguide type optical element and method of manufacturing the same
JP2739405B2 (en) Electric field sensor
JPH06289239A (en) Optical waveguide type optical element chip which has warpage deformation and is subjected to light phase adjustment
JPH0588125A (en) Optical waveguide and its manufacture
JPH02257108A (en) Optical waveguide device
JPH10104559A (en) Optical waveguide device
JPH09269469A (en) Optical waveguide device
JP3024555B2 (en) Optical waveguide device and method of manufacturing the same