JPH0714625A - Wiring structure and manufacture thereof - Google Patents

Wiring structure and manufacture thereof

Info

Publication number
JPH0714625A
JPH0714625A JP15167093A JP15167093A JPH0714625A JP H0714625 A JPH0714625 A JP H0714625A JP 15167093 A JP15167093 A JP 15167093A JP 15167093 A JP15167093 A JP 15167093A JP H0714625 A JPH0714625 A JP H0714625A
Authority
JP
Japan
Prior art keywords
light
electrode terminal
circuit board
conductive member
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15167093A
Other languages
Japanese (ja)
Inventor
Toshiaki Iwabuchi
寿章 岩渕
Kenya Yokoi
研哉 横井
Yoshihiro Yoshida
芳博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15167093A priority Critical patent/JPH0714625A/en
Publication of JPH0714625A publication Critical patent/JPH0714625A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Liquid Crystal (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:To stabilize connection over a long period of time by arranging electrode terminals formed respectively on two wiring boards opposite to each other, and connecting both electrode terminals electrically to each other by an UV light transmissive conductive member dispersed in an UV light-curing adhesive. CONSTITUTION:An electrode terminal 2 formed on an electric circuit board 1 and an electrode terminal 4 formed on an electric circuit board 3 are arranged opposite to each other, and the electrode terminals 2 and 4 are adhered together by an UV light-curing adhesive 6 in which an UV light transmissive conductive member 5 is dispersed. Thereby, when UV light is radiated, since the conductive member 5 passes the UV light, the adhesive 6 can be all hardened firmly, and the terminals 2 and 4 are connected electrucally to each other by the conductive member 5. Thereby, connecting reliability between the electrode terminals is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配線構造及びその製造
方法に係り、詳しくは、液晶ディスプレイに用いられる
TAB等による外部回路等の電気回路部品(配線基板)
の接続技術に適用することができ、導電粒子と電極端子
の接続信頼性を長期に渡って安定させることができる配
線構造及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring structure and a method for manufacturing the same, and more particularly, to an electric circuit component (wiring board) such as an external circuit such as a TAB used in a liquid crystal display.
The present invention relates to a wiring structure that can be applied to the connection technology of (1) and can stabilize the connection reliability between conductive particles and electrode terminals for a long period of time, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、配線構造の製造方法については、
例えば特開昭60−262430号公報で報告されたも
のがあり、ここでは、光硬化性樹脂の硬化収縮力によっ
て半導体素子の金属バンプとこの金属バンプと対抗する
回路基板の配線パターンとを接続するように構成するこ
とにより、温度による回路基板の膨張による歪み及び機
械的歪みが半導体素子自体に直接作用し難くできるとい
う利点を有する。
2. Description of the Related Art Conventionally, a method of manufacturing a wiring structure is as follows.
For example, there is one reported in Japanese Patent Application Laid-Open No. 60-262430, in which a metal bump of a semiconductor element and a wiring pattern of a circuit board which opposes the metal bump are connected by a curing shrinkage force of a photocurable resin. With such a configuration, there is an advantage that strain due to expansion of the circuit board due to temperature and mechanical strain can be made difficult to directly act on the semiconductor element itself.

【0003】また、例えば特開平3−289070号公
報で報告された電極端子の相互接続方法では、接着剤が
形成された電極端子に導電端子を選択的に配置し接続を
得る方法であり、具体的には、第1の電気回路基体の電
極端子と第2の電気回路基体の電極端子とを導電性微粒
子を介して相互に電気的に接続させ、接着剤により保持
固定する電極端子の相互接続方法において、少なくとも
一方の電気回路基体の基材表面より突出した電極端子に
接着剤を形成し、該接着剤に導電性微粒子を付着した
後、第1の電気回路基体と第2の電気回路基体を絶縁性
接着剤を用いて、圧接、接続するように構成することに
より、高密度に配列された電極端子を隣接する電極端子
の電気的絶縁を保ちつつ接続できるという利点を有す
る。
In the method of interconnecting electrode terminals reported in Japanese Patent Laid-Open No. 3-289070, for example, conductive terminals are selectively arranged on electrode terminals on which an adhesive is formed to obtain a connection. Specifically, the electrode terminals of the first electric circuit substrate and the electrode terminals of the second electric circuit substrate are electrically connected to each other through conductive fine particles, and the electrode terminals are held and fixed by an adhesive. In the method, an adhesive is formed on the electrode terminals protruding from the surface of at least one of the electric circuit substrates, and conductive fine particles are adhered to the adhesive, and then the first electric circuit substrate and the second electric circuit substrate. By using an insulative adhesive for pressure contact and connection, it is possible to connect the electrode terminals arranged in high density while maintaining the electrical insulation of the adjacent electrode terminals.

【0004】さて、従来、金属バンプ構造では、基板や
電極端子にダメージを与え易いため、弾性導電粒子を電
極端子上に載せ、その周囲をUV接着剤で接着して電気
回路基板の接続を行っていた。以下、その工程を図を用
いて説明する。まず、図4(a),(b)に示すよう
に、電気回路基板31の電極端子32上に選択的にUV硬化
型接着剤33を配置するために、平坦基板34上にUV硬化
型接着剤33を均一に塗布した後、電極端子32をUV硬化
型接着剤33に押し付けるように回路基板31と平坦基板34
を貼り合わせ、図4(c)に示すように、回路基板31を
平坦基板34から引き剥してUV硬化型接着剤33を回路基
板31の電極端子32上に転写する。次いで、図4(d)に
示すように、別の平坦基板35上に導電粒子36を2次元に
規則的に並べておく。なお、この時、導電粒子36を各々
独立して配置しないと、接続後の電極間リークの原因と
なり好ましくないので、導電粒子36を各々独立に配置す
るように調整する。
In the conventional metal bump structure, since the substrate and the electrode terminal are easily damaged, elastic conductive particles are placed on the electrode terminal and the periphery thereof is bonded with a UV adhesive to connect the electric circuit board. Was there. The process will be described below with reference to the drawings. First, as shown in FIGS. 4A and 4B, in order to selectively dispose the UV curable adhesive 33 on the electrode terminals 32 of the electric circuit board 31, the UV curable adhesive is adhered on the flat substrate 34. After applying the agent 33 uniformly, the circuit board 31 and the flat board 34 are pressed so that the electrode terminals 32 are pressed against the UV curable adhesive 33.
4C, the circuit board 31 is peeled off from the flat board 34, and the UV curable adhesive 33 is transferred onto the electrode terminals 32 of the circuit board 31, as shown in FIG. 4C. Then, as shown in FIG. 4D, the conductive particles 36 are two-dimensionally regularly arranged on another flat substrate 35. At this time, if the conductive particles 36 are not individually arranged, it is not preferable because it may cause a leak between the electrodes after connection, so the conductive particles 36 are adjusted so as to be arranged individually.

【0005】次に、図5(a)に示すように、平坦基板
35上に配列された導電粒子36に回路基板31の電極端子32
上のUV硬化型接着剤33を押し付け、電極端子32と導電
粒子36が接触するように回路基板31を加圧しながらUV
光を透明平坦基板35の背面から照射し、電極端子32と導
電粒子36を接触させた状態でUV硬化型接着剤33を硬化
させた後、回路基板31を平坦基板35から引き剥すこと
で、図5(b)に示すように、UV硬化型接着剤33によ
り導電粒子36を回路基板31の電極端子32上に配置固定す
る。
Next, as shown in FIG. 5A, a flat substrate
Electrode terminals 32 of circuit board 31 on conductive particles 36 arranged on 35
The UV curable adhesive 33 on the upper side is pressed, and UV is applied while pressing the circuit board 31 so that the electrode terminals 32 and the conductive particles 36 contact each other.
By irradiating light from the back surface of the transparent flat substrate 35 to cure the UV curable adhesive 33 with the electrode terminals 32 and the conductive particles 36 in contact with each other, the circuit substrate 31 is peeled off from the flat substrate 35. As shown in FIG. 5B, the conductive particles 36 are arranged and fixed on the electrode terminals 32 of the circuit board 31 by the UV curable adhesive 33.

【0006】そして、回路基板31と相対する透明電極37
が形成された回路基板38(若しくは導電粒子付き電気回
路基板等でもよい)にUV接着剤を塗布した後、回路基
板31の電極端子32に固定した導電粒子36が回路基板38の
透明電極37上に来るように回路基板31と回路基板38とを
位置合わせしながら加圧し、かつ、透明回路基板38の背
面からUV光を照射してUV接着剤39を硬化して回路基
板31と回路基板38を接続することにより、図5(c)に
示すような配線構造を得ることができる。
Then, the transparent electrode 37 facing the circuit board 31.
After the UV adhesive is applied to the circuit board 38 (or the electric circuit board with the conductive particles or the like) on which the conductive particles 36 are fixed, the conductive particles 36 fixed to the electrode terminals 32 of the circuit board 31 are on the transparent electrode 37 of the circuit board 38. The circuit board 31 and the circuit board 38 while aligning them with each other, and irradiating UV light from the rear surface of the transparent circuit board 38 to cure the UV adhesive 39 to cure the circuit board 31 and the circuit board 38. A wiring structure as shown in FIG. 5C can be obtained by connecting the wirings.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
たような従来の配線構造では、導電粒子がNi等の金属
粒子やカーボン粒子、あるいはプラスチック粒子に金属
コーティングを施した粒子であるため、光を反射あるい
は吸収してしまうため、図5(a)の工程でUV光を透
明平坦基板35の背面からUV硬化型接着剤33に照射する
際、UV光が導電粒子36の影になり、電極端子32と導電
粒子36の間のUV硬化型接着剤33が未硬化となり易かっ
た。詳細には、図6(a)の拡大図に示すように、UV
光は、電極端子32面に対して垂直方向から照射されるた
め、導電粒子36の影には照射されず、UV硬化型接着剤
33の未硬化部33bを残す。このため、初期又はある環境
下においては、図6(b)に示す如く、導電粒子36が浮
いて電極端子32面との非接触部Aが発生し、導電粒子36
と電極端子32間で接続抵抗値が上昇したり、オープンに
なるという問題が生じていた。
However, in the conventional wiring structure as described above, since the conductive particles are metal particles such as Ni or carbon particles, or particles obtained by applying a metal coating to plastic particles, light is reflected. Alternatively, since it is absorbed, when UV light is applied to the UV curable adhesive 33 from the back surface of the transparent flat substrate 35 in the step of FIG. It was easy for the UV curable adhesive 33 between the conductive particles 36 and the conductive particles 36 to become uncured. More specifically, as shown in the enlarged view of FIG.
Since the light is radiated from the direction perpendicular to the surface of the electrode terminal 32, the shadow of the conductive particles 36 is not radiated, and the UV curable adhesive is used.
The uncured portion 33b of 33 is left. Therefore, in the initial stage or under a certain environment, as shown in FIG. 6B, the conductive particles 36 float and a non-contact portion A with the surface of the electrode terminal 32 is generated.
There has been a problem that the connection resistance value between the electrode terminal 32 and the electrode terminal 32 rises or is opened.

【0008】上記したように、従来の配線構造では、導
電粒子36にUV光がほとんど透過しない材料を用いて構
成していたため、図5(a)に示す如く、導電粒子36と
電極端子32を加圧しながらUV光を照射すると、図6
(a)に示す如く、導電粒子36がなくて直接UV光がU
V硬化型接着剤33に照射される部分は、硬化されて硬化
部33aとなるが、上記の如く、導電粒子36は、UV光を
ほとんど透過しないため、導電粒子36のUV光が照射さ
れない部分は、硬化されずに未硬化部33bとなってしま
う。
As described above, in the conventional wiring structure, since the conductive particles 36 are made of a material that hardly transmits UV light, the conductive particles 36 and the electrode terminals 32 are formed as shown in FIG. 5A. When UV light is applied while applying pressure,
As shown in (a), there is no conductive particles 36,
The portion irradiated with the V-curable adhesive 33 is cured to be the cured portion 33a. As described above, since the conductive particles 36 hardly transmit UV light, the portion of the conductive particle 36 which is not irradiated with UV light. Is not cured and becomes an uncured portion 33b.

【0009】このため、電極端子32と導電粒子36は、未
硬化部33bにより接続されることになるため、接着力が
弱くて図6(b)のAに示す如く剥がれ易く、接続信頼
性の点で問題があった。具体的には、接着後に熱的スト
レス、機械的ストレス等が加わると、電極端子32と導電
粒子36の接続が不安定になって抵抗値が上昇したり、最
悪の場合は、図6(b)のAに示す如く、導電粒子36が
電極端子32から剥がれて断線してしまうことがあった。
Therefore, since the electrode terminal 32 and the conductive particle 36 are connected by the uncured portion 33b, the adhesive strength is weak and the electrode terminal 32 and the conductive particle 36 are easily peeled off as shown in A of FIG. There was a problem in terms. Specifically, if thermal stress, mechanical stress, or the like is applied after the bonding, the connection between the electrode terminal 32 and the conductive particles 36 becomes unstable and the resistance value rises, or in the worst case, as shown in FIG. ), The conductive particles 36 may be peeled off from the electrode terminal 32 and broken.

【0010】そこで本発明は、導電粒子と電極端子間の
UV接着剤を硬化させて導電粒子と電極端子を強固に接
着することができ、熱的ストレス及び機械的ストレスが
加わっても導電粒子と電極端子を長期に渡って剥がれ難
くすることができ、導電粒子と電極端子間の接続信頼性
を長期に渡って安定させることができる配線構造及びそ
の製造方法を提供することを目的としている。
Therefore, according to the present invention, the UV adhesive between the conductive particles and the electrode terminals can be hardened to firmly bond the conductive particles and the electrode terminals, and even if thermal stress or mechanical stress is applied, It is an object of the present invention to provide a wiring structure and a manufacturing method thereof, which can make an electrode terminal difficult to peel off for a long period of time and can stabilize the connection reliability between a conductive particle and an electrode terminal for a long period of time.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
第1の配線基板上に形成された第1の電極端子と第2の
配線基板上に形成された第2の電極端子とが対向して配
置され、該第1の電極端子と該第2の電極端子とがUV
光透過性導電部材が分散されたUV光硬化性接着剤によ
り接着され、該第1の電極端子と該第2の電極端子が該
UV光透過性導電部材中に分散させた該UV光透過性導
電部材により電気的接続されてなることを特徴とするも
のである。
The invention according to claim 1 is
The first electrode terminal formed on the first wiring board and the second electrode terminal formed on the second wiring board are arranged to face each other, and the first electrode terminal and the second electrode terminal are arranged. UV with electrode terminals
The UV light transmissive conductive member is adhered by a dispersed UV photo-curable adhesive, and the first electrode terminal and the second electrode terminal are dispersed in the UV light transmissive conductive member. It is characterized by being electrically connected by a conductive member.

【0012】請求項2記載の発明は、上記請求項1記載
の発明において、前記UV光透過性導電部材は、微粒子
であることを特徴とするものである。請求項3記載の発
明は、上記請求項1,2記載の発明において、前記UV
光透過性導電部材は、透明導電性を有する酸化金属から
なることを特徴とするものである。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the UV light transmissive conductive member is fine particles. The invention according to claim 3 is the same as the invention according to claims 1 and 2, wherein the UV
The light-transmitting conductive member is characterized by being made of a metal oxide having transparent conductivity.

【0013】請求項4記載の発明は、上記請求項1,2
記載の発明において、前記UV光透過性導電部材は、透
明導電性を有する有機物からなることを特徴とするもの
である。請求項5記載の発明は、第1の配線基板の第1
の電極端子上のみに選択的にUV光透過性導電部材が分
散された未硬化の第1のUV光硬化性接着剤を形成する
工程と、次いで、該未硬化の第1のUV光硬化性接着剤
にUV光を照射して硬化して該第1の電極端子に接着す
る工程と、次いで、該第1の配線基板の該第1の電極端
子上に接着された該第1のUV光硬化性接着剤を未硬化
の第2のUV光硬化性接着剤が塗布された第2の配線基
板の第2の電極端子に接触させ、該未硬化のUV光硬化
性接着剤にUV光を照射して硬化することにより、該第
1の配線基板と該第2の配線基板とを接着する工程とを
含むことを特徴とするものである。
The invention according to claim 4 is the same as claim 1 or claim 2.
In the invention described above, the UV light transmissive conductive member is made of an organic material having transparent conductivity. The invention according to claim 5 is the first wiring board,
Forming an uncured first UV photo-curable adhesive in which the UV light-transmissive conductive member is selectively dispersed only on the electrode terminals of, and then the uncured first UV photo-curable adhesive The step of irradiating the adhesive with UV light to cure the adhesive and adhering it to the first electrode terminal, and then the first UV light adhered onto the first electrode terminal of the first wiring board. The curable adhesive is brought into contact with the second electrode terminal of the second wiring substrate coated with the uncured second UV light curable adhesive, and UV light is applied to the uncured UV light curable adhesive. It is characterized by including a step of adhering the first wiring board and the second wiring board by irradiation and curing.

【0014】[0014]

【作用】請求項1記載の発明では、第1の配線基板上の
第1の電極端子と第2の配線基板上の第2の電極端子と
をUV光硬化性接着剤中に分散させたUV光透過性導電
部材により電気的接続してなるように構成している。こ
のため、UV光を照射した時、UV光硬化性接着剤中に
分散したUV光透過性導電部材がUV光を透過させるこ
とができるので、従来硬化させることができなかった導
電部材と第1、第2の電極端子間のUV光硬化性接着剤
を全て強固に硬化させることができ、UV光透過性導電
部材と第1、第2の電極端子をUV光硬化性接着剤によ
り強固に接着させることができる。しかも、UV光硬化
性接着剤自体の弾性により加圧接続時に基板や電極端子
にダメージを与えないようにすることができる。従っ
て、熱的ストレスや機械的ストレスが加わっても導電粒
子と電極端子を長期に渡って剥がれ難く、しかも抵抗値
不良が生じないようにすることができるので、導電粒子
と電極端子の接続信頼性を長期に渡って安定させること
ができる。
According to the first aspect of the present invention, the UV in which the first electrode terminal on the first wiring board and the second electrode terminal on the second wiring board are dispersed in the UV photocurable adhesive agent. It is configured to be electrically connected by a light-transmissive conductive member. Therefore, when the UV light is irradiated, the UV light transmissive conductive member dispersed in the UV light curable adhesive can transmit the UV light. , All the UV photo-curable adhesive between the second electrode terminals can be firmly cured, and the UV light-transmissive conductive member and the first and second electrode terminals are firmly adhered by the UV photo-curable adhesive. Can be made. Moreover, the elasticity of the UV light curable adhesive itself can prevent the substrate and the electrode terminals from being damaged during pressure connection. Therefore, even if thermal stress or mechanical stress is applied, it is possible to prevent the conductive particles and the electrode terminals from peeling off for a long period of time, and it is possible to prevent defective resistance values from occurring. Can be stabilized over a long period of time.

【0015】請求項2記載の発明では、上記請求項1記
載の発明において、前記UV光透過性導電部材を微粒子
で構成するため、UV光透過性導電部材を透過するUV
光の減衰を効率良く抑えることができる。このため、U
V光硬化性接着剤の硬化時間を短縮化することができる
とともに、UV硬化性接着剤を完全硬化することができ
る他、電極端子と接する点や面積を増やすことができ
る。従って、低抵抗化し、かつ安定した接続構造が得る
ことができる。
According to a second aspect of the present invention, in the above-mentioned first aspect of the invention, since the UV light transmissive conductive member is composed of fine particles, the UV light that passes through the UV light transmissive conductive member.
It is possible to efficiently suppress light attenuation. Therefore, U
It is possible to shorten the curing time of the V-light curable adhesive, to completely cure the UV-curable adhesive, and to increase the number of points and areas in contact with the electrode terminals. Therefore, a low resistance and stable connection structure can be obtained.

【0016】請求項3記載の発明では、上記請求項1,
2記載の発明において、前記UV光透過性導電部材を透
明導電性を有する酸化金属で構成するため、導電部材が
無機物なので、体積抵抗率を低くすることができ、低い
接続抵抗値を効率良く得ることができる。請求項4記載
の発明では、上記請求項1,2記載の発明において、前
記UV光透過性導電部材を透明導電性を有する有機物で
構成するため、導電部材が有機物なので、有機物からな
る導電部材の弾性により加圧時に基板や電極端子に対し
てダメージを効率良く減少させることができ、安定した
電気的接続を得ることができる。
According to a third aspect of the invention, the first and second aspects are
In the invention of 2, the UV light transmissive conductive member is made of a metal oxide having transparent conductivity, so that the conductive member is an inorganic substance, so that the volume resistivity can be lowered and a low connection resistance value can be efficiently obtained. be able to. According to a fourth aspect of the present invention, in the first and second aspects of the invention, since the UV light transmissive conductive member is made of an organic material having transparent conductivity, the conductive member is an organic material. The elasticity can effectively reduce damage to the substrate and the electrode terminals during pressurization, and stable electrical connection can be obtained.

【0017】請求項5記載の発明では、第1の配線基板
の第1の電極端子上のみに選択的にUV光透過性導電部
材が分散された未硬化の第1のUV光硬化性接着剤を形
成し、次いで、該未硬化の第1のUV光硬化性接着剤に
UV光を照射して硬化して該第1の電極端子に接着した
後、該第1の配線基板の該第1の電極端子上に接着され
た該第1のUV光硬化性接着剤を未硬化の第2のUV光
硬化性接着剤が塗布された第2の配線基板の第2の電極
端子に接触させ、該未硬化のUV光硬化性接着剤にUV
光を照射して硬化することにより、該第1の配線基板と
該第2の配線基板とを接着するように構成している。こ
のため、上記請求項1記載の発明の効果を得ることがで
きる他、簡便、かつ短時間に電極端子のみにUV光透過
性導電部材が分散された未硬化のUV光硬化性接着剤を
塗布することができる。
According to a fifth aspect of the present invention, the uncured first UV light curable adhesive in which the UV light transparent conductive member is selectively dispersed only on the first electrode terminals of the first wiring board. And then irradiating the uncured first UV light-curable adhesive with UV light to cure the first UV light-curable adhesive and bond it to the first electrode terminal. Contacting the first UV photo-curable adhesive adhered on the electrode terminal with the second electrode terminal of the second wiring board coated with the uncured second UV photo-curable adhesive, UV to the uncured UV photocurable adhesive
The first wiring board and the second wiring board are bonded to each other by irradiating light and curing. Therefore, in addition to being able to obtain the effect of the invention described in claim 1, an uncured UV light curable adhesive in which the UV light transmissive conductive member is dispersed is simply applied to the electrode terminals in a short time. can do.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1は本発明の実施例1に則した電気回路
基板の電極構造と電極端子の拡大部分を示す図であり、
図2は本発明の実施例2に則した電気回路基板を接続し
た構造とその接続構造の拡大部分を示す図である。な
お、図1(b)は図1(a)の拡大部分Xを示してお
り、図2(b)は図2(a)の拡大部分Yを示してい
る。本実施例では、図1,2に示す如く、電気回路基板
1上に形成した電極端子2と電気回路基板3上に形成し
た電極端子4とを対向して配置し、電極端子2と電極端
子4とをUV光透過性導電部材5を分散したUV光硬化
性接着剤6により接着し、電極端子2と電極端子4とを
UV光硬化性接着剤6中に分散したUV光透過性導電部
材5により電気的接続し、電気回路基板1と電気回路基
板3とを絶縁性UV光硬化性接着剤7により接着するよ
うに構成する。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a view showing an electrode structure of an electric circuit board according to Embodiment 1 of the present invention and an enlarged portion of an electrode terminal.
FIG. 2 is a diagram showing a structure in which electric circuit boards are connected according to the second embodiment of the present invention and an enlarged portion of the connection structure. 1 (b) shows the enlarged portion X of FIG. 1 (a), and FIG. 2 (b) shows the enlarged portion Y of FIG. 2 (a). In the present embodiment, as shown in FIGS. 1 and 2, the electrode terminal 2 formed on the electric circuit board 1 and the electrode terminal 4 formed on the electric circuit board 3 are arranged so as to face each other. 4 is bonded with a UV light curable adhesive 6 in which a UV light transparent conductive member 5 is dispersed, and the electrode terminal 2 and the electrode terminal 4 are dispersed in the UV light curable adhesive 6 The electrical circuit board 1 and the electrical circuit board 3 are electrically connected to each other by means of 5, and the insulating UV photo-curable adhesive 7 is used to bond them.

【0019】次に、図3は本発明の実施例1に則した電
気回路基板の接続方法を示す図である。まず、図3
(a)に示すように、平坦基板11上に透明導電性微粒子
からなるUV光透過性導電部材5を分散したUV光硬化
性接着剤6を均一に塗布した後、図3(b)に示すよう
に、電極端子2がUV光硬化性接着剤6側に来るように
電気回路基板1を前述の平坦基板11と貼り合わせる。
Next, FIG. 3 is a diagram showing a method of connecting electric circuit boards according to the first embodiment of the present invention. First, FIG.
As shown in FIG. 3A, a UV photocurable adhesive 6 in which a UV light transmissive conductive member 5 made of transparent conductive fine particles is dispersed is evenly applied on a flat substrate 11, and then shown in FIG. As described above, the electric circuit board 1 is attached to the flat board 11 so that the electrode terminals 2 are on the side of the UV light curable adhesive 6.

【0020】次に、図3(c)に示すように、電気回路
基板1を平坦基板11から引き剥して電気回路基板1の電
極端子2上にのみUV光硬化性接着剤6を転写した後、
図3(d)に示すように、電極端子2のUV光硬化性接
着剤6にUV光を照射してUV光硬化性接着剤6を硬化
させて電極端子2にUV光硬化性接着剤6を接着する。
Next, as shown in FIG. 3C, after peeling the electric circuit board 1 from the flat substrate 11 and transferring the UV photocurable adhesive 6 only onto the electrode terminals 2 of the electric circuit board 1, ,
As shown in FIG. 3D, the UV photocurable adhesive 6 of the electrode terminal 2 is irradiated with UV light to cure the UV photocurable adhesive 6 and the UV photocurable adhesive 6 is applied to the electrode terminal 2. Glue.

【0021】そして、電気回路基板1と相対する透明電
極端子4が形成された電気回路基板3(若しくは導電粒
子付電気回路基板等でもよい)上に絶縁性UV光硬化性
接着剤7を塗布した後、電気回路基板1の電極端子2と
電気回路基板3の電極端子4とを揃うように位置合わせ
し、電気回路基板1の背面から加圧して電極端子2のU
V光硬化性接着剤6と電極端子4を接触させ、透明電気
回路基板3の背面から絶縁性UV光硬化性接着剤7にU
V光を照射し、硬化させて電気回路基板1と電気回路基
板3を接着することにより、図3(e)に示すような配
線構造を得ることができる。この時、電気回路基板1の
電極端子2部のUV光硬化性接着剤6は既に硬化してい
るため、加圧時に電極端子4上部に塗布された絶縁性U
V光硬化性接着剤7を押し退けながら透明電気回路基板
3の電極端子4と接触している。
Then, an insulating UV light curable adhesive 7 is applied onto the electric circuit board 3 (or the electric circuit board with conductive particles or the like) on which the transparent electrode terminals 4 facing the electric circuit board 1 are formed. After that, the electrode terminals 2 of the electric circuit board 1 and the electrode terminals 4 of the electric circuit board 3 are aligned so that they are aligned with each other, and pressure is applied from the back surface of the electric circuit board 1 so that the U
The V photo-curable adhesive 6 and the electrode terminal 4 are brought into contact with each other, and the insulating UV photo-curable adhesive 7 is applied to the insulating UV photo-curable adhesive 7 from the rear surface of the transparent electric circuit board 3 by U.
By irradiating V light and curing it to bond the electric circuit board 1 and the electric circuit board 3 to each other, a wiring structure as shown in FIG. 3E can be obtained. At this time, since the UV light curable adhesive 6 on the electrode terminal 2 portion of the electric circuit board 1 has already been cured, the insulating U applied to the upper portion of the electrode terminal 4 at the time of pressurization.
The V photo-curable adhesive 7 is pushed away and is in contact with the electrode terminals 4 of the transparent electric circuit board 3.

【0022】なお、本実施例では、透明導電性微粒子か
らなるUV光透過性導電部材5としては、酸化金属を用
いることができ、例えばITO,In2O3,SnO
2,SnO2(Pb),SnO2(F),ZnO,Zn
O(In),ZnO(Al),ZnO(Si),CdI
n2O4,Cd2SnO4,Cd2SnO4等の酸化金
属を用いることができる。また、透明導電性微粒子から
なるUV光透過性導電部材5としては、有機物を用いる
ことができ、例えばポリイソチアナフテン等を用いるこ
とができる。また、UV光硬化性接着剤6及び絶縁性U
V光硬化性接着剤7の接着基材としては、ポリアクリレ
ート、エポキシアクリレート、ウレタンアクリレート、
ポリエステルアクリレート、ポリエーテルアクリレー
ト、メラミンアクリレート、シリコンアクリレート系等
の接着剤を用いることができ、これらは電気回路基板1
や透明電極端子4の材料に合わせて適宜選定するのが好
ましい。
In this embodiment, metal oxide can be used as the UV light transmissive conductive member 5 made of transparent conductive fine particles, for example, ITO, In2O3, SnO.
2, SnO2 (Pb), SnO2 (F), ZnO, Zn
O (In), ZnO (Al), ZnO (Si), CdI
A metal oxide such as n2O4, Cd2SnO4 or Cd2SnO4 can be used. Further, as the UV light transmissive conductive member 5 made of transparent conductive fine particles, an organic substance can be used, and for example, polyisothianaphthene or the like can be used. In addition, the UV light curable adhesive 6 and the insulating U
As the adhesive base material of the V light curable adhesive 7, polyacrylate, epoxy acrylate, urethane acrylate,
Adhesives such as polyester acrylate, polyether acrylate, melamine acrylate, and silicon acrylate can be used, and these are used for the electric circuit board 1.
It is preferable to select it appropriately according to the material of the transparent electrode terminal 4.

【0023】このように、本実施例では、電気回路基板
1上の電極端子2と電気回路基板3上の電極端子4とを
UV光硬化性接着剤6中に分散させたUV光透過性導電
部材5により電気的接続してなるように構成している。
このため、UV光を照射した時、UV光硬化性接着剤6
中に分散したUV光透過性導電部材5がUV光を透過さ
せることができるので、従来硬化させることができなか
った導電部材と電極端子間のUV光硬化性接着剤6を全
て強固に硬化させることができ、導電部材5と電極端子
2を強固に接着させることができる。しかも、UV光硬
化性接着剤自体の弾性により加圧接続時に基板や電極端
子にダメージを与えないようにすることができる。従っ
て、熱的ストレスや機械的ストレスが加わっても導電粒
子5と電極端子2を長期に渡って剥がれ難く、しかも抵
抗値不良が生じないようにすることができるので、導電
粒子5と電極端子2の接続信頼性を長期に渡って安定さ
せることができる。
As described above, in this embodiment, the UV light transmissive conductive material in which the electrode terminals 2 on the electric circuit board 1 and the electrode terminals 4 on the electric circuit board 3 are dispersed in the UV light curable adhesive 6. The member 5 is configured to be electrically connected.
Therefore, when irradiated with UV light, the UV light curable adhesive 6
Since the UV light transmissive conductive member 5 dispersed therein can transmit UV light, all the UV light curable adhesive 6 between the conductive member and the electrode terminals, which could not be conventionally cured, is firmly cured. Therefore, the conductive member 5 and the electrode terminal 2 can be firmly adhered. Moreover, the elasticity of the UV light curable adhesive itself can prevent the substrate and the electrode terminals from being damaged during pressure connection. Therefore, even if a thermal stress or a mechanical stress is applied, the conductive particles 5 and the electrode terminals 2 are unlikely to be peeled off for a long period of time, and it is possible to prevent a defective resistance value from occurring. The connection reliability of can be stabilized over a long period of time.

【0024】また、本実施例では、UV光透過性導電部
材5を微粒子で構成するため、導電部材5を透過するU
V光の減衰を効率良く抑えることができる。このため、
UV光硬化性接着剤6の硬化時間を短縮化することがで
きるとともに、UV硬化性接着剤6を完全硬化すること
ができる他、電極端子2と接する点や面積を増やすこと
ができる。従って、低抵抗化し、かつ安定した配線構造
が得ることができる。
Further, in this embodiment, since the UV light transmissive conductive member 5 is composed of fine particles, U which passes through the conductive member 5 is used.
The attenuation of V light can be efficiently suppressed. For this reason,
The curing time of the UV light curable adhesive 6 can be shortened, the UV curable adhesive 6 can be completely cured, and points and areas in contact with the electrode terminals 2 can be increased. Therefore, a low resistance and stable wiring structure can be obtained.

【0025】また、本実施例では、UV光透過性導電部
材5を透明導電性を有する酸化金属で構成することがで
きるため、導電部材5が無機物なので、体積抵抗率を低
くすることができ、低い接続抵抗値を効率良く得ること
ができる。また、本実施例では、UV光透過性導電部材
5を透明導電性を有する有機物で構成することができる
ため、導電部材5が有機物なので、有機物からなる導電
部材5の弾性により加圧時に基板や電極端子に対してダ
メージを効率良く減少させることができ、安定した電気
的接続を得ることができる。 (実施例2)本実施例による電気回路基板の接続工程
は、基本的には、図3の実施例1と同じであるので、図
3を用いて説明する。まず、図3(a)に示すように、
平均粒径500オングストロームのITOの微粒子から
なるUV光透過性導電部材5を分散した変性エポキシア
クリレート系接着剤からなるUV光硬化性接着剤6をガ
ラス基板11上に厚さ10μmに塗布した後、図3(b)
に示すように、液晶ドライバー用TAB電気回路基板1
の電極端子2部を平坦基板11の電極端子2に貼り合わせ
る。
Further, in this embodiment, since the UV light transmissive conductive member 5 can be made of a metal oxide having a transparent conductivity, the conductive member 5 is an inorganic material, so that the volume resistivity can be lowered. It is possible to efficiently obtain a low connection resistance value. Further, in this embodiment, since the UV light transmissive conductive member 5 can be made of an organic material having transparent conductivity, since the conductive member 5 is an organic material, the elasticity of the conductive material 5 made of an organic material causes a substrate or Damage to the electrode terminals can be efficiently reduced, and stable electrical connection can be obtained. (Embodiment 2) The process of connecting the electric circuit board according to this embodiment is basically the same as that of the embodiment 1 of FIG. 3, and will be described with reference to FIG. First, as shown in FIG.
After applying a UV photo-curable adhesive 6 made of a modified epoxy acrylate-based adhesive in which a UV light-transmissive conductive member 5 made of ITO fine particles having an average particle diameter of 500 Å is dispersed to a thickness of 10 μm on a glass substrate 11, Figure 3 (b)
As shown in, TAB electric circuit board 1 for liquid crystal driver
The electrode terminal 2 portion of is bonded to the electrode terminal 2 of the flat substrate 11.

【0026】次に、図3(c)に示すように、ガラス基
板11からTAB電気回路基板1を引き剥して電気回路基
板1の電極端子2上にのみUV光硬化性接着剤6を転写
した後、図3(d)に示すように、電極端子2上のUV
光硬化性接着剤6にUV光を照射し硬化させて電極端子
2上にUV光硬化性接着剤6を接着する。そして、IT
Oからなる透明電極電極端子4が形成された1−PET
フィルムからなる透明電気回路基板3に、変性エポキシ
アクリレート接着剤からなる絶縁性UV光硬化性接着剤
7を厚さ15μmに塗布した後、電極端子2と電極端子
4が揃うように電気回路基板1と電気回路基板3を位置
合わせし、電気回路基板1の背面から電気回路基板1を
加圧して電極端子2のUV光硬化性接着剤6を電極端子
4に接触させ、電気回路基板3の背面から絶縁性UV光
硬化性接着剤7にUV光を照射して硬化させ、電気回路
基板1と電気回路基板3を接着することにより、図3
(e)に示すような配線構造を得ることができる。この
時、TAB電気回路基板1と透明電気回路基板3の接続
部には、実施例1と同様導電性接着剤部と絶縁性接着剤
部が各々電極部とギャップ部に充填され、良好な接続状
態を得ることができた。 (実施例3)本実施例による電気回路基板の接続工程
は、基本的には図3の実施例1と同じであるので、図3
を用いて説明する。まず、図3(a)に示すように、平
均粒径100オングストロームのSnO2(Pb)の微
粒子からなるUV光透過性導電部材5を分散した変性ウ
レタンアクリレート系接着剤からなるUV光硬化性接着
剤6をガラス基板11上に厚さ10μmに塗布した後、図
3(b)に示すように、液晶ドライバー用TABからな
る電気回路基板1の電極端子2部を平坦基板11のUV光
硬化性接着剤6上に貼り合わせる。
Next, as shown in FIG. 3C, the TAB electric circuit board 1 is peeled off from the glass substrate 11 and the UV light curable adhesive 6 is transferred only onto the electrode terminals 2 of the electric circuit board 1. After that, as shown in FIG. 3D, UV on the electrode terminal 2
The photo-curable adhesive 6 is irradiated with UV light to be cured and the UV-curable adhesive 6 is adhered onto the electrode terminals 2. And IT
1-PET on which transparent electrode terminal 4 made of O is formed
After the insulating UV photocurable adhesive 7 made of a modified epoxy acrylate adhesive is applied to the transparent electric circuit board 3 made of a film to a thickness of 15 μm, the electric circuit board 1 is arranged so that the electrode terminals 2 and the electrode terminals 4 are aligned. And the electric circuit board 3 are aligned with each other, and the electric circuit board 1 is pressed from the rear surface of the electric circuit board 1 so that the UV photo-curable adhesive 6 of the electrode terminal 2 is brought into contact with the electrode terminal 4, and the rear surface of the electric circuit board 3 By irradiating the insulating UV light curable adhesive 7 with UV light to cure the adhesive, the electric circuit board 1 and the electric circuit board 3 are adhered to each other.
The wiring structure as shown in (e) can be obtained. At this time, in the connection portion between the TAB electric circuit board 1 and the transparent electric circuit board 3, the conductive adhesive portion and the insulating adhesive portion are filled in the electrode portion and the gap portion, respectively, as in the case of the first embodiment. I was able to get the status. (Embodiment 3) The electric circuit board connection process according to this embodiment is basically the same as that of Embodiment 1 shown in FIG.
Will be explained. First, as shown in FIG. 3 (a), a UV light curable adhesive made of a modified urethane acrylate adhesive in which a UV light transmissive conductive member 5 made of SnO 2 (Pb) fine particles having an average particle diameter of 100 Å is dispersed. After applying 6 to the glass substrate 11 to a thickness of 10 μm, the electrode terminal 2 part of the electric circuit substrate 1 made of the TAB for liquid crystal driver is bonded to the flat substrate 11 by the UV light curable adhesive as shown in FIG. 3B. Stick on Agent 6.

【0027】次に、図3(c)に示すように、ガラス基
板11からTAB電気回路基板1を引き剥して電極端子2
上にのみUV光硬化性接着剤6を転写した後、図3
(d)に示すように、UV光を電極端子2上のUV光硬
化性接着剤6に照射し硬化させて電極端子2上にUV光
硬化性接着剤6を接着する。そして、複合コートされた
PESフィルムからなる透明電気回路基板3上に形成さ
れたITOからなる透明電極4に、変性ウレタンアクリ
レート接着剤からなる絶縁性UV光硬化性接着剤7を厚
さ15μmに塗布した後、電極端子2と電極端子4が揃
うように電気回路基板1と電気回路基板3を位置合わせ
し、電気回路基板1の背面から電気回路基板1を加圧し
て電極端子2上のUV光硬化性接着剤6を電極端子4に
接触させ、電気回路基板3の背面から絶縁性UV光硬化
性接着剤7にUV光を照射して硬化させ、電気回路基板
1と電気回路基板3を接着することにより、図3(e)
に示すような配線構造を得ることができる。本実施例に
おいても、実施例1,2と同様良好な接続状態を得るこ
とができた。
Next, as shown in FIG. 3C, the TAB electric circuit board 1 is peeled off from the glass substrate 11 to remove the electrode terminals 2.
After transferring the UV light curable adhesive 6 only on the top, FIG.
As shown in (d), the UV light curable adhesive 6 on the electrode terminal 2 is irradiated with UV light to be cured, and the UV light curable adhesive 6 is adhered on the electrode terminal 2. Then, the transparent UV-curable adhesive 7 made of modified urethane acrylate adhesive is applied to the transparent electrode 4 made of ITO formed on the transparent electric circuit board 3 made of the composite-coated PES film to a thickness of 15 μm. After that, the electric circuit board 1 and the electric circuit board 3 are aligned so that the electrode terminal 2 and the electrode terminal 4 are aligned, and the electric circuit board 1 is pressed from the rear surface of the electric circuit board 1 to emit UV light on the electrode terminal 2. The curable adhesive 6 is brought into contact with the electrode terminals 4, and the insulating UV photo-curable adhesive 7 is irradiated with UV light from the back surface of the electric circuit board 3 to be cured to bond the electric circuit board 1 and the electric circuit board 3 together. By doing so, FIG. 3 (e)
A wiring structure as shown in can be obtained. Also in this example, a good connection state could be obtained as in Examples 1 and 2.

【0028】[0028]

【発明の効果】本発明によれば、導電粒子と電極端子間
のUV接着剤を硬化させて導電粒子と電極端子を強固に
接着することができ、熱的ストレス及び機械的ストレス
が加わっても導電粒子と電極端子を長期に渡って剥がれ
難くすることができ、導電粒子と電極端子間の接続信頼
性を長期に渡って安定させることができるという効果が
ある。
According to the present invention, the UV adhesive between the conductive particles and the electrode terminals can be hardened to firmly bond the conductive particles and the electrode terminals, and even if thermal stress and mechanical stress are applied. There is an effect that the conductive particles and the electrode terminals can be made difficult to separate for a long period of time, and the connection reliability between the conductive particles and the electrode terminals can be stabilized for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に則した電気回路基板の電極
構造と電極端子の拡大部分を示す図である。
FIG. 1 is a diagram showing an electrode structure of an electric circuit board and an enlarged portion of an electrode terminal according to a first embodiment of the present invention.

【図2】本発明の実施例1に則した電気回路基板を接続
した構造とその接続構造の拡大部分を示す図である。
FIG. 2 is a diagram showing a structure in which electric circuit boards are connected according to the first embodiment of the present invention and an enlarged portion of the connection structure.

【図3】本発明の実施例1に則した電気回路基板の接続
方法を示す図である。
FIG. 3 is a diagram showing a method of connecting electric circuit boards according to the first embodiment of the present invention.

【図4】従来例の電気回路基板の接続方法を示す図であ
る。
FIG. 4 is a diagram showing a conventional method of connecting electric circuit boards.

【図5】従来例の電気回路基板の接続方法を示す図であ
る。
FIG. 5 is a diagram showing a conventional method for connecting electric circuit boards.

【図6】従来例の課題を示す図である。FIG. 6 is a diagram showing a problem of a conventional example.

【符号の説明】[Explanation of symbols]

1 電気回路基板 2 電極端子 3 電気回路基板 4 電極端子 5 UV光透過性導電部材 6 UV光硬化性接着剤 7 絶縁性UV光硬化性接着剤 11 平坦基板 DESCRIPTION OF SYMBOLS 1 Electric circuit board 2 Electrode terminal 3 Electric circuit board 4 Electrode terminal 5 UV light transmissive conductive member 6 UV light curable adhesive 7 Insulating UV light curable adhesive 11 Flat substrate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1の配線基板上に形成された第1の電極
端子と第2の配線基板上に形成された第2の電極端子と
が対向して配置され、該第1の電極端子と該第2の電極
端子とがUV光透過性導電部材が分散されたUV光硬化
性接着剤により接着され、該第1の電極端子と該第2の
電極端子が該UV光透過性導電部材中に分散させた該U
V光透過性導電部材により電気的接続されてなることを
特徴とする配線構造。
1. A first electrode terminal formed on a first wiring board and a second electrode terminal formed on a second wiring board are arranged so as to face each other, and the first electrode terminal is arranged. And the second electrode terminal are adhered to each other with a UV photo-curable adhesive in which a UV light-transmissive conductive member is dispersed, and the first electrode terminal and the second electrode terminal are connected to the UV light-transmissive conductive member. The U dispersed in
A wiring structure characterized by being electrically connected by a V light transmissive conductive member.
【請求項2】前記UV光透過性導電部材は、微粒子であ
ることを特徴とする請求項1記載の配線構造。
2. The wiring structure according to claim 1, wherein the UV light transmissive conductive member is fine particles.
【請求項3】前記UV光透過性導電部材は、透明導電性
を有する酸化金属からなることを特徴とする請求項1,
2記載の配線構造。
3. The UV transparent conductive member is made of a metal oxide having transparent conductivity.
2. The wiring structure described in 2.
【請求項4】前記UV光透過性導電部材は、透明導電性
を有する有機物からなることを特徴とする請求項1,2
記載の配線構造。
4. The UV transparent conductive member is made of an organic material having transparent conductivity.
The wiring structure shown.
【請求項5】第1の配線基板の第1の電極端子上のみに
選択的にUV光透過性導電部材が分散された未硬化の第
1のUV光硬化性接着剤を形成する工程と、次いで、該
未硬化の第1のUV光硬化性接着剤にUV光を照射して
硬化して該第1の電極端子に接着する工程と、次いで、
該第1の配線基板の該第1の電極端子上に接着された該
第1のUV光硬化性接着剤を未硬化の第2のUV光硬化
性接着剤が塗布された第2の配線基板の第2の電極端子
に接触させ、該未硬化のUV光硬化性接着剤にUV光を
照射して硬化することにより、該第1の配線基板と該第
2の配線基板とを接着する工程とを含むことを特徴とす
る配線構造の製造方法。
5. A step of forming an uncured first UV light curable adhesive in which a UV light transparent conductive member is selectively dispersed only on the first electrode terminal of the first wiring board, Next, a step of irradiating the uncured first UV light curable adhesive with UV light to cure it and adhering it to the first electrode terminal, and then,
A second wiring board to which the uncured second UV photocurable adhesive is applied, on which the first UV photocurable adhesive adhered onto the first electrode terminal of the first wiring board is applied. A step of adhering the first wiring board and the second wiring board by contacting the second electrode terminals of the above and irradiating the uncured UV photocurable adhesive with UV light to cure the adhesive. And a wiring structure manufacturing method.
JP15167093A 1993-06-23 1993-06-23 Wiring structure and manufacture thereof Pending JPH0714625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15167093A JPH0714625A (en) 1993-06-23 1993-06-23 Wiring structure and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15167093A JPH0714625A (en) 1993-06-23 1993-06-23 Wiring structure and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0714625A true JPH0714625A (en) 1995-01-17

Family

ID=15523677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15167093A Pending JPH0714625A (en) 1993-06-23 1993-06-23 Wiring structure and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0714625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146275A1 (en) * 2014-03-28 2015-10-01 デクセリアルズ株式会社 Anisotropic conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146275A1 (en) * 2014-03-28 2015-10-01 デクセリアルズ株式会社 Anisotropic conductive film
JP2015191823A (en) * 2014-03-28 2015-11-02 デクセリアルズ株式会社 Anisotropically conductive film
CN106063042A (en) * 2014-03-28 2016-10-26 迪睿合株式会社 Anisotropic conductive film

Similar Documents

Publication Publication Date Title
US5317438A (en) Liquid crystal display device and method of producing the same having an improved connection between a flexible film substrate and a drive circuit substrate
JP3415845B2 (en) Electrical connection structure and electrical connection method thereof
JPH05144817A (en) Electronic part mounting/connecting body and manufacture thereof
JPH03131089A (en) Connecting method for circuit board
JPH09281520A (en) Method for connecting circuit board, liquid crystal display device and electronic apparatus
KR20080031311A (en) Process for producing junction structure
JPH1187429A (en) Mounting method for semiconductor chip
JPH0714625A (en) Wiring structure and manufacture thereof
JPH04362925A (en) Wiring board
JPH02127620A (en) Electrooptic device and its connecting method
JPS62132331A (en) Manufacture of semiconductor device
KR100614564B1 (en) A junction method of a chip bump and a substrate pad using underfill resin and supersonic
JPH09127536A (en) Liquid crystal display device
JPH10256304A (en) Manufacture of semiconductor device
JPH06232205A (en) Packaging semiconductor device and semiconductor device
JPH08167441A (en) Electrical connection member and connection structure for liquid crystal panel
JPH0955279A (en) Electrode connecting method and connection structure of electrode obtained by the method
JPH08102464A (en) Bump electrode structure and its forming method, and connection structure using bump electrode and its connection method
JPH09191026A (en) Liquid crystal display
JP3349365B2 (en) Liquid crystal display device and method of manufacturing the same
JP3031134B2 (en) How to connect electrodes
JP3113749B2 (en) Wiring structure and method of manufacturing conductive member
JP3100436B2 (en) Anisotropic conductive film
JPH0379063A (en) Semiconductor device and manufacturing method
JP2000259092A (en) Electro-optic device