JP2015191823A - Anisotropically conductive film - Google Patents

Anisotropically conductive film Download PDF

Info

Publication number
JP2015191823A
JP2015191823A JP2014069141A JP2014069141A JP2015191823A JP 2015191823 A JP2015191823 A JP 2015191823A JP 2014069141 A JP2014069141 A JP 2014069141A JP 2014069141 A JP2014069141 A JP 2014069141A JP 2015191823 A JP2015191823 A JP 2015191823A
Authority
JP
Japan
Prior art keywords
conductive film
anisotropic conductive
transparent substrate
mass
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014069141A
Other languages
Japanese (ja)
Other versions
JP6233139B2 (en
Inventor
暁 種市
Akira Taneichi
暁 種市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2014069141A priority Critical patent/JP6233139B2/en
Priority to PCT/JP2015/052455 priority patent/WO2015146275A1/en
Priority to CN201580006596.9A priority patent/CN106063042A/en
Priority to KR1020167020890A priority patent/KR20160137957A/en
Priority to TW104107382A priority patent/TWI638025B/en
Publication of JP2015191823A publication Critical patent/JP2015191823A/en
Application granted granted Critical
Publication of JP6233139B2 publication Critical patent/JP6233139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To arrange a photo-curable anisotropically conductive film in a monolayer form, and to increase the curing rate of portions of such a film in contact with center portions of wiring lines and connection terminals on a transparent substrate in a plane direction thereof, thereby reducing the resistance against conduction.SOLUTION: An anisotropically conductive film comprises: a binder composition including a photocurable compound and a photocuring agent; and conductive particles dispersed therein. In the anisotropically conductive film, each conductive particle has a surface at least partially covered with a light-diffusing filler. The total light reflectance of the anisotropically conductive film according to JIS K7375 is 25% or larger.

Description

本発明は、ICチップ等の電子部品をガラス基板等の透明基板に実装する際に有用な異方性導電フィルムに関する。   The present invention relates to an anisotropic conductive film useful when an electronic component such as an IC chip is mounted on a transparent substrate such as a glass substrate.

従来より、光硬化性バインダ組成物に導電粒子を分散させた異方性導電フィルムを、FPCやICチップ等の電子部品と、配線と接続用端子とが形成された透明基板との間に配置し、押圧しながら、透明基板側から紫外線を照射して異方性導電フィルムを光硬化させることにより、電子部品と透明基板とを異方性導電接続することが実施されている。   Conventionally, an anisotropic conductive film in which conductive particles are dispersed in a photocurable binder composition is disposed between an electronic component such as an FPC or an IC chip and a transparent substrate on which wiring and connection terminals are formed. However, anisotropically conductive connection between the electronic component and the transparent substrate is performed by irradiating ultraviolet rays from the transparent substrate side and photocuring the anisotropic conductive film while pressing.

このような異方性導電接続を行った場合、透明基板の配線や接続用端子に接した部位の異方性導電フィルムは、配線と接続用端子に紫外線が遮られるため、特に配線や端子の幅方向中央部の硬化率が相対的に低下し、透明基板と電子部品との間の導通抵抗が上昇するという問題があった。   When such an anisotropic conductive connection is performed, the anisotropic conductive film in the portion in contact with the wiring of the transparent substrate and the connection terminal is shielded from ultraviolet rays by the wiring and the connection terminal. There has been a problem that the curing rate at the center in the width direction is relatively lowered, and the conduction resistance between the transparent substrate and the electronic component is increased.

そこで、異方性導電フィルムを、光硬化性の導電粒子含有層と光硬化性の絶縁性樹脂層とを積層したものから構成し、更に、それらの層の少なくともいずれかに光散乱性微粒子を含有させることが提案されている(特許文献1)。この異方性導電フィルムによれば、光散乱性微粒子が紫外線をフィルムの平面方向(エッジ方向)にも散乱させ、透明基板の配線又は接続用端子に接した部位の異方性導電フィルムに照射される紫外線量を増大させ、その部位の硬化率を上昇させることが期待できる。   Therefore, the anisotropic conductive film is constituted by laminating a photocurable conductive particle-containing layer and a photocurable insulating resin layer, and further, light scattering fine particles are formed on at least one of these layers. It is proposed to contain (Patent Document 1). According to this anisotropic conductive film, the light-scattering fine particles scatter ultraviolet rays also in the plane direction (edge direction) of the film, and irradiate the anisotropic conductive film in a portion in contact with the wiring or connection terminal of the transparent substrate. It can be expected that the amount of ultraviolet rays to be increased is increased and the curing rate of the part is increased.

国際公開2013/073563International publication 2013/073563

しかしながら、特許文献1の光硬化型異方性導電フィルムは2層構造であるため、製造コストが増大するという問題があった。しかも、透明基板の配線や端子の平面方向中央部に接した異方性導電フィルムの硬化率が期待したほど上昇せず、意図した導通抵抗値を超えてしまうという問題があった。   However, since the photocurable anisotropic conductive film of Patent Document 1 has a two-layer structure, there is a problem that the manufacturing cost increases. Moreover, there is a problem that the curing rate of the anisotropic conductive film in contact with the central portion of the transparent substrate wiring and terminals in the planar direction does not increase as expected and exceeds the intended conduction resistance value.

本発明の目的は、従来技術の問題点を解決しようとするものであり、光硬化型の異方性導電フィルムを単層化し、且つ透明基板の配線や接続端子の平面方向中央部に接した部位の硬化率を向上させ、導通抵抗を低下させることのできる異方性導電フィルムを提供することである。   An object of the present invention is to solve the problems of the prior art, a single layer of a photo-curing anisotropic conductive film, and in contact with the central portion in the planar direction of wiring and connection terminals of a transparent substrate. It is to provide an anisotropic conductive film capable of improving the curing rate of a part and reducing conduction resistance.

本発明者は、単層化した異方性導電フィルムに光拡散性フィラを配合する際に、フィルム全体に分散させるのではなく偏在化させることにより硬化率を改善できるのではないかとの推論の下、異方性導電フィルムのJIS K7375による全光線反射率が25%以上となるように導電粒子の表面の少なくとも一部を光拡散性フィラで被覆してみたところ、上述の目的を達成できることを見出し、本発明を完成させるに至った。   The present inventor has inferred that when a light diffusable filler is blended into a single layered anisotropic conductive film, the curing rate can be improved by making it unevenly distributed rather than being dispersed throughout the film. Below, when at least a part of the surface of the conductive particles is coated with a light diffusing filler so that the total light reflectance of the anisotropic conductive film according to JIS K7375 is 25% or more, the above-mentioned object can be achieved. The headline and the present invention have been completed.

即ち、本発明は、光硬化性化合物と光硬化剤とを含むバインダ組成物と、その中に分散している導電粒子とを含有する異方性導電フィルムであって、導電粒子の表面の少なくとも一部が光拡散性フィラで被覆されており、JIS K7375による全光線反射率が25%以上である異方性導電フィルムを提供する。   That is, the present invention is an anisotropic conductive film comprising a binder composition containing a photocurable compound and a photocuring agent, and conductive particles dispersed therein, and at least the surface of the conductive particles. Provided is an anisotropic conductive film that is partially coated with a light diffusing filler and has a total light reflectance of 25% or more according to JIS K7375.

また、本発明は、上述の異方性導電フィルムを介して、透明基板の接続端子と電子部品の電極とが異方性導電接続されている接続体を提供する。   Moreover, this invention provides the connection body by which the connection terminal of the transparent substrate and the electrode of the electronic component are anisotropically conductive-connected through the above-mentioned anisotropic conductive film.

更に、本発明は、この接続体の製造方法であって、透明基板の接続用端子に異方性導電フィルムを配置し、その異方性導電フィルムを介して電子部品の電極を透明基板の接続端子に位置合わせし、電子部品側から押圧した後、透明基板側から紫外線を照射することにより透明基板と電子部品とを接合する製造方法を提供する。   Furthermore, the present invention is a method for producing this connection body, wherein an anisotropic conductive film is disposed on a connection terminal of a transparent substrate, and an electrode of an electronic component is connected to the transparent substrate via the anisotropic conductive film. Provided is a manufacturing method for joining a transparent substrate and an electronic component by aligning with a terminal and pressing from the electronic component side and then irradiating ultraviolet rays from the transparent substrate side.

光硬化型の本発明の異方性導電フィルムは、導電粒子の表面の少なくとも一部が光拡散性フィラで被覆されており、JIS K7375による全光線反射率が25%以上を示す。このため、この異方性導電フィルムを介して透明基板の接続端子と電子部品の電極とを異方性導電接続して接続体を作成する際、透明基板側から照射された紫外線の一部は、光拡散性フィラにより異方性導電フィルム外に出射せずにフィルム内部でフィルムの平面方向に拡散する。この結果、透明基板の配線や接続端子の幅方向中央部に接した部位、即ち紫外線が届き難かった部位にまで紫外線を伝播させることができ、その部位の硬化率を向上させ、導通抵抗を低下させることができる。   In the photocurable anisotropic conductive film of the present invention, at least a part of the surface of the conductive particles is coated with a light diffusing filler, and the total light reflectance according to JIS K7375 is 25% or more. For this reason, when creating a connection body by anisotropically connecting the connection terminal of the transparent substrate and the electrode of the electronic component through this anisotropic conductive film, a part of the ultraviolet rays irradiated from the transparent substrate side is The light diffusing filler diffuses in the plane direction of the film inside the film without being emitted outside the anisotropic conductive film. As a result, the ultraviolet rays can be propagated to a portion of the transparent substrate wiring or connection terminal that is in contact with the central portion in the width direction, that is, a portion where the ultraviolet rays are difficult to reach, thereby improving the curing rate of the portion and reducing the conduction resistance. Can be made.

図1は、異方性導電フィルムを介して透明基板と電子部品とを接合する際に、透明基板側から光照射した際の説明図である。FIG. 1 is an explanatory diagram when light is irradiated from the transparent substrate side when a transparent substrate and an electronic component are bonded via an anisotropic conductive film.

<異方性導電フィルム>
本発明の異方性導電フィルムは、光硬化性化合物と光硬化剤とを含むバインダ組成物と、その中に分散している導電粒子とから構成されており、その特徴は、導電粒子として、表面の少なくとも一部が光拡散性フィラで被覆されているもの(光拡散性フィラ被覆導電粒子)を使用し、また、異方性導電フィルムのJIS K7375による全光線反射率が25%以上であることである。
<Anisotropic conductive film>
The anisotropic conductive film of the present invention is composed of a binder composition containing a photocurable compound and a photocuring agent, and conductive particles dispersed therein, and the characteristics thereof are as conductive particles. The surface is coated with a light-diffusing filler (light-diffusing filler-coated conductive particles), and the total light reflectance according to JIS K7375 of the anisotropic conductive film is 25% or more. That is.

(光拡散性フィラ被覆導電粒子)
光拡散性フィラ被覆導電粒子は、文字通り、導電粒子の表面の少なくとも一部が光拡散性フィラで被覆されているものである。
(Light diffusing filler coated conductive particles)
The light diffusing filler-coated conductive particles are literally those in which at least a part of the surface of the conductive particles is coated with the light diffusing filler.

「導電粒子」
導電粒子としては、従来より異方性導電フィルムに適用されてきた導電粒子を採用することができる。例えば、ニッケル、銀、金、パラジウム等の金属の粒子;半田等の合金の粒子;スチレン−ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂等の樹脂の粒子(樹脂コア粒子)の表面を、無電解めっき法、スパッタリング法等により、ニッケル薄膜やニッケル/金薄膜などの金属薄膜で被覆した金属被覆樹脂粒子を挙げることができる。これらの導電粒子は、必要に応じて薄い樹脂被膜で絶縁被覆することができる。
"Conductive particles"
As the conductive particles, conductive particles that have been conventionally applied to anisotropic conductive films can be employed. For example, particles of metal such as nickel, silver, gold and palladium; particles of alloy such as solder; particles of resin (resin core particles) such as styrene-divinylbenzene copolymer, benzoguanamine resin, cross-linked polystyrene resin and acrylic resin Examples thereof include metal-coated resin particles whose surfaces are coated with a metal thin film such as a nickel thin film or a nickel / gold thin film by an electroless plating method, a sputtering method, or the like. These conductive particles can be insulated with a thin resin film as required.

このような導電粒子の平均粒径は、異方性導電フィルムを適用する透明基板の配線ピッチや電子部品のバンプ径等により異なるが、通常、2μm以上15μm以下、好ましくは2μm以上10μm以下、より好ましくは2μm以上5μm以下である。なお、導電粒子の平均粒径は、一般的な粒度分布測定装置(例えば、FPAR−1000、大塚電子株式会社製)などにより測定することができる。   The average particle size of such conductive particles varies depending on the wiring pitch of the transparent substrate to which the anisotropic conductive film is applied, the bump diameter of the electronic component, etc., but is usually 2 μm or more and 15 μm or less, preferably 2 μm or more and 10 μm or less, more Preferably they are 2 micrometers or more and 5 micrometers or less. The average particle size of the conductive particles can be measured with a general particle size distribution measuring device (for example, FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.).

また、導電粒子の異方性導電フィルム中の含有量は、異方性導電接続の際におけるショートの発生防止、導通抵抗の低減、導通信頼性の確保等の観点から、好ましくは5質量%以上50質量%以下、より好ましくは5質量%以上30質量%以下である。   In addition, the content of the conductive particles in the anisotropic conductive film is preferably 5% by mass or more from the viewpoint of preventing occurrence of short-circuits in anisotropic conductive connection, reducing conduction resistance, ensuring conduction reliability, and the like. It is 50 mass% or less, More preferably, it is 5 mass% or more and 30 mass% or less.

「光拡散性フィラ」
光拡散性フィラは、異方性導電フィルム中に入射した紫外線を、結果的に異方性導電フィルムの平面方向(エッジ方向)に拡散させることが可能なものである。ここで、拡散とは、フィラ表面で紫外線を反射もしくは透過した紫外線を屈折させて出射させることを意味する。光拡散性フィラとしては、無機微粒子、有機微粒子を使用することができ、異方性導電フィルムの使用目的に応じて適宜選択することができる。無機微粒子としては酸化アルミニウム微粒子、酸化マグネシウム微粒子、酸化チタン微粒子、酸化亜鉛微粒子、シリカ微粒子などが挙げられる。有機微粒子としては、異方性導電フィルムを構成する光硬化性樹脂の硬化物よりも大きな屈折率を有する樹脂微粒子を使用することができる。
"Light diffusing filler"
The light diffusing filler is capable of diffusing ultraviolet rays incident on the anisotropic conductive film as a result in the plane direction (edge direction) of the anisotropic conductive film. Here, the diffusion means that the ultraviolet rays reflected or transmitted by the filler surface are refracted and emitted. As the light diffusing filler, inorganic fine particles and organic fine particles can be used, and can be appropriately selected according to the purpose of use of the anisotropic conductive film. Examples of the inorganic fine particles include aluminum oxide fine particles, magnesium oxide fine particles, titanium oxide fine particles, zinc oxide fine particles, and silica fine particles. As the organic fine particles, resin fine particles having a refractive index larger than that of the cured product of the photocurable resin constituting the anisotropic conductive film can be used.

光拡散性フィラの平均粒径は、特に制限はなく、目的に応じて適宜選択することができるが、配線上の非透過領域まで照射光を侵入させやすくする点から、好ましくは50nm以上800nm以下、より好ましくは100nm以上500nm以下である。また、光拡散性フィラの平均粒径は、前述の範囲であることを前提に、安定な異方性接続の観点から、導電粒子の平均粒径を100としたときに好ましくは0.4〜40、より好ましくは0.5〜40、更により好ましくは6〜25である。また、光拡散性フィラの平均粒径は、異方性導電接続の際に利用する照射光の波長の1/2に近しい大きさとすることが好ましい。なお、光拡散性フィラの平均粒径は、一般的な粒度分布測定装置(例えば、FPAR−1000、大塚電子株式会社製)などにより測定することができる。   The average particle diameter of the light diffusing filler is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 nm or more and 800 nm or less from the viewpoint of facilitating the penetration of irradiation light to the non-transmissive region on the wiring. More preferably, it is 100 nm or more and 500 nm or less. Further, assuming that the average particle diameter of the light diffusing filler is in the above-mentioned range, from the viewpoint of stable anisotropic connection, the average particle diameter of the conductive particles is preferably 0.4 to 40, more preferably 0.5 to 40, and even more preferably 6 to 25. The average particle size of the light diffusing filler is preferably set to a size close to ½ of the wavelength of the irradiation light used for anisotropic conductive connection. The average particle size of the light diffusing filler can be measured by a general particle size distribution measuring device (for example, FPAR-1000, manufactured by Otsuka Electronics Co., Ltd.).

以上のような拡散性フィラによる導電粒子の表面の被覆率(導電粒子の全表面積に対する、光拡散性フィラ被覆導電粒子の光拡散性フィラで覆われている面積の割合)は、発明の効果を十分に実現するために少なくとも15%以上、好ましくは30%以上である。この被覆率は電子顕微鏡(SEM)により測定することができ、通常は50サンプルの平均値として定義することができる。   The coverage ratio of the surface of the conductive particles by the diffusive filler as described above (the ratio of the area covered with the light diffusing filler of the light diffusing filler coated conductive particles to the total surface area of the conductive particles) is the effect of the invention. In order to fully realize, it is at least 15% or more, preferably 30% or more. This coverage can be measured with an electron microscope (SEM) and can usually be defined as the average value of 50 samples.

また、光拡散性フィラは、導電粒子を被覆していない存在態様として、異方性導電フィルム中に独立的に分散していてもよい。この場合、接続後の信頼性の点から、異方性導電フィルム中の全光拡散フィラに対する、導電粒子を被覆していない光拡散性フィラの割合は、好ましくは4質量%以上15質量%以下、より好ましくは6質量%以上12質量%以下である。   Moreover, the light diffusable filler may be disperse | distributed independently in an anisotropic conductive film as an aspect which does not coat | cover the electrically-conductive particle. In this case, from the viewpoint of reliability after connection, the ratio of the light diffusing filler not coated with the conductive particles to the total light diffusing filler in the anisotropic conductive film is preferably 4% by mass or more and 15% by mass or less. More preferably, it is 6 mass% or more and 12 mass% or less.

(硬化性化合物)
バインダ組成物を構成する光硬化性化合物としては、特に制限はなく、異方性導電フィルムの使用目的に応じて適宜選択することができ、例えば、光カチオン硬化性化合物、光ラジカル硬化性化合物などが挙げられる。
(Curable compound)
There is no restriction | limiting in particular as a photocurable compound which comprises a binder composition, According to the intended purpose of an anisotropic conductive film, it can select suitably, For example, a photocationic curable compound, a photoradical curable compound, etc. Is mentioned.

光カチオン硬化性化合物としては、公知の異方性導電フィルムに使用されている光カチオン重合性化合物(モノマーもしくはオリゴマー)を光カチオン重合させたものを使用することができる。例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ノボラック型エポキシ化合物、オキセタン化合物、脂環式エポキシ化合物、これらのアクリル、ウレタン又はカルボン酸変性エポキシ化合物等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。   As the photocationic curable compound, those obtained by photocationic polymerization of a photocationic polymerizable compound (monomer or oligomer) used in known anisotropic conductive films can be used. Examples thereof include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, novolac type epoxy compounds, oxetane compounds, alicyclic epoxy compounds, and acrylic, urethane, or carboxylic acid modified epoxy compounds. These may be used individually by 1 type and may use 2 or more types together.

光ラジカル硬化性化合物としては、公知の異方性導電フィルムに使用されている光ラジカル重合性化合物(モノマーもしくはオリゴマー)をラジカル重合させたものを使用することができる。このような光ラジカル重合性モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート等の単官能(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、テトラメチレングリコールテトラ(メタ)アクリレート、2−ヒドロキシ−1,3−ジ(メタ)アクリロキシプロパン、2,2−ビス[4−((メタ)アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−((メタ)アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート等の多官能(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、(メタ)アクリレートオリゴマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。ここで、「(メタ)アクリレートなる用語は、アクリレートとメタクリレートとを包含する用語である。   As the photoradical curable compound, a radically polymerized photoradical polymerizable compound (monomer or oligomer) used in a known anisotropic conductive film can be used. Examples of such photo-radically polymerizable monomers include monofunctional (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, and ethylene glycol di (meth) acrylate. , Diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, tetramethylene glycol tetra (meth) acrylate, 2-hydroxy-1,3-di (meth) acryl Roxypropane, 2,2-bis [4-((meth) acryloxymethoxy) phenyl] propane, 2,2-bis [4-((meth) acryloxyethoxy) phenyl] propane, dicyclopentenyl (meth) acrylate The Examples include polyfunctional (meth) acrylates such as licyclodecanyl (meth) acrylate and tris ((meth) acryloxyethyl) isocyanurate, epoxy (meth) acrylate, urethane (meth) acrylate, and (meth) acrylate oligomers. These may be used individually by 1 type and may use 2 or more types together. Here, the term “(meth) acrylate” is a term including acrylate and methacrylate.

光硬化性化合物の異方性導電フィルム中の含有量は、導電粒子押し込み後の保持性や安定性の点から好ましくは5質量%以上50質量%以下、より好ましくは5質量%以上30質量%以下である。   The content of the photocurable compound in the anisotropic conductive film is preferably 5% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 30% by mass, from the viewpoint of retention and stability after the conductive particles are pressed. It is as follows.

(光硬化剤)
光硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、紫外線より活性カチオン種又は活性ラジカル種を発生させる公知の光カチオン硬化剤又は光ラジカル硬化剤を使用することができる。光カチオン硬化剤としては、例えば、スルホニウム塩、オニウム塩などが挙げられ、光ラジカル硬化剤としては、例えば、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤、オキシムエステル系光重合開始剤などが挙げられる。
(Photocuring agent)
There is no restriction | limiting in particular as a photocuring agent, According to the objective, it can select suitably, It is possible to use the well-known photocationic curing agent or photoradical curing agent which generate | occur | produces an active cation seed | species or active radical seed | species from an ultraviolet-ray. it can. Examples of the photo cation curing agent include sulfonium salts and onium salts. Examples of the photo radical curing agent include alkylphenone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and titanocene photopolymerization. Examples thereof include initiators and oxime ester photopolymerization initiators.

光硬化剤の異方性導電フィルム中の含有量は、硬化率や硬化速度等の観点から、光カチオン硬化剤の場合には、光カチオン重合性化合物100質量部に対し、好ましくは3質量部以上15質量部以下、より好ましくは5質量部以上10質量部以下である。また、光ラジカル硬化剤の場合には、光ラジカル重合性化合物100質量部に対し、好ましくは3質量部以上15質量部以下、より好ましくは5質量部以上10質量部以下である。   The content of the photocuring agent in the anisotropic conductive film is preferably 3 parts by mass with respect to 100 parts by mass of the photocationically polymerizable compound in the case of the photocationic curing agent from the viewpoint of the curing rate and the curing rate. The amount is 15 parts by mass or less, more preferably 5 parts by mass or more and 10 parts by mass or less. Moreover, in the case of a radical photocuring agent, it is preferably 3 parts by mass or more and 15 parts by mass or less, more preferably 5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the photoradical polymerizable compound.

(その他の成分)
バインダ組成物は、必要に応じ、発明の効果を損なわない範囲で、膜形成樹脂、シランカップリング剤、溶剤などを含有することができる。膜形成樹脂としては、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等が挙げられ、光硬化性化合物100質量部に対し、好ましくは50質量部以上100質量部以下、より好ましくは60質量部以上90質量部以下で配合される。また、シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤、チオール系シランカップリング剤、アミン系シランカップリング剤等が挙げられ、光硬化性化合物と膜形成樹脂との合計100質量部に対し、好ましくは2質量部以上25質量部以下、より好ましくは2質量部以上10質量部以下で配合される。
(Other ingredients)
The binder composition can contain a film-forming resin, a silane coupling agent, a solvent, and the like as long as they do not impair the effects of the invention. Examples of the film-forming resin include phenoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like, and preferably 50 with respect to 100 parts by mass of the photocurable compound. More than 100 parts by mass and more preferably 60 parts by mass to 90 parts by mass. Examples of the silane coupling agent include an epoxy silane coupling agent, an acrylic silane coupling agent, a thiol silane coupling agent, an amine silane coupling agent, and the like. The total amount is 100 parts by mass, preferably 2 parts by mass or more and 25 parts by mass or less, more preferably 2 parts by mass or more and 10 parts by mass or less.

(異方性導電フィルムの厚み)
異方性導電フィルムの厚みとしては、導電粒子径、導電粒子含有量、光硬化性化合物の種類、異方性導電フィルムの使用目的等により適宜選択することができ、通常、10μm以上30μm以下が好ましく、10μm以上25μm以下がより好ましく、更により好ましくは10μm以上20μm以下である。
(Thickness of anisotropic conductive film)
The thickness of the anisotropic conductive film can be appropriately selected depending on the conductive particle diameter, the conductive particle content, the type of the photocurable compound, the purpose of use of the anisotropic conductive film, and is usually 10 μm or more and 30 μm or less. Preferably, it is 10 μm or more and 25 μm or less, and more preferably 10 μm or more and 20 μm or less.

(異方性導電フィルムの全光線反射率)
本発明の異方性導電フィルムは、透明基板の接続端子と電子部品の電極とを異方性導電接続して接続体を作成した際に、照射光が届き難い透明基板の配線や接続端子の幅方向中央部に接した部位の硬化率を向上させ、導通抵抗を低下させるために、JIS K7375による全光線反射率が25%以上、好ましくは35〜60%である。
(Total light reflectance of anisotropic conductive film)
The anisotropic conductive film of the present invention is a transparent substrate wiring or connection terminal that is difficult to reach the irradiation light when the connection body is made by anisotropic conductive connection between the connection terminal of the transparent substrate and the electrode of the electronic component. In order to improve the curing rate of the portion in contact with the central portion in the width direction and reduce the conduction resistance, the total light reflectance according to JIS K7375 is 25% or more, preferably 35 to 60%.

異方性導電フィルムの全光線反射率の調整は、光拡散性フィラの種類、導電粒子の光拡散性フィラ被覆率、導電粒子を被覆していない光拡散性フィラの異方性導電フィルム中の存在量等を選択、調整することにより行うことができる。具体的には、全光線反射率を増大させる場合には、例えば、導電粒子の光拡散性フィラ被覆率を増大させること等により行うことができ、反対に、全光線反射率を低減させる場合には、導電粒子の光拡散性フィラ被覆率を低減させること等により行うことができる。   The adjustment of the total light reflectance of the anisotropic conductive film is carried out by adjusting the kind of the light diffusing filler, the light diffusing filler coverage of the conductive particles, and the anisotropic conductive film of the light diffusing filler not coated with the conductive particles. This can be done by selecting and adjusting the abundance. Specifically, when increasing the total light reflectance, for example, it can be performed by increasing the light diffusable filler coverage of the conductive particles, and conversely, when reducing the total light reflectance. Can be performed by reducing the light-diffusing filler coverage of the conductive particles.

<異方性導電フィルムの製造>
本発明の異方性導電フィルムは、導電粒子の表面に光拡散性フィラを高速攪拌機等により付着させて光拡散性フィラ被覆導電粒子を調製し、この光拡散性フィラ被覆導電粒子を、光硬化性化合物と光硬化剤と、必要に応じて配合されるその他の溶剤や成膜用樹脂等の成分とを含有するバインダ組成物中に、常法により均一に分散させ、所期の厚さに成膜した後、必要に応じて50℃以上100℃以下で乾燥することにより製造できる。
<Manufacture of anisotropic conductive film>
The anisotropic conductive film of the present invention is prepared by attaching a light diffusable filler to the surface of a conductive particle with a high-speed stirrer or the like to prepare a light diffusable filler-coated conductive particle. In a binder composition containing a functional compound, a photo-curing agent, and other components such as a solvent and a film-forming resin that are blended as necessary, it is uniformly dispersed by a conventional method to obtain a desired thickness. After film formation, it can be produced by drying at 50 ° C. or higher and 100 ° C. or lower as necessary.

<接続体>
本発明の異方性導電フィルムを介して、透明基板の接続端子と電子部品の電極とを異方性導電接続することにより接続体が得られるが、この接続体も本発明の一部である。透明基板としては紫外線透過性のガラス基板、プラスチック基板を採用することができ、また、接続端子や配線の材料、幅、ピッチ等は従来の透明基板で採用されているものを使用することができる。また、電子部品としては、異方性導電接続の対象となるものであり、FPC、ICチップ、液晶パネルなどが挙げられる。
<Connected body>
A connection body is obtained by anisotropic conductive connection between the connection terminal of the transparent substrate and the electrode of the electronic component through the anisotropic conductive film of the present invention, and this connection body is also a part of the present invention. . As the transparent substrate, an ultraviolet light transmissive glass substrate or a plastic substrate can be used, and the materials, width, pitch, etc., used for the conventional transparent substrate can be used for the connection terminals and wiring. . Further, the electronic component is a target of anisotropic conductive connection, and includes an FPC, an IC chip, a liquid crystal panel, and the like.

<接続体の製造方法>
本発明の接続体は、図1に示すように、透明基板1の接続用端子2に異方性導電フィルム3を配置し、その異方性導電フィルム3を介して電子部品4の電極5を透明基板1の接続用端子2に位置合わせし、電子部品4側から押圧した後、好ましくはその押圧を維持しながら、透明基板1側から紫外線(図中矢印)を照射して透明基板1と電子部品4とを接合することにより製造することができる。この紫外線照射の際、異方性導電フィルム3中の光拡散性フィラ6で被覆された導電粒子7に照射された紫外線は、光拡散性フィラ6により、異方性導電フィルム3のエッジ方向にも拡散し、接続用端子2と電極5との間に挟まれた光硬化性のバインダ組成物の硬化率を向上させることができる。
<Method for manufacturing connected body>
As shown in FIG. 1, the connection body of the present invention has an anisotropic conductive film 3 disposed on a connection terminal 2 of a transparent substrate 1, and an electrode 5 of an electronic component 4 is disposed through the anisotropic conductive film 3. After aligning with the connection terminal 2 of the transparent substrate 1 and pressing from the electronic component 4 side, the transparent substrate 1 is irradiated with ultraviolet rays (arrows in the figure) from the transparent substrate 1 side while preferably maintaining the pressing. It can be manufactured by joining the electronic component 4. In this ultraviolet irradiation, the ultraviolet rays applied to the conductive particles 7 covered with the light diffusing filler 6 in the anisotropic conductive film 3 are directed toward the edge of the anisotropic conductive film 3 by the light diffusing filler 6. Can be diffused, and the curing rate of the photocurable binder composition sandwiched between the connection terminal 2 and the electrode 5 can be improved.

なお、本発明の接続体を製造する際の好ましい押圧条件としては、圧力50MPa以上90MPa以下、押圧温度100℃以上120℃以下、押圧時間3秒以上、好ましくは5秒以上を例示することができる。押圧した後に、紫外線照射するのは、押圧と同時に紫外線を照射すると、導電粒子が十分に押し込まれずに、導通抵抗が大きくなる傾向があるからである。これにより、透明基板の配線や接続端子の幅方向中央部に接した部位の異方性導電フィルムの硬化率を向上させ、導通抵抗を低下させることができる。なお、紫外線光源や、紫外線照射条件等についても、従来の接続体の製造方法における紫外線光源や紫外線照射条件を適用することができる。   In addition, as preferable pressing conditions when manufacturing the connection body of the present invention, a pressure of 50 MPa or more and 90 MPa or less, a pressing temperature of 100 ° C. or more and 120 ° C. or less, a pressing time of 3 seconds or more, and preferably 5 seconds or more can be exemplified. . The reason why the ultraviolet rays are irradiated after the pressing is that when the ultraviolet rays are irradiated simultaneously with the pressing, the conductive particles are not sufficiently pushed in and the conduction resistance tends to increase. Thereby, the hardening rate of the anisotropic conductive film of the site | part which contact | connected the wiring direction of the transparent substrate and the width direction center part of the connecting terminal can be improved, and conduction | electrical_connection resistance can be reduced. In addition, the ultraviolet light source and the ultraviolet irradiation conditions in the conventional method for manufacturing a connection body can also be applied to the ultraviolet light source and the ultraviolet irradiation conditions.

以下、本発明をより具体的な実験例により説明する。   Hereinafter, the present invention will be described with more specific experimental examples.

実施例1
(光拡散性フィラ被覆導電粒子の調製)
平均粒径約4μmの導電粒子(AUL704、積水化学工業株式会社製)100質量部に対し、平均粒径100nmの酸化亜鉛微粒子20質量部を高速攪拌機を用いて被覆処理することにより20質量%の酸化亜鉛微粒子で被覆された光拡散性フィラ被覆導電粒子を得た。得られた光拡散性フィラ被覆導電粒子50サンプルの酸化亜鉛微粒子による被覆率は15%であった。
Example 1
(Preparation of light-diffusing filler-coated conductive particles)
By applying a coating treatment to 20 parts by mass of zinc oxide fine particles having an average particle diameter of 100 nm with respect to 100 parts by mass of conductive particles having an average particle diameter of about 4 μm (AUL704, manufactured by Sekisui Chemical Co., Ltd.), 20% by mass Light diffusing filler-coated conductive particles coated with zinc oxide fine particles were obtained. The coverage of the obtained 50 samples of the light diffusing filler-coated conductive particles with the zinc oxide fine particles was 15%.

(異方性導電フィルムの作製)
得られた光拡散性フィラ被覆導電粒子30質量部と、フェノキシ樹脂(YP70、新日鉄住金化学株式会社製)20質量部と、液状エポキシ樹脂(EP828、三菱化学株式会社製)30質量部と、固形エポキシ樹脂(YD014、新日鉄住金化学株式会社製)20質量部と、光カチオン系硬化剤(LW−S1、サンアプロ株式会社製)5質量部とを、撹拌装置(泡とり錬太郎、株式会社シンキー製)を用いて均一に混合した。得られた混合物を剥離処理したPET上に乾燥後の平均厚みが20μmとなるように塗布し、80℃で乾燥することにより異方性導電フィルムを得た。
(Preparation of anisotropic conductive film)
30 parts by mass of the obtained light-diffusing filler-coated conductive particles, 20 parts by mass of phenoxy resin (YP70, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP828, manufactured by Mitsubishi Chemical Corporation), and solid An epoxy resin (YD014, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 20 parts by mass and a photocationic curing agent (LW-S1, manufactured by San Apro Co., Ltd.) 5 parts by mass were mixed with a stirrer (Awatori Rentaro, manufactured by Shinky Corporation). ) To mix evenly. The obtained mixture was applied onto PET after the release treatment so that the average thickness after drying was 20 μm, and dried at 80 ° C. to obtain an anisotropic conductive film.

<接合体の製造>
接合体の製造に以下の試験用FPCとガラス基板とを使用した。
<Manufacture of joined body>
The following test FPC and glass substrate were used for the production of the joined body.

「ガラス基板」
前記試験用ICチップのバンプに対応する配線材料:Al/Cr/Au配線
配線幅:0.2mm、0.5mm、1.0mmの三種
平均配線厚さ:0.5μm
基板厚:0.7mm
"Glass substrate"
Wiring material corresponding to bumps of the test IC chip: Al / Cr / Au wiring Wiring width: three types of 0.2 mm, 0.5 mm, and 1.0 mm Average wiring thickness: 0.5 μm
Substrate thickness: 0.7mm

ガラス基板に、1.5mm幅にスリットした異方性導電フィルムを配置し、0.5MPa、60℃、2秒で仮貼りし、その上に、試験用ICチップを置いて仮固定した後、ヒートツール1.5mm幅で緩衝材(厚み70μmのテフロン(登録商標))を用いて、圧着条件120℃、80MPa、10秒間(ツールスピード25mm/秒間、ステージ温度30℃)で加熱押圧を開始し、開始から5秒間後に、加熱加圧を維持しながら、ガラス基板側から360nmに最大発光波長を持つLEDランプ(コントローラー:ZUV−C20H、ヘッドユニット:ZUV−H20MB、レンズユニット:ZUV−212L、オムロン株式会社製)を用いて400W/cmで5秒間、UV照射を行った。これにより接合体を得た。 An anisotropic conductive film slit to a width of 1.5 mm is placed on a glass substrate, temporarily attached at 0.5 MPa, 60 ° C., 2 seconds, and a test IC chip is placed thereon to temporarily fix it, Heat press using a buffer material (70 μm thick Teflon (registered trademark)) with a heat tool of 1.5 mm width and pressure bonding conditions of 120 ° C., 80 MPa, 10 seconds (tool speed 25 mm / second, stage temperature 30 ° C.) 5 seconds after the start, while maintaining the heating and pressurization, an LED lamp having a maximum emission wavelength of 360 nm from the glass substrate side (controller: ZUV-C20H, head unit: ZUV-H20MB, lens unit: ZUV-212L, OMRON) UV irradiation was performed for 5 seconds at 400 W / cm 2 . Thereby, a joined body was obtained.

実施例2
酸化亜鉛に代えて、平均粒径100nmの酸化アルミニウムを使用すること以外、実施例1と同様にして光拡散性フィラ被覆導電粒子(被覆率20%)を作製し、それを用いて異方性導電フィルムを作製し、更に接続体を作製した。
Example 2
A light-diffusing filler-coated conductive particle (coverage 20%) was produced in the same manner as in Example 1 except that aluminum oxide having an average particle diameter of 100 nm was used instead of zinc oxide, and anisotropy was obtained using it. A conductive film was produced, and a connection body was produced.

実施例3
酸化亜鉛に代えて、平均粒径100nmの酸化マグネシウムを使用すること以外、実施例1と同様にして光拡散性フィラ被覆導電粒子(被覆率45%)を作製し、それを用いて異方性導電フィルムを作製し、更に接続体を作製した。
Example 3
Light diffusing filler-coated conductive particles (coverage 45%) were produced in the same manner as in Example 1 except that magnesium oxide having an average particle diameter of 100 nm was used instead of zinc oxide, and anisotropy was obtained using it. A conductive film was produced, and a connection body was produced.

実施例4
酸化亜鉛20質量部に代えて、平均粒径100nmの酸化マグネシウム30質量部を使用すること以外、実施例1と同様にして光拡散性フィラ被覆導電粒子(被覆率60%)を作製し、それを用いて異方性導電フィルムを作製し、更に接続体を作製した。
Example 4
A light-diffusing filler-coated conductive particle (coverage 60%) was prepared in the same manner as in Example 1 except that 30 parts by mass of magnesium oxide having an average particle diameter of 100 nm was used instead of 20 parts by mass of zinc oxide. An anisotropic conductive film was prepared using a connector, and a connection body was further prepared.

実施例5
酸化亜鉛20質量部に代えて、平均粒径100nmの酸化マグネシウム40質量部を使用すること以外、実施例1と同様にして光拡散性フィラ被覆導電粒子(被覆率80%)を作製し、それを用いて異方性導電フィルムを作製し、更に接続体を作製した。
Example 5
A light-diffusing filler-coated conductive particle (coverage 80%) was prepared in the same manner as in Example 1 except that 40 parts by mass of magnesium oxide having an average particle diameter of 100 nm was used instead of 20 parts by mass of zinc oxide. An anisotropic conductive film was prepared using a connector, and a connection body was further prepared.

比較例1
光拡散性フィラで被覆されていない平均粒径約4μmの導電粒子(AUL704、積水化学工業株式会社製)5部と、フェノキシ樹脂(YP70、新日鉄住金化学株式会社製)20質量部と、液状エポキシ樹脂(EP828、三菱化学株式会社製)30質量部と、固形エポキシ樹脂(YD014、新日鉄住金化学株式会社製)20質量部と、光カチオン系硬化剤(LW−S1、サンアプロ株式会社製)5質量部とを、撹拌装置(泡とり錬太郎、株式会社シンキー製)を用いて均一に混合した。得られた混合物を剥離処理したPET上に乾燥後の平均厚みが20μmとなるように塗布し、80℃で乾燥することにより異方性導電フィルムを得た。また、得られた異方性導電フィルムを用いて、実施例1と同様に接続体を作製した。
Comparative Example 1
5 parts of conductive particles (AUL704, manufactured by Sekisui Chemical Co., Ltd.) having an average particle diameter of about 4 μm which are not coated with a light diffusing filler, 20 parts by mass of phenoxy resin (YP70, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), and a liquid epoxy 30 parts by mass of resin (EP828, manufactured by Mitsubishi Chemical Corporation), 20 parts by mass of solid epoxy resin (YD014, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), and 5 parts by mass of a cationic cationic curing agent (LW-S1, manufactured by San Apro Co., Ltd.) Were mixed uniformly using a stirrer (Ryotaro Awatori, manufactured by Shinky Co., Ltd.). The obtained mixture was applied onto PET after the release treatment so that the average thickness after drying was 20 μm, and dried at 80 ° C. to obtain an anisotropic conductive film. Moreover, the connection body was produced similarly to Example 1 using the obtained anisotropic conductive film.

比較例2
比較例1の配合に、更に平均粒径100nmの酸化亜鉛微粒子6質量部を配合すること以外、比較例1と同様に異方性導電フィルムを得た。また、得られた異方性導電フィルムを用いて、実施例1と同様に接続体を作製した。
Comparative Example 2
An anisotropic conductive film was obtained in the same manner as in Comparative Example 1 except that 6 parts by mass of zinc oxide fine particles having an average particle diameter of 100 nm were further added to the formulation of Comparative Example 1. Moreover, the connection body was produced similarly to Example 1 using the obtained anisotropic conductive film.

比較例3
比較例1の配合に、更に平均粒径100nmの酸化亜鉛微粒子12質量部を配合すること以外、比較例1と同様に異方性導電フィルムを得た。また、得られた異方性導電フィルムを用いて、実施例1と同様に接続体を作製した。
Comparative Example 3
An anisotropic conductive film was obtained in the same manner as in Comparative Example 1 except that 12 parts by mass of zinc oxide fine particles having an average particle diameter of 100 nm were further added to the formulation of Comparative Example 1. Moreover, the connection body was produced similarly to Example 1 using the obtained anisotropic conductive film.

<評価>
実施例及び比較例で得られた接続体について、「導通抵抗」、「配線中央の硬化率(%)」、「全光線反射率(%)」を以下に説明するように試験し、評価した。得られた結果を表1に示す。
<Evaluation>
About the connection body obtained by the Example and the comparative example, "conduction resistance", "hardening rate (%) of wiring center", and "total light reflectance (%)" were tested and evaluated as described below. . The obtained results are shown in Table 1.

「導通抵抗」
接続体について、30カ所の抵抗値(Ω)を、4端子法を用いて電流1mAの条件で測定した。実用的には1Ω以下であることが望ましい。
"Conduction resistance"
About the connection body, resistance value ((ohm)) of 30 places was measured on conditions of 1 mA of electric currents using the 4 terminal method. Practically, it is desirable that it is 1Ω or less.

「配線中央の硬化率(%)」
接合体の配線の平面方向の中央に接した光硬化後の異方性導電フィルムの硬化率を、エポキシ基の914cm−1の赤外吸収強度の変化により調べた。硬化前の赤外吸収強度を100とし、硬化後の赤外吸収強度をxとしたとき、硬化率(%)は100−xで求められる。なお、配線と重なっていない異方性導電フィルムの硬化率は、93%であった。
"Curing rate of wiring center (%)"
The curing rate of the anisotropic conductive film after photocuring in contact with the center in the planar direction of the wiring of the joined body was examined by a change in the infrared absorption intensity of 914 cm −1 of the epoxy group. When the infrared absorption intensity before curing is 100 and the infrared absorption intensity after curing is x, the curing rate (%) is obtained as 100-x. In addition, the hardening rate of the anisotropic conductive film which has not overlapped with wiring was 93%.

「全光線反射率(%)」
JIS K7375に準拠した全光線反射率測定器(日立分光光度計U−3300、株式会社日立ハイテクフィールディング製)を用い、異方性導電フィルムの全光線反射率(%)を求めた。
"Total light reflectance (%)"
The total light reflectivity (%) of the anisotropic conductive film was determined using a total light reflectometer (Hitachi spectrophotometer U-3300, manufactured by Hitachi High-Tech Fielding Co., Ltd.) based on JIS K7375.

Figure 2015191823
Figure 2015191823

表1から分かるように、光拡散性フィラで被覆された導電粒子を含有する実施例1〜5の異方性導電フィルムは、導通抵抗値が1Ω以下であり実用上問題の無い値を示した。硬化率も、光拡散性フィラを全く使用していない比較例1だけでなく、導電粒子を被覆せずにフィルム全体に均一に分散している比較例2、3にも比べ、幅0.5mmや幅1mmの配線の平面方向中央部の異方性導電フィルムの硬化率に比べ、大きく改善された。   As can be seen from Table 1, the anisotropic conductive films of Examples 1 to 5 containing conductive particles coated with a light diffusing filler exhibited a conduction resistance value of 1Ω or less and no practical problem. . The curing rate is 0.5 mm in width compared not only to Comparative Example 1 in which no light diffusing filler is used, but also to Comparative Examples 2 and 3 in which the conductive particles are uniformly dispersed throughout the film. Compared to the curing rate of the anisotropic conductive film at the center in the plane direction of the wiring having a width of 1 mm, it was greatly improved.

本発明の異方性導電フィルムは、使用する導電粒子の表面の少なくとも一部が光拡散性フィラで被覆されており、また、JIS K7375による全光線反射率が25%以上である。このため、この異方性導電フィルムを介して、透明基板の接続端子と電子部品の電極とを異方性導電接続して接続体を作成した際に、透明基板の配線や接続端子の幅方向中央部に接した部位の硬化率を向上させ、接続抵抗を低下させることができるので、ICチップ等の電子部品を透明基板に実装する際に有用である。   In the anisotropic conductive film of the present invention, at least a part of the surface of the conductive particles to be used is coated with a light diffusing filler, and the total light reflectance according to JIS K7375 is 25% or more. For this reason, when creating a connection body by anisotropically connecting the connection terminal of the transparent substrate and the electrode of the electronic component through this anisotropic conductive film, the width direction of the wiring of the transparent substrate and the connection terminal Since the hardening rate of the site | part which contact | connected the center part can be improved and connection resistance can be reduced, it is useful when mounting electronic components, such as an IC chip, on a transparent substrate.

1 透明基板
2 接続用端子
3 異方性導電フィルム
4 電子部品
5 電極
6 光拡散性フィラ
7 導電粒子
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Terminal for connection 3 Anisotropic conductive film 4 Electronic component 5 Electrode 6 Light diffusing filler 7 Conductive particle

Claims (6)

光硬化性化合物と光硬化剤とを含むバインダ組成物と、その中に分散している導電粒子とを含有する異方性導電フィルムであって、導電粒子の表面の少なくとも一部が光拡散性フィラで被覆されており、JIS K7375全光線反射率が25%以上である異方性導電フィルム。   An anisotropic conductive film comprising a binder composition containing a photocurable compound and a photocuring agent and conductive particles dispersed therein, wherein at least a part of the surface of the conductive particles is light diffusive An anisotropic conductive film which is covered with filler and has a JIS K7375 total light reflectance of 25% or more. 導電粒子の表面の15%以上が光拡散性フィラで被覆されている請求項1記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein 15% or more of the surface of the conductive particles is coated with a light diffusing filler. 異方性導電フィルム中の全光拡散フィラに対する、導電粒子を被覆していない光拡散性フィラの割合が4〜15質量%である請求項1又は2記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1 or 2, wherein a ratio of the light diffusing filler not covering the conductive particles to the total light diffusing filler in the anisotropic conductive film is 4 to 15% by mass. 光拡散性フィラが、無機酸化物である請求項1〜3のいずれかに記載の異方性導電導電フィルム。   The anisotropic conductive film according to claim 1, wherein the light diffusing filler is an inorganic oxide. 請求項1〜4のいずれかに記載の異方性導電フィルムを介して、透明基板の接続端子と電子部品の電極とが異方性導電接続されている接続体。   The connection body by which the connection terminal of the transparent substrate and the electrode of the electronic component are anisotropically conductive-connected through the anisotropic conductive film in any one of Claims 1-4. 請求項5記載の接続体の製造方法であって、透明基板の接続用端子に異方性導電フィルムを配置し、その異方性導電フィルムを介して電子部品の電極を透明基板の接続端子に位置合わせし、電子部品側から押圧した後、透明基板側から紫外線を照射することにより透明基板と電子部品とを接合する製造方法。   6. The method of manufacturing a connection body according to claim 5, wherein an anisotropic conductive film is arranged on the connection terminal of the transparent substrate, and the electrode of the electronic component is connected to the connection terminal of the transparent substrate through the anisotropic conductive film. A manufacturing method for joining a transparent substrate and an electronic component by aligning and pressing from the electronic component side and then irradiating ultraviolet rays from the transparent substrate side.
JP2014069141A 2014-03-28 2014-03-28 Anisotropic conductive film Active JP6233139B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014069141A JP6233139B2 (en) 2014-03-28 2014-03-28 Anisotropic conductive film
PCT/JP2015/052455 WO2015146275A1 (en) 2014-03-28 2015-01-29 Anisotropic conductive film
CN201580006596.9A CN106063042A (en) 2014-03-28 2015-01-29 Anisotropic conductive film
KR1020167020890A KR20160137957A (en) 2014-03-28 2015-01-29 Anisotropic conductive film
TW104107382A TWI638025B (en) 2014-03-28 2015-03-09 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069141A JP6233139B2 (en) 2014-03-28 2014-03-28 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2015191823A true JP2015191823A (en) 2015-11-02
JP6233139B2 JP6233139B2 (en) 2017-11-22

Family

ID=54194815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069141A Active JP6233139B2 (en) 2014-03-28 2014-03-28 Anisotropic conductive film

Country Status (5)

Country Link
JP (1) JP6233139B2 (en)
KR (1) KR20160137957A (en)
CN (1) CN106063042A (en)
TW (1) TWI638025B (en)
WO (1) WO2015146275A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116110805B (en) * 2023-04-13 2023-07-11 深圳宏芯宇电子股份有限公司 Chip bonding method, structure and memory

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714627A (en) * 1993-06-25 1995-01-17 Ricoh Co Ltd Wiring structure
JPH0714625A (en) * 1993-06-23 1995-01-17 Ricoh Co Ltd Wiring structure and manufacture thereof
JPH10226773A (en) * 1996-12-10 1998-08-25 Sumitomo Bakelite Co Ltd Anisotropically conductive film
WO2012127978A1 (en) * 2011-03-18 2012-09-27 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflective anisotropic conductive adhesive and light-emitting device
JP2013258138A (en) * 2012-05-16 2013-12-26 Hitachi Chemical Co Ltd Conductive particle, anisotropic conductive adhesive film, and connection structure
JP2014225440A (en) * 2013-04-16 2014-12-04 積水化学工業株式会社 Conductive particle for photocurable conductive material, photocurable conductive material, method of producing connection structure and connection structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880533B2 (en) * 2007-07-03 2012-02-22 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film, method for producing the same, and joined body
JP2013105636A (en) 2011-11-14 2013-05-30 Dexerials Corp Anisotropic conductive film, connection method, and connected body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714625A (en) * 1993-06-23 1995-01-17 Ricoh Co Ltd Wiring structure and manufacture thereof
JPH0714627A (en) * 1993-06-25 1995-01-17 Ricoh Co Ltd Wiring structure
JPH10226773A (en) * 1996-12-10 1998-08-25 Sumitomo Bakelite Co Ltd Anisotropically conductive film
WO2012127978A1 (en) * 2011-03-18 2012-09-27 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflective anisotropic conductive adhesive and light-emitting device
JP2013258138A (en) * 2012-05-16 2013-12-26 Hitachi Chemical Co Ltd Conductive particle, anisotropic conductive adhesive film, and connection structure
JP2014225440A (en) * 2013-04-16 2014-12-04 積水化学工業株式会社 Conductive particle for photocurable conductive material, photocurable conductive material, method of producing connection structure and connection structure

Also Published As

Publication number Publication date
KR20160137957A (en) 2016-12-02
TWI638025B (en) 2018-10-11
CN106063042A (en) 2016-10-26
JP6233139B2 (en) 2017-11-22
TW201602306A (en) 2016-01-16
WO2015146275A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
KR101582766B1 (en) Anisotropic conductive film, connection method and connector
KR101035864B1 (en) Anisotropic conductive film and method for producing the same, and bonded body
WO2014030753A1 (en) Anisotropic-conductive-film manufacturing method and anisotropic conductive film
WO2017141863A1 (en) Anisotropic conductive film, manufacturing method therefor, and connection structure
WO2012144033A1 (en) Light-reflecting conductive particles, anisotropic conductive adhesive, and light-emitting device
JP6233139B2 (en) Anisotropic conductive film
JP2017097974A (en) Anisotropically conductive film, method for connecting electronic component, and method for manufacturing connection structure
JP6029922B2 (en) CIRCUIT CONNECTION MATERIAL, ITS MANUFACTURING METHOD, AND MOUNTING BODY MANUFACTURING METHOD USING THE SAME
CN111596482A (en) Liquid crystal light adjusting film and preparation method thereof
TWI648156B (en) Anisotropic conductive film and manufacturing method thereof
TWI723561B (en) Anisotropic conductive film and manufacturing method thereof
WO2015083809A1 (en) Method for producing connection structure, and anisotropic conductive film
JP6302336B2 (en) Conductive particles for photocurable conductive material, photocurable conductive material, method for producing connection structure, and connection structure
KR20160130768A (en) Anisotropic conductive film and method for producing same
TWI651195B (en) Anisotropic conductive film and method of manufacturing same
JP6609092B2 (en) Connection structure manufacturing method and connection structure
JP7062389B2 (en) Anisotropic conductive film
JP6456170B2 (en) Connection method and joined body
JP6145003B2 (en) Manufacturing method of connection structure, B-stage anisotropic conductive material, and connection structure
JP6145004B2 (en) Manufacturing method of connection structure, B-stage anisotropic conductive material, and connection structure
WO2022260158A1 (en) Coated particles, resin composition, and connection structure
JP7234032B2 (en) Method for manufacturing adhesive film, method for manufacturing adhesive film, and connected body
TW201717217A (en) Connection structure production method, conductive particles, conductive film, and connection structure
EP3584333A1 (en) Sintered material, connection structure, composite particle, joining composition, and method for manufacturing sintered material
JP2020013787A (en) Conductive material and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171009

R150 Certificate of patent or registration of utility model

Ref document number: 6233139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250